Les ensembles : \mathbb{N} , \mathbb{Z} , \mathbb{Q} et \mathbb{R} .			2 Pr	Propriétés de ℝ	
			2. J	Valeurs Absolues.	3
1	Les ensembles de nombre.	1	2.2	Partie entière	4
	1.1 Les ensembles \mathscr{P} , \mathbb{N} , \mathbb{Z}	1	2.3	3 Majorant, minorant, max, min, sup, inf	5
	1.2 L'ensemble \mathbb{Q}	2	2.4	\mathbb{Q} est dense dans \mathbb{R}	7
	1.3 \mathbb{R} et $\overline{\mathbb{R}}$	2	2.5	Les intervalles de \mathbb{R}	8

1 Les ensembles de nombre.

1.1 Les ensembles \mathscr{P} , \mathbb{N} , \mathbb{Z} .

L'ensemble ${\mathscr P}$ des nombres premiers.

> L'ensemble \mathscr{P} est infini et on a

$$\mathcal{P} = \{2, 3, 5, 7, 11, 3, 17, 19, ..., 41, ..., 641, ..., 2017,\}$$

> Les nombres premiers permettent de factoriser les entiers.

L'ensemble $\mathbb N$ des entiers naturels.

> Écriture décimale .

L'écriture décimale de 2017 signifie : $2017 = 7.10^{0} + 1.10^{1} + 0.10^{2} + 2.10^{3}$.

Écriture décimale des entiers Soit $n \in \mathbb{N}$.

Il existe $p \in \mathbb{N}$ et $a_0, a_1, ... a_p \in \{0, 1, 2, ..., 9\}$ tel que

$$n = a_0.10^0 + a_1.10^1 + \dots + a_p.10^p = \sum_{k=0}^p a_k.10^k$$

Le nombre p+1 c'est le nombre de chiffre dans l'écriture décimale.

> Factorisation en nombre premier.

On peut factoriser de façon unique les entiers en produit de nombre premier.

Par exemple:
$$2016 = 2^5 3^2 7$$
, $2017 = 2017^1$, $2018 = 2^1 1009^1$

L'ensemble \mathbb{Z} des entiers relatifs.

> un entier relatif est un entier naturel signé, CàD un entier naturel avec un signe.

$$p \in \mathbb{Z} \iff Il \ existe \ n \in \mathbb{N} \ tel \ que \ p = \pm n$$

1.2 L'ensemble Q.

> Une fraction est un quotient signé de 2 entiers naturels.

Ainsi on a

$$r \in \mathbb{Q}$$
 on peut écrire $r = \pm a/b$ avec $a, b \in \mathbb{N}$

On sait que: L'écriture des rationnelles n'est pas unique; chacun sait que $^2/_3 = ^4/_6$, cependant

Les rationnels s'écrivent de façon unique en *fraction irréductible*, CàD comme quotient signé d'entier premier entre eux, CàD

 $r \in \mathbb{Q} \iff Il \ existe \ un \ unique \ couple \ (a,b) \in \mathbb{N}^2 \ tel \ que$ $\left\{ \begin{array}{l} r = \pm \ ^a/b \\ \\ et \ a \ et \ b \ n'ont \ pas \ de \ facteur \ premier \ commun. \end{array} \right.$

Théorème 1.

Le nombre $\sqrt{2}$ est irrationnel, CàD $\sqrt{2} \notin \mathbb{Q}$.

Démonstration : On fait un RA. On suppose donc que $\sqrt{2} \in \mathbb{Q}$, CàD il existe $a, b \in \mathbb{N}^*$ tel que $\sqrt{2} = \frac{a}{b}$

On cherche OUPS!

