Exercice 1. [Correction]

- 1. Logique. Soit $n \in \mathbb{N}$. On considère la proposition : $(n^3 \text{ est pair}) \Longrightarrow (n \text{ est pair})$
 - (a) Énoncer la réciproque, la contraposée et la négation.
 - (b) Démontrer que la proposition : $(n^3 \text{ est pair}) \Longrightarrow (n \text{ est pair})$ est vraie
- 2. Écrire avec les quantificateurs les propriétés suivantes
 - > La suite $(u_n)_{n\in\mathbb{N}}$ est constante égale à 2.
 - > La fonction f est majorée $\sup \mathbb{R}$.
 - > La fonction f n'est pas croissante sur \mathbb{R} .
- 3. Soit $a \in [-1,1]$. Le nombre $\arcsin(a)$ est définie par

$$\arcsin(a) = \begin{vmatrix} L'unique \ solution \ dans \ [-\pi/2, \pi/2] \end{vmatrix}$$

$$De \ l'équation \ \sin(X) = a$$

Donner les propriétés "évidentes" de $\arcsin(a)$

Exercice 2. Calculer les dérivées des expressions suivantes (Ne pas chercher à déterminer D, c'est un exercice technique de calcul de dérivée)

$$> \ln(1 - 2x)$$

$$> \frac{1}{\sqrt{1 - x^2}}$$

$$> e^{-1/x^2}$$

$$> \arctan(\sqrt{1+x^2})$$
 On admet : $\arctan'(t) = \frac{1}{1+t^2}$

Exercice 3. [Correction] Démontrer que :
$$\forall n \in \mathbb{N}^*$$
, $\sum_{k=1}^n \ln\left(1 + \frac{2}{k(k+3)}\right) = \ln\left(\frac{3(n+1)}{n+3}\right)$

Exercice 4. [Correction] On considère la suite (I_n) vérifiant

$$I_0 = \frac{\pi}{2} \ et \ \forall \ n \in \mathbb{N}, \ I_{n+1} = \frac{2n+1}{2n+2}I_n$$

Montrer que :
$$\forall n \in \mathbb{N}, \ I_n = \binom{2n}{n} \frac{\pi}{2^{2n+1}}$$

Exercice 5. [Correction] On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=u_1=1$, et

$$\forall n \in \mathbb{N}, \ u_{n+2} = u_{n+1} + \frac{u_n}{n+1}$$

Montrer que : $\forall n \in \mathbb{N}^*$, $u_n \leq n^2$.

Exercice 6. [Correction] On considère les suites (a_n) et (b_n) définies par

$$\forall n \in \mathbb{N}^*, \quad a_n = \sum_{k=1}^{2n} \frac{(-1)^{k+1}}{k} \quad et \quad b_n = \sum_{k=n+1}^{2n} \frac{1}{k}$$

- 1. Calculer et simplifier $a_{n+1} a_n$.
- 2. Calculer et simplifier $b_{n+1} b_n$.
- 3. En déduire (par récurrence) que $\forall n \in \mathbb{N}^*$, $a_n = b_n$

Exercice 7. [Correction]

1. Montrer que : $\forall x > 1$, $2\frac{x-1}{x+1} \le \ln(x)$

En déduire que :
$$\forall a, b \text{ avec } 0 < a < b, \frac{2}{a+b} \le \frac{\ln(b) - \ln(a)}{b-a}$$

2. Montrer que : $\forall x > 1$, $\ln(x) \le \frac{1}{2} \frac{x^2 - 1}{x}$

En déduire que :
$$\forall a, b \text{ avec } 0 < a < b, \frac{\ln(b) - \ln(a)}{b - a} \le \frac{a + b}{2ab}$$

Exercice 8. [Correction] Soit $n \ge 2$ et $x_1, ..., x_n \in \mathbb{R}_+^*$

Le but de l'exercice est de démontrer l'inégalité arithmético-géométrique, CàD

$$\sqrt[n]{x_1 x_2 ... x_n} \le \frac{x_1 + x_2 + \dots + x_n}{n}$$

Kulture : $\sqrt[n]{x_1 x_2 ... x_n}$, c'est la moyenne géométrique et $\frac{x_1 + x_2 + \cdots + x_n}{n}$, c'est la moyenne arithmétique.

