Programme de colle de la semaine 5

du Lundi 04 Novembre au vendredi 08 Novembre.

Questions de cours.

> Un fonction bien sympa. On étudie la fonction $f: x \longrightarrow \arcsin(\sin(x))$

Justifier que la fonction f est bien définie sur \mathbb{R} .

Justifier que la fonction f est 2π -périodique. *Ainsi on l'étudie sur* $I = [0, 2\pi]$

Justifier que que f est dérivable sur $\mathscr{D}' = [0, \pi/2] \cup [\pi/2] \times [\pi/2]$. Ceci n'a pas été fait en classe donc indulgence

Calculer et simplifier f' sur chacun des intervalle de \mathcal{D}' .

En déduire la valeur de f sur \mathcal{D}' et faire le graphe de f.

> Arc-Cosinus. Faire le graphe de Arc-Cosinus en détaillant et expliquant,

CàD \mathcal{D} , \mathcal{D}' , Tableaux de variation, valeurs aux bornes, le point d'appui x = 0 et enfin le graphe.

> Équation. Résoudre l'équation tan(X) = -1

Application

Montrer que $A = \arctan(2) + \arctan(3)$ est solution de l'équation $\tan(X) = -1$

Justifier que :
$$A = \frac{3.\pi}{2}$$
.

- > λ connaître. Soit $x \in \mathbb{R}^*$. Simplifier: $\arctan(x) + \arctan(\frac{1}{x})$.
- > Suite récurrente linéaire d'ordre 2 à coefficients constants réels

Mettre le complexe $-1 + i\sqrt{3}$ sous forme circulaire.

Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $u_0=1492,\ u_1=2024$ et $\forall\ n\in\mathbb{N}\ u_{n+2}=-2\ u_{n+1}-4\ u_n$

Calculer le nombre u_n en fonction de n.

> <u>Dérivée n-ième de Cosinus.</u> Le but est de montrer que : $\forall n \in \mathbb{N}, \ \forall \ x \in \mathbb{R}, \ \cos^{(n)}(x) = \cos\left(x + n\frac{\pi}{2}\right)$

Le faire par récurrence.

Bonus, non fait en classe Démontrer la formule en dérivant n fois l'égalité : $cos(x) + i sin(x) = e^{ix}$

- > Primitive. Déterminer une primitive de $\cos^3(x)$.
- > Calcul. On considère la suite (u_n) définie par $\forall n \in \mathbb{N}, u_n = \frac{n!}{\left(\frac{n}{n}\right)^n \sqrt{n}}$.

Simplifier
$$\frac{u_{n+1}}{u_n}$$
, En déduire que : $\ln\left(\frac{u_{n+1}}{u_n}\right) = 1 - \left(n + \frac{1}{2}\right) \ln\left(1 + \frac{1}{n}\right)$

Exercices.

Des exercices de révision : Inégalités, Somme, Intégration,... la vie des maths