
Chapitre 12 : Structures algébriques usuelles

1 Lois de composition interne

Définition 1 (Loi de composition interne).

Une loi de composition interne ou opération interne sur un ensemble E est une application de E × E
vers E.
Notation : E×E −→ E, (x, y) 7→ x∗y. Un ensemble muni d’une opération interne (E, ∗) est appelé un magma.

▶ Exemple : : (Z,+), (Z,×), (Q,+), (Q,×), (R,+), (R,×), (C,+), (C,×), (R3,∧), (R3,+), .... Mais × n’est
pas une loi externe sur R− car le produit de deux nombres réels négatifs n’est pas un nombre réel négatif.

Définition 2 (Partie stable pour ∗).
On dit que A est stable pour ∗ ssi ∀(a, a′) ∈ A2, a ∗ a′ ∈ A.
La restriction à A de la loi ∗ est une loi de composition interne sur A, appelée loi de composition interne
induite par ∗ sur A.

▶ Exemple : : Dans (Z,+) , N est stable.
Dans (Z,×) , N est stable alors que Z− ne l’est pas.

Définition 3 (Loi produit).

Soient (E, ∗) et (F,⊥) deux magmas. On appelle loi de composition interne produit sur E × F la loi de
composition définie par :

(E × F )2 −→ E × F, ((x, y), (x′, y′)) 7→ (x ∗ x′, y ⊥ y′).

▶ Exemple : : (R+∗ × R)2 −→ R+∗ × R, ((r, θ), (r′, θ′)) 7→ (rr′, θ + θ′).

2 Propriétés éventuelles

Soit (E, ∗) un magma.

Définition 4 (Commutativité).

On dit que ∗ est commutative sur E lorsque ∀(x, y) ∈ E2, x ∗ y = y ∗ x.

▶ Exemple : : + dans R, × dans R.
Non commutativité : ∃(x, y) ∈ E2, x ∗ y ̸= y ∗ x.

Définition 5 (Associativité).

On dit que ∗ est associative sur E lorsque ∀(x, y, z) ∈ E3, (x ∗ y) ∗ z = x ∗ (y ∗ z).

▶ Exemple : : + et × dans C.
∧ n’est pas associatif dans R3.
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Définition 6 (Elément neutre).

Soit e ∈ E, e est élément neutre pour ∗ dans E ssi ∀x ∈ E, e ∗ x = x = x ∗ e.

▶ Exemple : : 0 est élément neutre pour + dans C, R, Q. 1 est élément neutre pour × dans C, R, Q.

Propriété 1 (Unicité de l’élément neutre).

Si (E, ∗) possède un élément neutre, celui-ci est unique.

Définition 7 (Elément inversible).

Soit (E, ∗) un magma tel que ∗ soit une loi associative et possédant un élément neutre e. Soit x ∈ E, x est
symétrisable ou inversible pour ∗ dans E ssi ∃y ∈ E, x ∗ y = e = y ∗ x. y est appelé symétrique ou
inverse de x et noté en général x−1.

▶ Exemple : : Dans (R,+) tout élément x possède un symétrique : x−1 = −x, appelé opposé.

Dans (R,×) tout élément x non nul possède un symétrique : x−1 =
1

x
, appelé inverse.

Dans (Z,×) les éléments symétrisables sont 1 et −1.
Dans (N,+) l’élément symétrisable est 0.

Propriété 2 (Inversibilité et inverse du produit de deux éléments inversibles).

Soit (E, ∗) un magma tel que ∗ est associative et possédant un élément neutre e. Soit (x, y) ∈ E2, x ∗ y est
symétrisable et (x ∗ y)−1 = y−1 ∗ x−1.

Remarque 1. L’élément neutre s’il existe est toujours symétrisable et e = e−1.

Définition 8 (Elément idempotent).

Soit x ∈ E, x est idempotent ssi x ∗ x = x. ∀n ∈ N∗, xn = ((x ∗ x) ∗ · · · ) · · · ) ∗ x = x. La loi est dite
idempotente ssi tout élément est idempotent, ssi ∀x ∈ E, x ∗ x = x.