- 1. Montrer que : $\forall x > 0$, $\ln(x) \le x 1$
- 2. On note $M = \frac{x_1 + x_2 + \dots + x_n}{n}$ la moyenne arithmétique de x_1, \dots, x_n . Calculer $\sum_{k=1}^n \left(\frac{x_k}{M} 1\right)$
- 3. À l'aide des questions précédentes, montrer l'inégalité arithmético-géométrique.

Exercice 9. [Correction] Soit $n \in \mathbb{N}^*$, $a, b \in \mathbb{R}$ avec $0 \le a \le b$

Montrer, à l'aide d'une étude de fonction, que : $b^n - a^n \le n b^{n-1} (b-a)$

Exercice 10. On admet que

 $f^{(n)}$ désigne la dérivée n-iéme de f, CàD la dérivée de la dérivée de la dérivée de la et on a $f^{(n+1)} = \left[f^{(n)}\right]'$

Montrer par récurrence que : $\forall n \in \mathbb{N}^*$, $\left[\sqrt{x}\right]^{(n)} = (-1)^{n-1} \frac{(2n-2)!}{(n-1)! 2^{2n-1} x^{n-1} \sqrt{x}}$

Solution de l'exercice 1 (Énoncé)

- 1. OK
- 2. Soit n un entier.

On suppose que n est impair, ainsi on peut écrire n = 2p + 1 avec $p \in \mathbb{Z}$.

On va montrer que :
$$n^3$$
 est impair

DS 1.

On a
$$n^3 = (2p+1)^3 = \cdots = 1+2\square$$
 avec $\square = \cdots \in \mathbb{Z}$. fini.

3. Par définition

$$\arcsin(a) = \begin{vmatrix} L'unique solution dans [-\pi/2, \pi/2] \\ De l'équation $\sin(X) = a \end{vmatrix}$$$

Ainsi on a

$$> \arcsin(a) \in [-\pi/2, \pi/2], \ \mathsf{CaD} \ -\pi/2 \le \arcsin(a) \le \pi/2$$

 $> \arcsin(a)$ est une sol de l'équation, CàD $\sin(\arcsin(a)) = a$

4. À méditer

Solution de l'exercice 3 (Énoncé)

On va montrer par récurrence
$$H_{\leq n \geq 1}$$
 : $\sum_{k=1}^{n} \ln \left(1 + \frac{2}{k(k+3)} \right) = \ln \left(\frac{3(n+1)}{n+3} \right)$

> Initialisation avec n = 1.

$$\begin{array}{l} \text{On a } \sum_{k=1}^{1} \ln \left(1 + \frac{2}{k(k+3)} \right) = \ln \left(1 + \frac{2}{1(1+3)} \right) = \ln \left(\frac{3}{2} \right) \\ \text{et } \ln \left(\frac{3(1+1)}{1+3} \right) = \ln \left(\frac{3}{2} \right) \text{ donc } H_{<1>} \text{ est vraie} \\ \end{array}$$

> Hérédité.

On suppose $H_{\leq n \geq}$

On va montrer
$$H_{\leq n+1>}$$
, CàD $\sum_{k=1}^{n+1} \ln \left(1 + \frac{2}{k(k+3)}\right) = \ln \left(\frac{3((n+1)+1)}{(n+1)+3}\right) = \ln \left(\frac{3(n+2)}{n+4}\right)$