On a

$$\sqrt{2} = \frac{a}{b}$$

$$\implies b\sqrt{2} = a$$

$$\implies b^2 2 = a^2$$

Comme $a, b \in \mathbb{N}$, on sait que a et b se factorise en produit de facteur premier,

ainsi on a $a = 2^{\alpha} \times (les \ autres \ facteurs \ premiers \ impairs)$ et $b = 2^{\beta} \times (les \ autres \ facteurs \ premiers \ impairs)$

L'égalité $b^2 2 = a^2$, devient

 $2^{2.\beta} \times (d'autres\ facteurs\ premiers\ impairs).2 = 2^{2.\alpha} \times (d'autres\ facteurs\ premiers\ impairs)$

OUPS : Multiplicité de $2 = 2\beta + 1 = impaire$ ET Multiplicité de $2 = 2\alpha = paire$ à *Gauche*

1.3 \mathbb{R} et $\overline{\mathbb{R}}$

Définition 2. Les ensembles \mathbb{R} et $\overline{\mathbb{R}}$.

L'ensemble \mathbb{R} .

$$x \in \mathbb{R} \iff x = 314, 1592653...$$

L'ensemble $\overline{\mathbb{R}}$.

On dit que $\overline{\mathbb{R}}$ est la droite achevée, complétée, CàD

$$\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty\} \cup \{-\infty\}$$

2 Propriétés de ℝ

2.1 Valeurs Absolues.

Définition 3. Définition de |x|.

Soit x un réel.

Il existe plusieurs façons *équivalentes* de définir/calculer le nombre |x|.

> Simplification.

On a
$$|x| = \begin{cases} = +x & Lorsque \ x \ge 0 \\ = -x & Lorsque \ x \le 0 \end{cases}$$

> Majoration/Encadrement.

|x|, c'est le plus grand entre +x et -x.

Ainsi on a :
$$-|x| \le x \le |x|$$

> Distance.

|x| = |x - 0|, c'est la distance de $x \ge 0$.

Kulture?

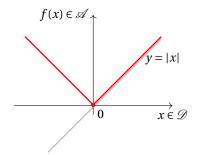
$$|x| \le K \iff \dots \iff -K \le x \le K$$

Graphe.

La fonction Valeur Absolue $x \mapsto |x|$

- > est définie et continue sur $\mathcal{D} = \mathbb{R}$.
- > est dérivable sur $\mathcal{D}' = \mathbb{R}^*$.

La fonction Valeur Absolue n'est pas dérivable en 0.



Théorème 4. Formulaire. ¹

Soit x, x', a des réels.

Méthode.

Les valeurs absolues ont vocation à être simplifier

- > **Positivité.** |x| est un réel ≥ 0 et $|x| = 0 \Leftrightarrow x = 0$.
- > Calcul.

$$|-x| = |x|$$
 et $|x.x'| = |x| |x'|$ et Si $x' \neq 0$, $\left|\frac{x}{x'}\right| = \frac{|x|}{|x'|}$

Attention au piège. $\sqrt{x^2} = |x| \neq x$

- > **Symétrie.** |a x| = |x a|.
- > L'inégalité triangulaire.

$$|2x+3x'| \le 2|x|+3|x'|$$
 et $|2x-3x'| \le 2|x|+|3x'|$

2.2 Partie entière.

Définition 5. La partie entière de x.

Soit x un réel. Alors il existe un unique entier, noté E(x) ou $\lfloor x \rfloor$ tel que

$$\lfloor x \rfloor \leqslant x < \lfloor x \rfloor + 1$$
Large Strict

Propriétés.

> Lorsque $n = \lfloor x \rfloor$

alors $n \le x < n+1$ et $x-1 < n \le x$

- > Large : Le plus grand entier p tel que $p \le x$, c'est $p = \lfloor x \rfloor$
- > Strict : Le plus petit entier p tel que x < p, c'est $p = \lfloor x \rfloor + 1$
- > On a aussi

$$n \text{ est un entier}$$
 $n \le \square < n+1$
 $\Leftrightarrow n = \lfloor \square \rfloor$

Exercice 1. [Correction]

- 1. Montrer que $\forall x \in \mathbb{R}$ et $p \in \mathbb{Z}$, Alors $\lfloor x + p \rfloor = \lfloor x \rfloor + p$.
- 2. Soit $n \in \mathbb{Z}$, montrer que $\left\lfloor \frac{n}{2} \right\rfloor = \left\{ \begin{array}{ll} n/2 & \text{Si } n \text{ est pair.} \\ (n-1)/2 & \text{Si } n \text{ est impair.} \end{array} \right.$
- 3. Montrer que $\left[\left(\sqrt{n}+\sqrt{n+1}\right)^2\right]=4n+1$

