——— Fonctions numériques ———

Exercice 1. Soit
$$h: x \longmapsto \frac{x^2+1}{x}$$
.

- 1. Étudier la fonction h et faire son graphe.
- 2. La fonction h est-elle injective? surjective? Déterminer Im(h).
- 3. Déterminer \mathscr{D}_0 et \mathscr{A}_0 tel que la fonction h réalise une bijection de \mathscr{D}_0 sur \mathscr{A}_0 . Déterminer sa bijection réciproque.

Exercice 2. [Correction] Soit
$$\tanh: x \longmapsto \frac{\sinh(x)}{\cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Montrer que la fonction \tanh réalise une bijection de $\mathbb R$ sur un intervalle à déterminer. Déterminer sa bijection réciproque.

—— Bijection sans trop de calcul. ——

Exercice 3. Lire l'exo et passer si c'est trop bizarre.

On considère les opérateurs R et S, définie par pour toutes les fonctions $f:\mathbb{R}\longrightarrow\mathbb{R}$, on pose

$$> R(f) = f(x+1)$$
, CàD $R(f)$ c'est la fonction $x \longmapsto f(x+1)$. $> S(f) = f(x-1)$, CàD $S(f)$ c'est la fonction $x \longmapsto f(x-1)$.

- 1. Calculer l'image du polynôme $X^2 + X + 1$, CàD calculer $R(X^2 + X + 1)$
- 2. Montrer que : $R \circ S = id$ et $S \circ R = id$

Conclusion : R réalise une bijection de sur et S est sa bij réciproque.

Exercice 4. [Correction] Soit f, g, h trois fonctions composables.

On suppose que $g \circ f$ et $h \circ g$ sont des fonctions bijectives.

- 1. Justifier sans calcul que g est bijective. On notera g^{-1} la bijection réciproque.
- 2. Exprimer f à l'aide de deux fonctions bijectives. Ainsi f est bijective.
- 3. Montrer que h est bijective.

Exercice 5. Soient $f: E \to F$, $g: F \to G$ et $h: F \to E$ trois fonctions.

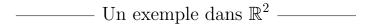
On suppose que : $f \circ h \circ g$ est une fonctions surjective et que $h \circ g \circ f$ et $g \circ f \circ h$ sont des fonctions injectives. Montrer que f, g et h sont bijectives.

Exercice 6. [Correction] Soient f, g deux fonction de E à valeurs dans E.

On suppose que:

$$>f\circ g\circ f=g$$
 et $g\circ f\circ g=f$

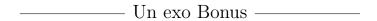
- > f est injective.
- 1. Justifier que : g est injective
- 2. Montrer que : $f\circ g\circ f\circ g\circ f\circ g=f.$ En déduire que $\forall\,e\in E,\ [g\circ f\circ g\circ f\circ g](e)=e.$
- 3. En déduire que g et f sont bijectives.



Exercice 7. [Correction] Soit la fonction h de \mathbb{R}^2 à valeurs dans \mathbb{R}^2 définie par

$$h(x,y) = (x e^y, x e^{-y}).$$

- 1. Justifie que (0,0) admet plusieurs antécédents. Que peut-on conclure?
- 2. Justifier que (-6,6) n'a pas d'antécédent par h. Que peut-on conclure?
- 3. Bonus Trouver des conditions sur a et b pour que (a,b) ait un/des antécédents. Que peut-on conclure?



Exercice 8. On considère A et B deux parties non vides d'un ensemble E.

On considère la fonction f de $\mathscr{P}(E)$ à valeurs dans $\mathscr{P}(A) \times \mathscr{P}(B)$ définie par

$$\forall X \in \mathscr{P}(E), \quad f(X) = (X \cap A, X \cap B)$$

- 1. Calculer f(E), f(A), f(B), et $f(\emptyset)$.
- 2. Montrer que f est injective si et seulement si $A \cup B = E$.
- 3. Montrer que f est surjective si et seulement si $A \cap B = \emptyset$.
- 4. Dans le cas où f est bijective, expliciter f^{-1} la bijection réciproque.

Solution de l'exercice 2 (Énoncé)

1. La fonction
$$\tanh$$
 est dérivable sur $\mathscr{D}=\mathbb{R}$. De plus $\forall\,x\in\mathscr{D},\,\,f'(x)=\cdots=\dfrac{4}{\left(e^x+e^{-x}\right)^2}>0$, D'où le tableau

x	$-\infty$	∞
$\tanh'(x)$	+	
$\tanh(x)$	-1	1

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} \underset{x \to \infty}{\sim} = \frac{e^x}{e^{-x}} = 1 \xrightarrow[x \to \infty]{} 1$$

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} \underset{x \to \infty}{\sim} = \frac{-e^x}{e^{-x}} = -1 \xrightarrow[x \to \infty]{} -1$$

La fonction tanh est continue et strictement croissante ainsi elle réalise une bijection de \mathbb{R} sur un]-1,1[.