On a

$$\begin{split} \sum_{k=1}^{n+1} \ln\left(1 + \frac{2}{k(k+3)}\right) &= \sum_{k=1}^{n} \ln\left(1 + \frac{2}{k(k+3)}\right) + \ln\left(1 + \frac{2}{(n+1)(n+4)}\right) \\ &\quad On \; applique \; H_{< n>} \\ &= \ln\left(\frac{3(n+1)}{n+3}\right) + \ln\left(\frac{(n+1)(n+4)+2}{(n+1)(n+4)}\right) \\ &= \ln\left(\frac{3(n+1)}{n+3}\right) + \ln\left(\frac{n^2+5n+6}{(n+1)(n+4)}\right) \\ &= \ln\left(\frac{3(n+1)}{n+3} \cdot \frac{n^2+5n+6}{(n+1)(n+4)}\right) \\ &\quad Or \; on \; a \; n^2+5n+6 = (n+3)(n+2), \; ainsi \\ &= \ln\left(\frac{3(n+1)}{n+3} \cdot \frac{(n+3)(n+2)}{(n+1)(n+4)}\right) \\ &= \ln\left(\frac{3(n+2)}{n+4}\right) \qquad Fini. \end{split}$$

Solution de l'exercice 4 (Énoncé)

On va montrer par récurrence $H_{\leq n>}$: $I_n = \frac{(2n)!}{2^{2n}(n!)^2} \frac{\pi}{2}$

> Initialisation.

On a
$$\frac{(2 \times 0)!}{2^0(0!)^2} \frac{\pi}{2} = \frac{\pi}{2}$$
 donc $H_{<0>}$ est vraie

> Hérédité.

On suppose H < n >

On va montrer
$$H_{< n+1>}$$
, CàD $I_{n+1} = \frac{(2(n+1))!}{2^{2(n+1)}((n+1)!)^2} \frac{\pi}{2}$

On chemine

$$\begin{split} I_{n+1} &= \frac{2n+1}{2n+2} I_n = \frac{2n+1}{2n+2} \frac{(2n)!}{2^{2n} (n!)^2} \frac{\pi}{2} \\ &= \frac{(2n+2)(2n+1)}{(2n+2)(2n+2)} \frac{(2n)!}{2^{2n} (n!)^2} \frac{\pi}{2} \\ &= \frac{(2n+2)!}{2 \cdot 2(n+1)(n+1) 2^{2n} (n!)^2} \frac{\pi}{2} \\ &= \frac{(2(n+1))!}{2^{2n+2} ((n+1)!)^2} \frac{\pi}{2} \quad \textit{Fini}. \end{split}$$

Solution de l'exercice 5 (Énoncé) On fait par récurrence (à 2 étages)

$$H_{\leq n>}: u_n \leq n^2$$

> Initialisation avec n=1 et n=2

On a
$$u_1 = 1 \le 1^2$$
 et $u_2 = u_1 + \frac{a_0}{0+1} = 2 \le 2^2$ OK

> Hérédité. On suppose $H_{\leq n>}$ et $H_{\leq n+1>}$

On va montrer
$$H_{\leq n+2}$$

CàD $u_{n+2} \leq (n+2)^2$

On a
$$u_{n+2}=u_{n+1}+\frac{a_n}{n+1}\leqslant (n+1)^2+\frac{n^2}{n+1}$$

$$\leqslant (n^2+2n+1)+\frac{n^2}{n+0}$$

$$\leqslant n^2+3n+1\leqslant n^2+4n+4=(n+2)^2 \quad Fini$$

Solution de l'exercice 6 (Énoncé)

1. On a

$$a_{n+1} - a_n = \sum_{k=1}^{2(n+1)} \frac{(-1)^{k+1}}{k} - \sum_{k=1}^{2n} \frac{(-1)^{k+1}}{k}$$
$$= \frac{1}{2n+1} + \frac{-1}{2n+2}$$
$$= \frac{1}{(2n+1)(2n+2)}$$

