TD 32: Variables aléatoires discrètes

Exercice 1. Réf. 211

On considère une urne contenant sept boules dont quatre rouges. On fait des tirages successifs sans remise jusqu'à obtenir une boule rouge. Soit X la var égale au rang de la première apparition d'une boule rouge. Loi et espérance de X.

Exercice 2. Réf. 214

Déterminer la loi de X dans chaque cas :

- 1. Une pièce amène pile avec la probabilité p et face avec la probabilité q = 1 p, où 0 . On la lance <math>p fois de suite. Soit p le nombre de fois où pile apparaît au cours de ces lancers.
- 2. n candidats se présentent dans un ordre aléatoire devant un jury. On suppose que ces candidats peuvent être classés par valeur, sans ex-aequo. On note X la var égale au rang de présentation du meilleur d'entre eux.
- 3. Un mobile se déplace sur un axe gradué. A t=0, il est en O et se déplace à chaque instant entier t=n de +1 ou de -1 avec équiprobabilité. Soit X la var de Bernouilli égale à 1 si le mobile est en O à t=2n, $n\geq 1$, et à 0 sinon.

Exercice 3. Réf. 215

Une puce se déplace sur l'axe des abscisses à partir de l'origine. À chaque seconde, elle saute d'une unité vers la droite avec une probabilité p ou vers la gauche avec une probabilité 1-p.

Soit Y_n le nombre de sauts vers la droite effectués et X_n la position de la puce après n secondes.

- 1. Info Créer une fonction position qui prend pour argument un entier n et un réel $p \in]0;1[$ et sort l'abscisse de la puce au bout de n secondes. On pourra même s'amuser à tracer la position en fonction du temps.
- 2. Exprimer la loi de Y_n .
- 3. Donner le lien entre Y_n et X_n . En déduire la loi de X_n et son espérance.
- 4. Pour quelles valeurs de p la variable X_n est-elle centrée? Commentez.

Exercice 4. Réf. 216 Une urne contient 12 jetons numérotés de 1 à 12. On tire 5 jetons avec remise et on note X (resp. Y) la v.a.r. égale au plus petit (resp. plus grand) des numéros tirés. Déterminer la loi de X puis celle de Y.

Exercice 5. Réf. 222

Une urne contient n jetons numérotés de 1 à n. On tire k jetons avec remise et on note X (resp. Y) la v.a.r. égale au plus petit (resp. plus grand) des numéros tirés.

- 1. Déterminer la loi de X. On pourra dans un premier temps déterminer P(X > i) pour $i \in \mathbf{N}$.
- 2. Montrer que $E(X) = \sum_{j=0}^{n} P(X > j)$ et donner E(X). <u>Info</u> En donner une estimation si n = 12.
- 3. Calculer $\lim_{n\to +\infty} \frac{E(X)}{n}$. En déduire un équivalent de E(X) quand $n\to +\infty$.
- 4. Déterminer la loi de Y et montrer que X et n+1-Y suivent la même loi.
- 5. En déduire l'espérance de Y avec le moins de calculs possibles.

Exercice 6. Réf. 223

Une urne contient quatre boules noires et trois boules blanches. On réalise dans cette urne des tirages successifs d'une boule avec remise. On note X la v.a.r donnant le nombre de tirages qu'il est nécessaire de réaliser pour obtenir, pour la première fois, deux boules blanches consécutives.

Par exemple, pour le tirage NNBNBNBB..., l'événement (X = 8) est réalisé.

1. Déterminer P(X = 1), P(X = 2) et P(X = 3).

- 2. Soit $n \geq 3$. Pour tout i, on note B_i l'évènement « la boule tirée au coup i est blanche ».
 - (a) Montrer que $(X = n) = (X = n \cap \overline{B_1}) \cup (X = n \cap B_1 \cap \overline{B_2}).$
- (b) En déduire que $\forall n \geq 3$, $\mathbf{P}(X=n) = \frac{4}{7} \mathbf{P}(X=n-1) + \frac{12}{49} \mathbf{P}(X=n-2)$. 3. Montrer que $\forall n \geq 2$, $\mathbf{P}(X=n) = \frac{3}{16} \left(\frac{6}{7}\right)^n + \frac{9}{16} \left(-\frac{2}{7}\right)^n$.