TD 5 : applications et relations

► Exercice 1:

- 1. Soit $f: \mathbb{Z} \times \mathbb{N}^* \to \mathbb{Q}, \ (p,q) \mapsto \frac{p}{q}$. f est-elle injective, surjective, bijective?
- 2. Montrer qu'il existe une bijection de]0,1] sur $[1,+\infty[$.
- 3. Montrer qu'il existe une bijection de \mathbb{Z} sur \mathbb{N} .
- ▶ Exercice 2 : Soit f : $E \to F$ et g : $F \to G$ deux applications.
 - 1. Montrer que si $g \circ f$ est injective alors f est injective. A-t-on nécessairement g injective?
 - 2. Montrer que si $g \circ f$ est surjective alors g est surjective. A-t-on nécessairement f surjective?
 - 3. Montrer que toute application involutive est bijective.
- \blacktriangleright Exercice 3 : Soient E, F et G des ensembles, f et g deux applications de e dans F, h et k deux applications de F dans G. Montrer que :
 - 1. si f est surjective alors $(h \circ f = k \circ f \Leftrightarrow h = k)$.
 - 2. si h est injective alors $(h \circ f = h \circ g \Leftrightarrow f = g)$.
- ▶ Exercice 4 : Soit $f \in \mathcal{F}(E, F)$ et B une partie quelconque de F.
 - 1. Montrer l'inclusion $f(f^{-1}(B)) \subset B$.
 - 2. Montrer que l'égalité est vraie pour tout B ssi f est surjective.
- ▶ Exercice 5 : Soit $f \in \mathcal{F}(E, F)$ et A une partie quelconque de E.
 - 1. Comparer A et $f^{-1}(f(A))$.
 - 2. A-t-on l'équivalence : $(\forall A \in \mathcal{P}(E), f^{-1}(f(A)) = A) \Leftrightarrow f$ est injective?
- \blacktriangleright Exercice 6 : Dans chacun des cas suivants, examiner injectivité et surjectivité éventuelles de f ; précisez l'ensemble des valeurs (ou ensemble image) :

1.
$$f: \mathbb{R} \to \mathbb{R}, x \mapsto \frac{x}{\sqrt{1+x^2}}$$
.

2.
$$f : \mathbb{R} \to]0,1], x \mapsto \frac{1}{1+x^2}.$$

3.
$$f : \mathbb{R}^2 \to \mathbb{R}^2, (x, y) \mapsto (y, x).$$

4.
$$f: \mathbb{R}^2 \to \mathbb{R}^2, (x,y) \mapsto (\frac{x+y}{2}, \frac{x+y}{2}).$$

- ▶ Exercice 7 : On définit sur \mathbb{C} une relation binaire en posant $z\mathcal{R}z' \Leftrightarrow |z| = |z'|$.
 - 1. Montrer que $\mathcal R$ est une relation d'équivalence sur $\mathbb C$.
 - 2. Décrire la classe d'équivalence d'un élément z de \mathbb{C} .
- ► Exercice 8 : Pour $(x,y) \in \mathbb{R}^2$, on pose $x\mathcal{R}y \Leftrightarrow x^2 y^2 = x y$.

- 1. Montrer que $\mathcal R$ est une relation d'équivalence sur $\mathbb R$.
- 2. Décrire la classe d'équivalence d'un élément x de \mathbb{R} .
- ▶ Exercice 9 : On définit sur \mathbb{N}^2 une relation binaire en posant $(x,y)\mathcal{R}(x',y') \Leftrightarrow x \leq x'$ et $y \leq y'$.
 - 1. Montrer que \mathcal{R} est une relation d'ordre sur \mathbb{N}^2 . Cet ordre est-il total?
 - 2. On pose $A = \{(1,1),(2,3),(2,4),(4,5),(5,2)\}$. Déterminer majorants, minorants, extrema de A.
 - 3. Reprendre la question précédente avec $B = \{(2,1), (1,3), (5,2), (1,5), (5,6)\}.$