Remarque 2. Si l’élément neutre existe, il est idempotent.

Définition 9 (Distributivité).

Soit E muni de deux lois de composition interne ∗ et ⊥.
∗ est distributive par rapport à ⊥ ssi
∀(x, y, z) ∈ E3, x ∗ (y ⊥ z) = (x ∗ y) ⊥ (x ∗ z) (distributivité à gauche) et
(y ⊥ z) ∗ x = (y ∗ x) ⊥ (z ∗ x) (distributivité à droite).

▶ Exemple : : Soit E un ensemble. Sur P(E), vérifier que ∪ et ∩ sont des lois de composition interne et étudier
leurs propriétés.

3 Groupes

Définition 10 (Groupe).

Soit E un ensemble. (E, ∗) est un groupe ssi
— ∗ est une loi de composition interne dans E,
— ∗ est associative,
— E possède un élément neutre e pour ∗,
— tout élément de E est symétrisable.

Si de plus ∗ est commutative, on dit que (E, ∗) est un groupe abélien ou commutatif.

▶ Exemple : : (Z,+), (Q,+), (R,+), (C,+) sont des groupes abéliens (groupes additifs usuels).
(Q∗,×), (Q∗

+,×), (R∗,×), (R∗
+,×), (C∗,×), (U,×), (Un,×) sont des groupes abéliens (groupes multiplicatifs
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usuels).

(N,+) n’est pas un groupe.
(R,×) n’est pas un groupe.
(R∗,+) n’est pas un groupe.

Propriété 3.

Soit (E, ∗) un groupe et e son élément neutre.

1. Soit x ∈ E, le symétrique de x est unique.

2. Soit x ∈ E, x−1 est également symétrisable et (x−1)−1 = x.

3. Soit (x, y) ∈ E2, x ∗ y est symétrisable et (x ∗ y)−1 = y−1 ∗ x−1.

Itéré d’un élément : dans un groupe additif on note x ∗ x ∗ · · · ∗ x = nx alors que dans un groupe multplicatif on
note x ∗ x ∗ · · · ∗ x = xn.

Définition 11 (Groupe des permutations).

Si X est un ensemble, on appelle groupe des permutations de X (ou groupe symétrique de X) l’ensemble des
bijections de X vers X. On le note SX . (SX , ◦) est un groupe.

Cas particulier : lorsque X = {1, 2, · · · , n}, on note SX = Sn et Sn a n ! éléments. C’est l’étude par Galois du
groupe des permutations des racines d’un polynômme qui a conduit à la définition abstraite de groupe.

Définition 12 (Groupe produit).

Soient (E, ∗) et (F,⊥) deux groupes. On définit sur E×F la loi de composition ⊗ : (x, y)⊗(x′, y′) = (x∗x′, y ⊥
y′). (E × F,⊗) est un groupe appelé groupe produit.

Définition 13 (Sous-groupe).

Soit H une partie de G. On dit que (H, ∗) est un sous-groupe de (G, ∗) lorsque :
— H est stable par ∗,
— (H, ∗) a une structure de groupe.

Remarque 3. Si ∗ est associative dans E alors son application induite l’est encore sur A.
Si ∗ est commutative dans E alors son application induite l’est encore sur A.
Sous-groupe trivial.

▶ Exemple : Soit n ∈ N. (nZ,+) est un sous-groupe de (Z,+). (U,×) est un sous-groupe de (C∗,×).

Propriété 4.

Soit (G, ∗) un groupe et H ⊂ G. Alors (H, ∗) est un sous-groupe de (G, ∗) ssi

1. H est stable par ∗,
2. e ∈ H (où e est l’élément neutre de (G, ∗))
3. ∀x ∈ H x−1 ∈ H (où x−1 est le symétrique de x pour ∗ dans G)

Propriété 5.

