TD 13 : Limite-Continuité ponctuelle

 \blacktriangleright Exercice 1 : Déterminer le comportement de f(x) quand x tend vers a dans les cas suivants :

1.
$$f(x) = \frac{x}{2x + |x|}, a = 0$$

2.
$$f(x) = \frac{\lfloor x \rfloor}{x}$$
, $a = 0$ et $a = +\infty$

3.
$$f(x) = (1+x)^{\frac{1}{x}}, a = 0, a = -1 \text{ et } a = +\infty$$

4.
$$f(x) = e^x - x$$
, $a = +\infty$.

- ► Exercice 2:
 - 1. Déterminer le comportement des fonctions suivantes lorsque $x \to 0$: $x \to \frac{\sin x}{\sqrt{x}}, x \to \frac{\sin(2x)}{3x}, x \to \frac{\sin(x+1)}{x+1}$.
 - 2. Déterminer le comportement de $f(x) = \frac{\sin x \cos x}{x \frac{\pi}{4}}$ lorsque $x \to \frac{\pi}{4}$, celui de $f(x) = (1 x) \tan \left(\frac{\pi}{2}x\right)$ lorsque $x \to 1$ et celui de $f(x) = \frac{\cos x}{\sin x 1}$ lorsque $x \to \frac{\pi}{2}$.
- \blacktriangleright Exercice 3 : Montrer que $\lim_{x\to -\infty} x^2 = +\infty$ en revenant à la définition.
- ▶ Exercice 4: Montrer que $x \mapsto \sin x$ est continue en tout point x_0 .
- ightharpoonup Exercice 5 : Montrer que $x\mapsto \sin x$ n'a pas de limite en $+\infty$.
- ► Exercice 6 : Montrer que $x \mapsto \frac{x^2 \sin(x)}{x^2 + 1}$ n'a pas de limite en $+\infty$.
- ► Exercice 7 : Déterminer $\lim_{x\to 1} (x + E(x))$.
- ► Exercice 8 : Calculer $\lim_{x\to 4} \frac{\sqrt{x}-2}{x^2-5x+4}$ et $\lim_{x\to +\infty} \sqrt{x^2+x}-x$.
- ▶ Exercice 9 : Soient a > 0 et b > 0. Déterminer les limites en 0 de $x \mapsto \frac{x}{a} \left\lfloor \frac{b}{x} \right\rfloor$ et $x \mapsto \frac{b}{x} \left\lfloor \frac{x}{a} \right\rfloor$.
- ▶ Exercice 10 : En revenant à la définition d'une limite, montrer que $f: \frac{ax^2 + 2x + 1}{x + 1}$ a pour limite $\frac{a + 3}{2}$ quand x tend vers 1.
- ightharpoonup Exercice 11 : Etudier la continuité en $x_0 \in \mathbb{R}$ de la fonction f définie sur \mathbb{R} par

1.
$$f(x) = \frac{\ln(1+x^2)}{x}$$
 si $x \neq 0$ et $f(0) = 0$.

2.
$$f(x) = \exp^{\frac{1}{1-x}} \text{ si } x > 1 \text{ et } f(x) = 0 \text{ sinon.}$$

3.
$$f: x \mapsto \lfloor x \rfloor + \sqrt{x - \lfloor x \rfloor}$$
.

- ► Exercice 12 : Démontrer en utilisant la définition de la continuité en un point que la fonction $x \mapsto \frac{2x-1}{x+3}$ est continue en tout point $x_0 \in \mathbb{R} \setminus \{-3\}$.
- ► Exercice 13 : On considère $f: \mathbb{R} \setminus \{-1,1\} \to \mathbb{R}, \ x \mapsto \frac{1}{1-x} \frac{2}{1-x^2}$. Cette fonction peut-elle être prolongée par continuité en -1 ou 1?

- \blacktriangleright Exercice 14 : Dans les cas suivants, faut-il étudier la continuité en 0 ou un éventuel prolongement par continuité en 0 de la fonction f? Faire cette étude.
 - 1. $f(x) = \sin\left(x \left\lfloor \frac{\pi}{x} \right\rfloor\right)$ si $x \neq 0$ et f(0) = 0.
 - $2. \ f(x) = x \ln x.$
 - 3. $f(x) = \ln x$.
 - 4. $f(x) = x \sin\left(\frac{1}{x}\right)$.
- ▶ Exercice 15 : Soit $I \subset \mathbb{R}$. Soit $f: I \to \mathbb{C}$ une fonction à valeurs complexes. Démontrer que si f admet une limite en $a \in I$ alors $\exp \circ f$ admet une limite en a.