Exercice 2. [Correction] Soit $n = 2^{2^5} + 1$. On note p le nombre de chiffre de n dans l'écriture décimale

- 1. Montrer que : $10^{p-1} \le n < 10^p$.
- 2. En déduire que : $p = \left| \frac{\ln(n)}{\ln(10)} \right| + 1$

Exercice 3. [Correction] Très Difficile mais sympa. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie de la manière suivante :

$$u_1 = 1$$
, $u_2 = u_3 = 2$, $u_4 = u_5 = u_6 = 3$, $u_7 = u_8 = u_9 = u_{10} = 4$,...

- 1. Soit $k \in \mathbb{N}^*$. Déterminer les indices de n tel que que $u_n = k$
- 2. En déduire que $\forall n \in \mathbb{N}, \ u_n = \left\lfloor \frac{1 + \sqrt{8n 7}}{2} \right\rfloor$

2.3 Majorant, minorant, max, min, sup, inf.

Définition 6. Majoré, minoré, Borné

On considère $A \subset \mathbb{R}$ une partie de \mathbb{R} .

- > On dit que la partie A est majorée Ssi il existe M tel que $\forall x \in A, x \leq M$. On dit alors que M est un majorant de la partie A.
- > On dit que la partie A est minorée Ssi il existe m tel que $\forall x \in A, x \ge m$. On dit alors que m est un minorant de la partie A.
- > On dit que la partie A est bornée Ssi il existe K tel que

$$\forall x \in A, |x| \leq K.$$

Bornée ⇔ Majorée/minorée.

La partie A est bornée par KALORS la partie A est majorée +K et minorée -K.

La partie A est majorée M et minorée par m ALORS la partie A est bornée par $\max(|M|,|m|)$.

Démonstration : On va faire \Rightarrow et \Leftarrow .

 \implies C'est le sens évident car $|x| \le K \iff -K \le x \le K$.

Donc Si la partie A est bornée par K, alors elle est majorée par K et minorée par -K.

← C'est un peu plus technique.

On suppose que la partie est majorée par M et minorée par m. On a

$$m \leq x \leq M \implies [x \leq M \ et - x \leq -m]$$

Donc x et -x sont $\le \max(M, -m) \Rightarrow |x| \le \max(M, -m)$. Conclusion : la partie A est bornée par $\max(M, -m)$.

Définition 7. Max-Sup et min-inf

On considère A une partie.

Max et min. On dit que M_0 est le plus grand élément de A, noté $M_0 = \max(A)$,

Ssi $M_0 \in A$ et M_0 majore la partie A

On définit de même min, le plus petit élément d'un ensemble.

 $\sup -\inf$. On dit que M est le \sup de A, noté $M=\sup(A)$,

Ssi *M* est la majorant "optimal" de *A*.

Ainsi $M = \sup(A)$ a deux propriétés "évidentes"

- > M est un majorant de A
- > *M* est optimal

Le sup est le meilleur majorant, CàD Si M' est un autre majorant alors forcément $M \le M'$

Optimal: Traduction B

Le sup est le meilleur majorant, CàD comme $M - \varepsilon < M$ Strictalors $M - \varepsilon$ ne majore pas.

Quand la partie non vide A n'est pas majoré, alors $\sup(A) = +\infty$.

Les situations possibles.

- > On peut avoir : $M_0 = \max$ n'existe pas et $M = \sup$ n'existe pas.
- > On peut avoir : $M_0 = \max$ n'existe pas et $M = \sup$ existe.
- > Si M_0 = max existe alors forcément M = sup existe et M = M_0 .

Théorème 8. Existence des Max et Sup. •

Dans \mathbb{Z} , les max existent.

Si A une partie non vide de \mathbb{Z} .