Soit (G, ∗) un groupe et H ⊂ G. Alors (H, ∗) est un sous-groupe de (G, ∗) ssi

1. H ̸= ∅
2. ∀x, y ∈ H, x ∗ y−1 ∈ H.

4 Anneaux

4.1 Définition
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Définition 14.

Soit A un ensemble muni de deux lois de composition interne + et ×. On dit que (A,+,×) est un anneau
lorsque :

— (A,+) est un groupe commutatif (son élément neutre pour + est noté 0A et le symétrique de a ∈ A pour
+ est noté −a),

— × est associative et distributive par rapport à +,
— A possède un élément neutre pour × (noté 1A).

De plus, si × est commutative on dit que (A,+,×) est un anneau commutatif.

▶ Exemples :
— (Z,+,×),
— (Q,+,×),
— (R,+,×),
— (C,+,×),
— (RN,+,×)

sont des anneaux commutatifs.
— Si I est un ensemble non vide, on définit sur F(I,R) deux lois de composition interne par : si (f, g) ∈

(F(I,R))2, f + g est l’élément de F(I,R) défini par : ∀x ∈ I,( f + g)(x) = f(x) + g(x) et
fg est l’élément de F(I,R) défini par : ∀x ∈ I,( fg)(x) = f(x)g(x).
(F(I,R),+,×) est un anneau commutatif. L’élément neutre pour + est 0 : I −→ R, x 7→ 0. L’élément
neutre pour × est 1 : I −→ R, x 7→ 1.

— Si A et B sont des anneaux alors A×B muni des lois produit est un anneau.
— Muni de l’addition et de la multiplication, l’ensemble des polynômes à coefficients dans K est un anneau

commutatif. On le démontrera le temps voulu.

4.2 Calculs dans un anneau

Notations :
↬ On note x.y ou xy à la place de x× y.
↬ Notation additive :

— La somme des n éléments x1, ..., xn est notée
∑

1⩽p⩽n

xp ou

n∑
p=1

xp.

— nieme itéré additif. Soit x ∈ A et n ∈ N∗, on note nx l’élément de A défini par
∑

1⩽p⩽n

x(somme de n termes

tous égaux à x) ; et pour n ∈ Z−, on note nx aussi pour
∑

1⩽p⩽−n

−x (somme de −n termes tous égaux à

−x). Si n = 0, nx = 0A.
On a alors : ∀(p, q) ∈ Z2, (p+ q)x = px+ qx et p (qx) = (pq)x.

↬ Notation multiplicative :

— Le produit des n éléments x1, ..., xn est noté
∏

1⩽p⩽n

xp ou

n∏
p=1

xp.

— nieme itéré multiplicatif. Soit x ∈ A et n ∈ N, on note xn l’élément de A défini par
∏

1⩽p⩽n

x (produit de n

facteurs tous égaux à x) ; et pour n ∈ Z−, lorsque x admet un symétrique x−1 pour × dans A, on note

xn aussi pour
∏

1⩽p⩽−n

(
x−1

)
(produit de −n facteurs tous égaux à x−1). Si n = 0, x0 = 1A. En particulier

00 = 1A.
On a alors : ∀(p, q) ∈ Z2, xp+q = xp × xq et xpq = (xp)

q

Propriété 6.

Soit (A,+,×) un anneau
— 0A est un élément absorbant, c’est-à-dire, ∀x ∈ A 0A × x = x× 0A = 0A
— ∀(x, y) ∈ A2 (−x) y = x (−y) = − (xy)
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Remarque 4. Si dans un anneau A on a 0A = 1A, alors A = {0A}. Dans toute la suite de ce chapitre on considère
que A a au moins deux éléments.

Propriété 7.

∀a ∈ A, ∀n ∈ N∗ ∀(x1, ..., xn) ∈ An
n∑

i=1

axi = a

(
n∑

i=1

xi

)
et

n∑
i=1

xia =

(
n∑

i=1

xi

)
a.

Démonstration : par récurrence sur n.

Propriété 8 (Distributivité généralisée).