2. On a

$$b_{n+1} - b_n = \sum_{k=n+2}^{2(n+1)} \frac{1}{k} - \sum_{k=n+1}^{2n} \frac{1}{k}$$

$$= \frac{-1}{n+1} + \sum_{k=n+2}^{2n} \left(\frac{1}{k} - \frac{1}{k}\right) + \underbrace{\frac{1}{2n+1}}_{k=2n+1} + \underbrace{\frac{1}{2n+2}}_{k=2n+2}$$

$$= \frac{1}{2n+1} + \underbrace{\frac{1}{2n+2} - \frac{1}{n+1}}_{2n+2}$$

$$= \frac{1}{2(n+1)(2n+1)}$$

3. La récurrence est facile car $\forall n \in \mathbb{N}^*$, $a_{n+1} - a_n = b_{n+1} - b_n$

Solution de l'exercice 7 (Énoncé)

1. On étudie la fonction : $h: x \mapsto \ln(x) - 2\frac{x-1}{x+1}$ Pour tout $\forall a, b$ avec 0 < a < b, on a

$$\frac{\ln(b) - \ln(a)}{b - a} = \frac{1}{b - a} \times \ln\left(\frac{b}{a}\right)$$

On applique l'inégalité avec x = b/a > 1 car 0 < a < b

$$\geqslant \frac{1}{b-a} 2 \frac{\binom{b}{a} - 1}{\binom{b}{a} + 1} = \dots = \frac{2}{a+b}$$

2. On étudie la fonction : $h: x \longmapsto \frac{1}{2} \frac{x^2 - 1}{x} - \ln(x)$ Pour tout $\forall a, b$ avec 0 < a < b, on a

$$\frac{\ln(b) - \ln(a)}{b - a} = \frac{1}{b - a} \times \ln\left(\frac{b}{a}\right)$$

On applique l'inégalité avec x = b/a > 1 car 0 < a < b

$$\leq \frac{1}{b-a} \frac{1}{2} \frac{\left(b/a\right)^2 - 1}{b/a} = \dots = \frac{a+b}{2ab}$$

Solution de l'exercice 8 (Énoncé)

1. On étudie la fonction $h: x \mapsto (x-1) - \ln(x)$

DS 1.

2. On note M la moyenne arithmétique de $x_1,...,x_n$.

On a

$$\sum_{k=1}^{n} \left(\frac{x_k}{M} - 1 \right) = \frac{1}{M} \sum_{k=1}^{n} x_k - \sum_{k=1}^{n} 1 = \frac{1}{M} nM - n = 0$$

3. On applique Q1 avec $\frac{x_k}{M} - 1$, puis on somme de k = 1 à k = n, ainsi

$$\sum_{k=1}^{n} \ln\left(\frac{x_k}{M}\right) \leq \sum_{k=1}^{n} \left(\frac{x_k}{M} - 1\right) = 0$$

$$\Rightarrow \ln\left(\prod_{k=1}^{n} \frac{x_k}{M}\right) \leq 0$$

$$\Rightarrow \frac{\prod_{k=1}^{n} x_k}{M^n} \leq 1$$

$$\Rightarrow \prod_{k=1}^{n} x_k \leq M^n$$

$$\Rightarrow \left(\prod_{k=1}^{n} x_k\right)^{1/n} \leq M$$

Solution de l'exercice 9 (Énoncé)

Pour tout $n \in \mathbb{N}^*$, pour tout $b \in \mathbb{R}_+$, on étudie, sur [0,b], la fonction $h: x \longmapsto \left[n \, b^{n-1} (b-x) \right] - \left[b^n - x^n \right]$

$$>$$
 La fonction h est dérivable sur $[0,b]$. $>$ \forall $x \in [0,b], \ h'(x) = -nb^{n-1} + nx^{n-1} = n\left[x^{n-1} - b^{n-1}\right]$

Comme $x \in [0, b]$ et $n-1 \ge 0$, on sait que $\left[x^{n-1} - b^{n-1}\right] \le 0$

> D'où le bô tableau

x	0	b
$\operatorname{sgn}h'$		-
h		0

Conclusion : $\forall x \in [0, b], b^n - x^n \le n b^{n-1} (b - x)$ Fini.