Alors $\max(A)$ existe toujours dans $\mathbb{Z} \cup \{+\infty\}$

 $\max(A) \in \mathbb{Z} \iff \max(A) \neq \infty \iff \text{la partie } A \text{ est majorée}$

Dans \mathbb{R} , les sup existent.

On considère $A \subset \mathbb{R}$ une partie <u>non vide</u> de \mathbb{R} .

 $\sup(A)$ existe toujours dans $\mathbb{R} \cup \{+\infty\}$

 $\sup(A) \in \mathbb{R} \iff \sup(A) \neq \infty \iff \text{la partie } A \text{ est majorée}$

En fait, il y a 3 situations possibles.

 $> \sup(A) = +\infty$ et donc la partie A est non-majorée.

 $> \sup(A) = M$ et $M \notin A$. Ici $M = \sup(A)$ et $\max(A)$ n'existe pas. Par exemple : A = [0, 1[.

 $> \sup(A) = M \text{ et } M \in A.$ ici $M = \sup(A) = \max(A)$. Par exemple : A = [0, 1].

2.4 \mathbb{Q} est dense dans \mathbb{R}

Commençons par un exemple.

On considère le célèbre nombre $\pi = 3,1415192654...$

On peut tronquer l'écriture décimale, ainsi on a

$$3.141$$
troncature à 10^{-3} $\leq \pi < 3.141 + 10^{-3} = 3.142$

en plus
$$0 \le \pi - \underbrace{3.141}_{troncature \, \grave{a} \, 10^{-3}} < 10^{-3}.$$

On dit que

> 3, 141 est la valeur *décimale* approchée à la précision 10^{-3} de π par défaut.

> 3,142 est la valeur *décimale* approchée à la précision 10^{-3} de π par excès.

Il est "facile" d'exprimer 3.141 à l'aide de π , en effet troncature à 10^{-3}

$$\pi = 3,1415192653....$$
 $\Longrightarrow 10^3.\pi = 3141,5192653....$ $\Longrightarrow \lfloor 10^3.\pi \rfloor = 3141$

$$Donc 3.141 = \frac{\lfloor 10^3.\pi \rfloor}{10^3}$$

Si on remplace π par x un réel quelconque, on a le théorème

Théorème 9. Approximation des réels par des rationnels.

Soit x un réel et n un entier

La valeur décimale approchée à la précision 10^{-n} de x par défaut

est égale à
$$\frac{\lfloor x.10^n \rfloor}{10^n} \in \mathbb{Q}$$

De plus, on a
$$0 \le x - \frac{\lfloor x.10^n \rfloor}{10^n} \le 10^{-n}$$
.

Conclusion : La suite des approximations décimales converge vers x.

Approximation des réels par des rationnels.

 \mathbb{Q} est dense dans \mathbb{R} ,

CàD $\forall x \in \mathbb{R}$, il existe une suite $(r_n)_{n \in \mathbb{N}}$ telle que

$$\forall n \in \mathbb{N}, r_n \in \mathbb{Q} \quad et \quad r_n \xrightarrow[n \to \infty]{} x$$

2.5 Les intervalles de \mathbb{R} .

Définition 10. Les intervalles.

On dit que que I est un intervalle de \mathbb{R} Ssi $I \subset \mathbb{R}$ et

$$\forall a, b \mid (a, b) \in I^2 \Longrightarrow [a, b] \subset I$$

De façon imagée, un intervalle n'a pas de trou,

sinon on pourrait choisir a et b de part et d'autre du trou.

Exemple : L'ensemble $\mathbb{R}^* =]-\infty, 0[\cup]0, +\infty[$ n'est pas un intervalle.

En effet, -2 et 1 sont dans \mathbb{R}^* mais $[-2,1] \not\subset \mathbb{R}^*$.

 \mathbb{R}^* est la réunion disjointe de] $-\infty$, 0[et de]0, $+\infty$ [.

Il est clair que \mathbb{R}^* a un "petit" trou.

Théorème 11. Liste exhaustive des intervalles de R.

Il y a 3 type d'intervalle non vide.