Soit (ai)i∈I et (bj)i∈J deux familles finies d’éléments de l’anneau (A,+,×)(∑
i∈I

ai

)∑
j∈J

bj

 =

 ∑
(i,j)∈I×J

aibj



Démonstration : par récurrence sur le nombre d’éléments de I. Lorsque I a un élément, pour démontrer H1 on fait
une récurrence sur le nombre d’éléments de J en utilisant la distributivité.

Propriété 9 (Identités remarquables dans un anneau).

Soient a et b deux éléments d’un anneau tels que a et b commutent (ab=ba).

1. Soit n ∈ N∗ an − bn = (a− b)

n−1∑
k=0

akbn−1−k

2. Soit p ∈ N a2p+1 + b2p+1 = (a+ b)

2p∑
k=0

(−1)
k
akb2p−k

3. Binôme de Newton : Pour tout entier naturel n, (a+ b)
n
=

n∑
k=0

(
n
k

)
akbn−k, où

(
n
k

)
=

n!

k!(n− k)!
.

Démonstration : 1. et 2. directement, 3. par récurrence. Retenir le rôle essentiel de la commutativité de a et b.

4.3 Diviseurs de zéro :

Il existe des anneaux contenant des éléments non nuls a et b vérifiant ab = 0A. Par exemple dans (R2,+,×),
(0, 1)× (1, 0) = (0, 0). Soit (A,+,×) un anneau commutatif. On note A∗ = A\ {0A}.

Définition 15.

— On dit que a ∈ A∗ est un diviseur de zéro lorsque ∃x ∈ A∗ ax = 0A.
— L’anneau (A,+,×) est appelé intègre lorsqu’il est commutatif, distinct de {0A} et sans diviseur de zéro.

▶ Exemple : (Z,+,×) est un anneau intègre mais
(
R2,+,×

)
et
(
RN,+,×

)
ne sont pas intègres.

Propriété 10.

Dans un anneau intègre A, on a ab = 0A ⇒ a = 0A ou b = 0A.

4.4 Sous-anneau :
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Définition 16.

Soit (A,+,×) un anneau. Un sous-anneau de A est une partie non vide de A qui, munie de la restriction des
lois + et ×, est un anneau. On montre que (B,+,×) est un sous-anneau de (A,+,×) si

— (B,+) est un sous-groupe de (A,+),
— B est stable par × (∀x, y ∈ B x× y ∈ B),
— 1A ∈ B.

Propriété 11.

Soit (A,+,×) un anneau et B une partie de A.
(B,+,×) est un sous-anneau de (A,+,×) si et seulement si

— ∀(x, y) ∈ B2 x− y ∈ B
— ∀(x, y) ∈ B2 xy ∈ B
— 1A ∈ B

Remarque 5. On en déduit que H est un sous groupe de G si et seulement si H non vide et ∀x, y ∈ H x−y ∈ H.

▶ Exemples :
— (Z,+,×) est un sous-anneau de (R,+,×) mais ({0},+,×) n’en est pas un (il ne contient pas 1).
— L’ensemble des suites convergentes d’éléments de K muni de l’addition et de la multiplication usuelles est un

sous-anneau de l’ensemble des suites d’éléments de K.
— L’ensemble des restrictions à l’intervalle I des fonctions polynômiales à valeurs dans R est un sous-anneau

de (F(I,R),+,×).
— L’ensemble des polynômes à coefficients dans K de degré inférieur ou égal à n (noté Kn[X]) n’est pas un

sous-anneau de K[X], ensemble des polynômes à coefficients dans K (l’ensemble n’est pas stable par ×).
— C(I) est un sous-anneau de F(I,R) (c’est aussi un sous-espace vectoriel) car une combinaison linéaire et un

produit de fonctions continues sur I sont des fonctions continues sur I.

4.5 Groupe des inversibles d’un anneau

Propriété 12 (groupe des inversibles d’un anneau).

Soit (A,+,×) un anneau. Soit I l’ensemble des éléments inversibles de A. (I,×) est un groupe.

