TD 14 : Arithmétique

- ► Exercice 1 : Equation diophantienne
 - 1. Déterminer l'entier $d=495 \wedge 147$ et deux entiers relatifs u et v tels que 147u+495v=d.
 - 2. Déterminer un couple $(x_0, y_0) \in \mathbb{Z}^2$ tel que $147x_0 + 495y_0 = 12$.
 - 3. En déduire tous les couples $(x,y) \in \mathbb{Z}^2$ tels que 147x + 495y = 12.
- lacktriangle Exercice 2: Soit $n\in\mathbb{N}^*.$ Déterminer le reste de la division euclidienne de 10^{10^n} par 7.
- ▶ Exercice 3 : Soit un entier $a \ge 2$ et $(m, n) \in \mathbb{N}^2$. Montrer que $n \mid m$ ssi $(a^n 1) \mid (a^m 1)$.
- ▶ Exercice $4 : Soit n \ge 2$.
 - 1. Vérifier que pour tout $2 \le k \le n$, n! + k n'est pas un nombre premier.
 - 2. En déduire qu'il existe des intervalles de $\mathbb N$ de longueur aussi grande que l'on veut formés uniquement de nombres non premiers.
- \blacktriangleright Exercice 5 : On considère la suite de Fibonacci (F_n) définie par :

$$F_0 = 0, \ F_1 = 1, \ \text{et} \ \forall n \in \mathbb{N}, \ F_{n+2} = F_{n+1} + F_n.$$

- 1. Montrer que pour tout $n \in \mathbb{N}$, $F_{n+1}^2 F_n F_{n+2} = (-1)^n$.
- 2. En déduire le PGCD de F_n et de F_{n+1} .
- ▶ Exercice 6 : Prouver que pour tout $s \in \mathbb{Z}$, $s^{19} \equiv s[N]$ lorsque $N \in \{2, 3, 7, 19\}$. En déduire que $\forall (n, m) \in \mathbb{Z}^2$, $m^{19}n = n^{19}m[798]$.
- ightharpoonup Exercice 7 : Résoudre les équations suivantes d'inconnue $x \in \mathbb{Z}$:
 - 1. $3x \equiv 1[7]$
 - 2. $3x \equiv 1[12]$
 - 3. $x^2 + 7x + 1 \equiv 0$ [9]
- ► Exercice 8 : Montrer qu'un nombre est divisible par 9 si et seulement si la somme de ses chiffres est divisible par 9.
- \blacktriangleright Exercice 9 : Soient a et b deux entiers naturels non nuls.
 - 1. Montrer que si a et b sont premiers entre eux alors $a \lor b = ab$.
 - 2. Montrer que pour tout $k \in \mathbb{N}^*$, $(ka) \vee (kb) = k(a \vee b)$.