Exercice 1:

On considère dans tout ce problème les deux fonctions F et G définies sur \mathbb{R}_+^* par :

$$F(x) = \frac{\sin(x)}{x}$$

$$G(x) = \frac{1 - \cos(x)}{x}$$

- 1. (a). Montrer que les fonctions F et G sont continues sur \mathbb{R}_+^* .
 - (b). Montrer que F et G sont prolongeables par continuité en 0. On notera encore F et Gces prolongements.
- 2. (a). Montrer que les fonctions F et G sont dérivables sur \mathbb{R}_+^* et calculer leurs dérivées.
 - (b). Démontrer, à l'aide de développements limités, que les fonctions F et G sont dérivables en 0. Préciser les valeurs de F'(0) et G'(0).
- 3. (a). Montrer que les réels strictement positifs tels que F(x)=0 constituent une suite $(a_k)_{k\geq 1}$ strictement croissante. On donnera explicitement la valeur de a_k .
 - (b). Montrer que les réels strictement positifs tels que G(x) = 0 constituent une suite $(b_k)_{k\geq 1}$ strictement croissante. Y-a-t'il un lien entre les suites $(a_k)_{k\geq 1}$ et $(b_k)_{k\geq 1}$?
- **4.** (a). Soit $k \in \mathbb{N}^*$. Montrer <u>sans calcul</u> qu'il existe un réel $x_k \in]a_k, a_{k+1}[$ tel que $F'(x_k) = 0$.
 - (b). Montrer que la fonction F' est de même signe que $h: x \mapsto x \cos(x) \sin(x) \sin(x)$ sur \mathbb{R}_+^* .
 - (c). Démontrer que pour tout $k \in \mathbb{N}^*$, la fonction h est strictement monotone sur $[a_k, a_{k+1}]$.
 - (d). En déduire l'unicité du réel x_k défini dans la question 4.(a).
 - (e). Etablir que : $\forall k \in \mathbb{N}^*$, $x_k \in]a_k, a_k + \frac{\pi}{2}[$.
 - (f). Calculer $\lim_{k\to +\infty} x_k$ puis déterminer un équivalent simple de la suite (x_k) .

Exercice 2: (Dex 3 TD 19. On fera intervenir la fonction x +> lu (1+ex) @ ex 4-1 TD19

Decice 3: (1) en 10 TD20 - On éciera un Dl au voisinage de 0

- 2 ex 11 TD20. On Eccue de D13(0) do f 3 ex 16 TD20. Pour l'étade en +00, effectuer le DL généralisé au voisinage de +00 et à la prècesion $\frac{1}{2}$.