4.6 Corps

Définition 17.

On dit que (K,+,×) est un corps si (K,+,×) est un anneau commutatif non réduit à {0} et dont tous les
éléments non nuls sont inversibles.

Les corps sont commutatifs.
▶ Exemples :

— (Q,+,×), (R,+,×) et (C,+,×) sont des corps mais (Z,+,×) n’en est pas un.
— Un corps commutatif est un anneau intègre.
— (F(X,R),+,×), où X est un ensemble ayant au moins deux éléments, est un anneau qui n’est pas un corps

car il n’est pas intègre.

Notation : Soit K un corps commutatif. Lorsque (a, b) ∈ K2 et b ̸= 0, on note
a

b
pour ab−1.

⇝ Règles de calculs dans un corps
Ce sont celles que l’on connâıt dans Q. Pour a, b, a′, b′ et x cinq éléments d’un corps K avec b ̸= 0, b′ ̸= 0 et

x ̸= 0, on a :

1.
a

b
=

a′

b′
⇐⇒ ab′ = a′b

2.
ax

bx
=

a

b
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3.
a

b
+

a′

b′
=

ab′ + ba′

bb′

4.
a

b
× a′

b′
=

aa′

bb′

5. Si
a

b
=

a′

b′
alors ∀(α, β) ∈ K2 tels que αb+ βb′ ̸= 0, on a

a

b
=

αa+ βa′

αb+ βb′

6. Si a ̸= 0,
(a
b

)−1

=
b

a

7. Si a ̸= 1, ∀n ∈ N
n∑

k=0

ak =
1− an+1

1− a

Définition 18.

Soit K un corps. On appelle sous-corps de K un sous-anneau de K qui est un corps.

▶ Exemples :
— Q, R et C sont trois sous-corps de C.
— Q est le plus petit sous-corps de C.

5 Morphismes

Le mot morphisme vient du grec ancien µoρφη, morphè, qui signifie ”forme”. Un morphisme est une application
entre deux ensembles munis d’un même type de structure algébrique, qui respecte cette structure. Le mot se décline
en iso-, endo- et auto-morphisme (ισoς, isos, ”égal” ; ϵνδoν, endon, ”dedans” (idée d’intérieur) ; αυτoς, autos,
”soi-même”).

Définition 19 (Morphisme).

Soient (E, ∗) et (F,⊥) deux magmas. Soit φ une application de E dans F .
φ est un morphisme ou homomorphisme de (E, ∗) dans (F,⊥) ssi ∀(x, y) ∈ E2, φ(x ∗ y) = φ(x) ⊥ φ(y).
Si (E, ∗) = (F,⊥), on dit que φ est un endomorphisme.
Si φ est un morphisme bijectif de (E, ∗) dans (F,⊥), on dit que φ est un isomorphisme.
Si φ est un endomorphisme bijectif, on dit que c’est un automorphisme.

▶ Exemple : : exp est un morphisme de (R,+) vers (R,×).
▶ Exemple : : ln est un isomorphisme de (R+∗,×) vers (R,+).
▶ Exemple : : L’application conjugaison est un automorphisme de (C,+).
▶ Exemple : : L’application conjugaison est un automorphisme de (C,×).

5.1 Morphisme de groupes

Définition 20.

Soient (G, ∗) et (G′,∇) deux groupes. On appelle morphisme de groupes de (G, ∗) dans (G′,∇) une application
de (G, ∗) dans (G′,∇) qui est un morphisme.
On étend à ce cas la terminologie d’isomorphisme, d’endomorphisme et d’automorphisme vue précédemment
(définition 19).

▶ Exemples :
— La fonction logarithme est un isomorphisme de groupes de

(
R∗

+,×
)
sur (R,+).

— (r, θ) 7−→ reiθ est un morphisme du groupe produit
(
R∗

+×R,⊗
)
dans (C∗,×) avec (r, θ)⊗ (r′, θ′) = (rr′, θ + θ′).
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Propriété 13.