2. On utilise $tanh(x) = y \iff \cdots \iff x = tanh^{-1}(y)$ Pour $x \in \mathbb{R}$ et $y \in]-1,1[$

$$\begin{split} \tanh(x) &= y \iff \frac{e^x - e^{-x}}{e^x + e^{-x}} = y \\ &\iff \frac{e^x - \frac{1}{e^x}}{e^x + \frac{1}{e^x}} = y \\ &\iff \frac{e^{2x} - 1}{e^{2x} + 1} = y \\ &\iff e^{2x} - 1 = y(e^{2x} + 1) \\ &\iff e^{2x}(1 - y) = y + 1 \\ &\iff e^{2x} = \frac{y + 1}{1 - y} \quad \operatorname{car} y \in]-1, 1[\ \operatorname{donc} \ 1 - y \neq 0 \\ &\iff 2x = \ln\left(\frac{y + 1}{1 - y}\right) \quad \operatorname{car} y \in]-1, 1[\ \operatorname{donc} \ \frac{y + 1}{1 - y} > 0 \end{split}$$

Conclusion:
$$\forall y \in]-1,1[, \tanh^{-1}(y) = \frac{1}{2} \ln \left(\frac{1+y}{1-y}\right)$$

Solution de l'exercice 4 (Énoncé) Soient $f: E \to F$, $g: F \to G$ et $h: G \to H$ trois applications. On suppose que $q \circ f$ et $h \circ q$ sont des applications bijectives.

1. On a

 $g \circ f$ est bijective $\Rightarrow f$ est injective et g est surjective

 $h \circ g$ est bijective $\Rightarrow g$ est injective et h est surjective

Ainsi g est injective et surjective donc bijective. On notera g^{-1} la bijection réciproque.

2. On a facilement

$$f = g^{-1} \circ (g \circ f) = g^{-1} \circ g \circ f$$

Comme $g\circ f$ et g^{-1} sont bijective, on sait que $f=g^{-1}\circ (g\circ f)$ est bijective. On notera f^{-1} la bijection réciproque.

3. On a facilement

$$h = h \circ (g \circ g^{-1}) = (h \circ g) \circ g^{-1}$$

Comme $h \circ g$ et g^{-1} sont bijective, on sait que h est bijective.

Solution de l'exercice 6 (Énoncé)

- 1. Comme $g\circ f\circ g=f$ et f est injective donc g est injective.
- 2. On a $f=g\circ f\circ g=[f\circ g\circ f]\circ f\circ g=f\circ g\circ f\circ f\circ g.$ Cette égalité signifie que :

$$\forall\,e\in E,\,\,f(e)=[f\circ g\circ f\circ f\circ g](e)=f([g\circ f\circ f\circ g](e))$$
 c'est une égalité de la forme $f(\square)=f(\square')$

On applique la définition de f injective avec $\square = e$ et $\square' = [g \circ f \circ f \circ g](e)$

Ainsi
$$\forall e \in E, \ e = [g \circ f \circ f \circ g](e)$$

3. Comme $\forall\,e\in E,\ e=[g\circ f\circ f\circ g](e)$,

on a donc
$$g \circ f \circ f \circ g = id_E$$

Ainsi $g \circ f \circ f \circ g = id_E$ et id_E est bijective donc g est surjective!!!

Ainsi g est surjective et injective, g est donc bijective.

On termine facilement avec $f\circ g\circ f=g$ et g bijective donc f est surjective.

Solution de l'exercice 7 (Énoncé)

1. Les antécédents de (0,0) sont les solutions de l'équation h(X,Y)=(0,0). On résout

$$h(X,Y) = (0,0) \iff h(x,y) = (0,0) \iff (x e^y, x e^{-y}) = (0,0)$$

$$\iff \begin{cases} x e^y = 0 \\ x e^{-y} = 0 \end{cases}$$

Or
$$xe^y = 0 \iff x = 0$$
 ou $e^y = 0 \iff x = 0$ et $xe^{-y} = 0 \iff x = 0$ ou $e^{-y} = 0 \iff x = 0$

Conclusion : les antécédents de (0,0) sont les (0,y) avec qcq $y \in \mathbb{R}$.

Comme l'équation h(X) = (0,0) admet une infinité de solutions la fonction h n'est pas injective.

2. Les antécédents de (6,-6) sont les solutions de l'équation h(X)=(6,-6). On résout

$$h(X) = (6, -6) \iff h(x, y) = (6, -6) \iff (x e^y, x e^{-y}) = (6, -6)$$

$$\iff \begin{cases} x e^y = 6 \\ x e^{-y} = 6 \end{cases}$$

On multiplie les deux équations, ainsi $x^2=-36<0$. Or $x\in\mathbb{R}$ donc c'est absurde!!! L'équation h(X)=(6,-6) n'a donc pas de solution

Conclusion : (6, -6) n'a pas d'antécédent.

Comme l'équation h(X)=(6,-6) n'a pas de solution, la fonction h n'est pas surjective.