TD 7: Fonctions usuelles

- ▶ Exercice 1 : Résoudre l'équation $x^{\frac{1}{4}} + 2x^{\frac{5}{3}} 3 = 0$.
- ► Exercice 2 : Résoudre l'équation $8^{6x} 3.8^{3x} 4 = 0.00$
- ▶ Exercice 3 : Etude de f : $x \mapsto x^{\frac{1}{x}}$
- ► Exercice 4 : Donner la valeur de $\arcsin 0$, $\arcsin(\frac{1}{2})$, $\arcsin(\frac{\sqrt{3}}{2})$, $\arcsin 1$, $\arcsin(\pi)$ et $\arcsin(\sin(\frac{5\pi}{6}))$.
- \blacktriangleright Exercice 5 : Représenter les fonctions f définies par les quantités suivantes :
 - 1. $\sin(\arcsin x)$
 - 2. $\cos(\arccos x)$
 - 3. $\arcsin(\sin x)$
 - 4. $\arccos(\cos x)$
- ▶ Exercice 6 : Simplifier les quantités suivantes :
 - 1. $tan(2 \arctan x)$
 - $2. \sin(2\arcsin x)$
 - 3. $\cos(2\arccos x)$
 - 4. $\sin^2(\frac{1}{2}\arccos x)$
- ► Exercice 7 : Démontrer que :
 - 1. $\arctan(\frac{1}{2}) + \arctan(\frac{1}{3}) = \frac{\pi}{4}$
 - $2. \arcsin(\frac{5}{13}) + \arcsin(\frac{3}{5}) = \arcsin(\frac{56}{65}).$
- ▶ Exercice 8 : En précisant sur quels domaines cela est possible, calculer les dérivées des fonctions définies par les quantités suivantes:
 - 1. $\arctan(\frac{x}{x+1})$
 - 2. $\ln |\ln x|$

 - 3. x^{x} 4. $\frac{x}{x^{2} + a^{2}}$
 - 5. $\arcsin(e^{-x^2})$
- ▶ Exercice 9 : En précisant sur quels domaines cela est possible, calculer les primitives à une constante près des fonctions définies par les quantités suivantes :
 - 1. $\tan x$

 - 3. $\frac{1}{\sqrt{a^2 x^2}}$

4.
$$\frac{1}{x \ln x}$$

- ► Exercice 10 : Résoudre l'équation $\arctan(2x) + \arctan x = \frac{\pi}{4}$.
- lacktriangle Exercice 11 : Résoudre l'équation $\arcsin x = 2 \arctan x$.
- ► Exercice 12 : Etude de $f: x \mapsto \arccos(\cos x) + \frac{1}{2}\arccos(\cos 2x)$
- lacksquare Exercice 13 : Etude de $f : x \mapsto \arctan \sqrt{\frac{1-x}{1+x}}$
- ▶ Exercice 14 : Etude de f : $x \mapsto x + (1 3x)^{\frac{1}{3}}$
- ▶ Exercice 15 : Etude de f : $x \mapsto e^{x^2 x 1}$
- ▶ Exercice 16 : Démontrer que $\forall x \in \mathbb{R}, \ \forall n \in \mathbb{Z}, \ (\operatorname{ch} x + \operatorname{sh} x)^n = \operatorname{ch}(nx) + \operatorname{sh}(nx).$
- \blacktriangleright Exercice 17 : Résoudre dans \mathbb{R}^2 le système $\left\{\begin{array}{c} x=\operatorname{ch}(2y) \\ 3\ln x=2\ln(\operatorname{ch} y) \end{array}\right.$
- ► Exercice 18: Pour tout $(a,b) \in \mathbb{R}^2$, calculer $S_n = \sum_{k=0}^{n-1} \operatorname{ch}(a+kb)$ et $T_n = \sum_{k=0}^{n-1} \operatorname{sh}(a+kb)$
- \blacktriangleright Exercice 19 : En précisant sur quel domaine cela est possible, calculer la dérivée de $x \mapsto \exp(\sinh x)$.
- ightharpoonup Exercice 20 : Résoudre l'équation $\mathrm{ch} x=2$.
- ► Exercice 21:
 - 1. Sur quel intervalle a-t-on $thx = \frac{2}{th(2x)} \frac{1}{thx}$?
 - 2. En déduire, pour $n \in \mathbb{N}^*$ la somme : $\sum_{k=0}^{n-1} 2^k \operatorname{th} \left(2^k x \right)$.
- ▶ Exercice 22 : Montrer que la fonction sh réalise une bijection de \mathbb{R} vers \mathbb{R} . On note sh^{-1} sa bijection réciproque. En précisant sur quel domaine cela est possible, calculer la dérivée de sh^{-1} .