Soit f un morphisme de groupes de (G, ∗) sur (G′,∇). Si e est l’élément neutre de (G, ∗) et e′ l’élément neutre
de (G′,∇), on a :

— f (e) = e′ (un morphisme de groupes transporte l’élément neutre).
— ∀x ∈ G, f

(
x−1

)
= (f (x))−1 (un morphisme de groupes transporte la notion de symétrique).

— ∀x ∈ G, ∀n ∈ Z, (f (x))n = f(xn). L’itéré n-ième de l’image est l’image de l’itéré n-ième.

▶ Exemple : appliquer cette propriété à la fonction ln.

Définition 21 (Groupes isomorphes).

Lorsqu’il existe un isomorphisme d’un groupe (G, ∗) sur un groupe (G′,∇) , on dit que (G, ∗) et (G′,∇) sont
isomorphes.

Propriété 14 (Transfert de la structure de groupe).

L’image d’un sous-groupe par un morphisme est un sous-groupe. Plus précisément, si f un morphisme de
groupes de (G, ∗) sur (G′,∇) et si (H, ∗) est un sous-groupe de (G, ∗) alors (f(H),∇) est un sous-groupe de
(G′,∇).
L’image réciproque d’un sous-groupe par un morphisme aussi. Plus précisément, si f un morphisme de groupes
de (G, ∗) sur (G′,∇) et si (H ′,∇) est un sous-groupe de (G′,∇) alors

(
f−1(H), ∗

)
est un sous-groupe de (G, ∗).

5.2 Image et noyau d’un morphisme de groupes

5.2.1 Image

Définition 22 (Image de f).

Soient (G, ∗) et (G′,∇) deux groupes et soit f : (G, ∗) → (G′,∇) un morphisme de groupes.
On appelle image de f et on note Imf l’image directe de G par f :

Imf = f(G) = {y ∈ G′ ; ∃x ∈ G | y = f (x)} ⊂ G′

.

Propriété 15.

— Imf est un sous-groupe de (G′,∇).
— Imf = G′ si et seulement si f est surjective.

⋆ Exercice : Soit f : (R,+) → (C∗,×) , θ 7−→ eiθ. Quelle est l’image de ce morphisme ?

5.2.2 Noyau

Définition 23.

Soit f : (G, ∗) → (G′,∇) un morphisme de groupes. On appelle noyau de f l’image réciproque de {e′} par f :

kerf = f−1({e′}) = {x ∈ G ; f (x) = e′} ⊂ G.

Propriété 16.

— kerf est un sous-groupe de (G, ∗).
— kerf = {e} ⇐⇒ f est injectif.

⋆ Exercice : Soit f : (R,+) → (C∗,×) , θ 7−→ eiθ. Quel est le noyau de ce morphisme ?
⋆ Exercice : Montrer que (T (E), ◦), où T (E) est l’ensemble des translations sur E, et (E,+) sont isomorphes.
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5.3 Morphisme d’anneaux

Définition 24.

Soient (A,+, .) et (B,⊕,⊙) deux anneaux et f : A → B une application. On dit que f est un morphisme
d’anneau lorsque :

— ∀(x, y) ∈ A2 f (x+ y) = f (x)⊕ f (y)
— ∀(x, y) ∈ A2 f (x.y) = f (x)⊙ f (y)
— f (1A) = 1B

Remarque 6. — On est obligé de rajouter le dernier point puisque f (1A) = (f (1A))
2
n’entrâıne pas f (1A) =

1B .
— Les morphismes d’anneaux sont en particulier des morphismes de groupes. Ils en ont les mêmes propriétés

et on utilise la même terminologie (vocabulaire de la définition ??).

⋆ Exercice Montrer que l’identité est l’unique endomorphisme d’anneau de Z sur lui-même.
⋆ Exercice L’application de R dans R qui à x associe 0 est-elle un morphisme d’anneaux ?

Propriété 17.

L’image d’un sous-anneau de A par un morphisme d’anneau de A dans B est un sous-anneau de B.
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