Exercice 1

- 1. Soit $f: x \mapsto e^{x^2 x 1}$. Faire l'étude de f.
- 2. Soit $g : x \mapsto x + \frac{\ln |x|}{|x|}$. Faire l'étude de g.

Exercice 2

Pour $x \in \mathbb{R}$, on pose $f(x) = xe^{1-x}$.

- 1. Justifier que f réalise une bijection de $]-\infty,1[$ vers un intervalle J à déterminer.
- 2. Justifier que f^{-1} est dérivable sur J.
- 3. Calculer f(-1). En déduire l'équation de la tangente à la courbe représentative de f^{-1} au point d'abscisse $-e^2$.

Exercice 3

1. On considère la fonction f définie sur \mathbb{R} par

$$\forall x \in \mathbb{R}, \ f(x) = x^3 \text{ si } x \ge 0 \text{ et } f(x) = x^2 \text{ si } x < 0.$$

Etudier la régularité de f.

2. On considère la fonction g définie sur $\mathbb{R} \setminus \{1\}$ par :

$$\forall x \in \mathbb{R} \setminus \{1\}, \ g(x) = \frac{1}{x^2 - 1}.$$

(a) Déterminer deux réels a et b tels que :

$$\forall x \in \mathbb{R} \setminus \{1\}, \ g(x) = \frac{a}{x-1} + \frac{b}{x+1}.$$

- (b) En déduire que g est indéfiniment dérivable sur $\mathbb{R} \setminus \{1\}$ et calculer la dérivée d'ordre n de g pour tout $n \in \mathbb{N}$.
- 3. Question facultative. Soit $f: x \mapsto \frac{1}{\sqrt{1+x^2}}$.
 - (a) Montrer que f est de classe \mathcal{C}^{∞} sur \mathbb{R} et que pour chaque valeur de n, il existe une fonction polynôme P_n telle que

$$\forall x \in \mathbb{R}, \ f^{(n)}(x) = \frac{P_n(x)}{(1+x^2)^{n+\frac{1}{2}}}.$$

(b) Montrer que $\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ P_{n+1}(x) = (1+x^2)P_n'(x) - (2n+1)xP_n(x)$.