Exercice 1

Dans tout cet exercice, T désigne une fonction continue de \mathbb{R} dans \mathbb{R} . Etant donné $x_0 \in \mathbb{R}$, on définit par récurrence la suite (x_n) par $x_{n+1} = T(x_n)$, pour tout entier naturel n.

On suppose que T est contractante, c'est-à-dire qu'il existe $k \in [0,1[$ tel que $\forall (x,y) \in \mathbb{R}^2, \ |T(x)-T(y)| \le k|x-y|.$

- 1. Montrer que T admet au plus un point fixe.
- 2. Montrer que pour tout entier naturel n, $|x_{n+1}-x_n| \le k^n |x_1-x_0|$. En déduire que $\lim_{n\to+\infty} (x_{n+1}-x_n) = 0$.
- 3. Montrer que pour tout $n \in \mathbb{N}^*$,

$$|x_n - x_0| \le \frac{1 - k^n}{1 - k} |x_1 - x_0|.$$

En déduire que (x_n) est bornée.

4. En utilisant les questions précédentes, montrer que T admet un unique point fixe, puis que (x_n) converge vers ce point fixe.

Exercice 2

Soit $(A, +, \times)$ un anneau. On dit qu'un élément a de A est nilpotent s'il existe $n \in \mathbb{N}^*$ tel que $a^n = 0$.

- 1. Si $x \in A$ est nilpotent, montrer que 1-x est inversible et calculer son inverse (on utilisera $1-x^n$).
- 2. Soit $(a,b) \in A^2$ tel que a soit inversible, ab = ba et b soit nilpotent. Montrer que a + b est inversible et donner son inverse.
- 3. Soit $(a,b) \in A^2$ tel que ab = ba. Montrer que a + b et ab sont nilpotents.
- 4. Soit $(a,b) \in A^2$ tel que ab soit nilpotent. Montrer que ba est nilpotent.

Exercice 3

Montrer que $1 \vee 2 \vee \cdots \vee (2n) = (n+1) \vee (n+2) \vee \cdots \vee (2n)$. Pour cela on montrera l'égalité entre l'ensemble des multiples communs à $1, 2, \cdots, 2n$ et l'ensemble des multiples communs à $(n+1), (n+2), \cdots, 2n$.

18/1/2025 1/1