> Les intervalles ouverts (bornés ou non)

$$]-\infty, +\infty[,]-\infty, b[,]a, +\infty[,]a, b[$$

> Les intervalles semis-ouverts (bornés ou non)

$$]-\infty, a],]a, b], [a, +\infty[, [a, b[$$

> Les intervalles fermés et bornés sont appelés les segments

[a,b]

Démonstration: Soit I un intervalle non vide.

Je note $a = \inf(I)$ et $b = \sup(I)$.

 $\text{Comme } I \text{ est une partie non vide de } \mathbb{R}, \text{ on sait que } a,b \text{ existent et } a \in \mathbb{R} \cup \{-\infty\} \text{ et } b \in \mathbb{R} \cup \{+\infty\}$

A cause des propriétés des sup et des inf, on sait que soit $a \in A$, soit $a \notin A$. (et de même pour b)

Je suppose que $a \in A$ (et donc forcément $a \neq -\infty$) et $b \notin A$ (avec $b \in \mathbb{R}$ ou $b = +\infty$)

On va montrer avec \subset et \supset que : A = [a, b[

 \subseteq ? Soit $x \in A$

Comme $a = \inf(A)$ et $x \in A$, on a $a \le x$.

Comme $b = \sup(A)$ et $x \in A$, on a $x \le b$. De plus $b \notin A$ donc $x \ne b$ donc x < b.

Conclusion : $a \le x < b$, CàD $x \in [a, b[$

 \supset ? Soit $x \in [a, b[$

Comme x < b et $b = \sup(A) = le \ majorant \ optimal \ donc \ x$ ne majore pas A.

Donc il existe $a' \in A$ tel que x < a'

Comme $a = \inf(A)$ et $x \in A$, on a $a \le x$.

Ainsi $a \le x \le a'$, CàD $x \in [a, a']$.

Or $a, a' \in A$ et A est un intervalle donc $[a, a'] \subset A$

Conclusion : $x \in [a, a'] \subset A$

Correction.

Solution de l'exercice 1 (Énoncé)

- 1. Si n est pair alors n=2p et $\left\lfloor \frac{n}{2} \right\rfloor = \left\lfloor \frac{2p}{2} \right\rfloor = \left\lfloor p \right\rfloor = p$ Si n est impair alors n=2p+1 et $\left\lfloor \frac{n}{2} \right\rfloor = \left\lfloor \frac{2p+1}{2} \right\rfloor = \left\lfloor p\frac{1}{2} \right\rfloor = p$
- 2. On encadre, CàD on démontre $4n+1 \leqslant \left(\sqrt{n}+\sqrt{n+1}\right)^2 \leqslant 4n+2$. On chemine $4n+2-\left(\sqrt{n}+\sqrt{n+1}\right)^2=\ldots \geqslant 0$

Solution de l'exercice 2 (Énoncé) Si l'écriture décimale de $n = 2^{2^5} + 1$ a avec exactement p chiffre, on a

$$100\cdots0 \leq n \leq 999\cdots9 < 100\cdots0$$

$$p \ chiffres \qquad p \ chiffres \qquad p+1 \ chiffres$$

de plus on a $10^{p-1} \le n < 10^p \iff \cdots \iff p \le \frac{\ln(n)}{\ln(10)} + 1 < p + 1$

Conclusion :
$$p = \left\lfloor \frac{\ln(n)}{\ln(10)} \right\rfloor + 1$$

Solution de l'exercice 3 (Énoncé) On compte et on trouve que $u_n = k \iff \frac{(k-1)k}{2} \le n < \frac{k(k+1)}{2}$

La fonction $f: x \longmapsto \frac{(x-1)x}{2}$ réalise une bijection strictement croissante de $[1+\infty[$ sur \mathbb{R}^+

et on trouve que
$$f^{-1}: x \longmapsto \frac{1+\sqrt{8x-7}}{2}$$

$$\begin{aligned} \text{Conclusion} : u_n &= k \iff \frac{(k-1)k}{2} \leqslant n < \frac{k(k+1)}{2} \\ &\iff f(k) \leqslant n < f(k+1) \\ &\iff k \leqslant f^{-1}(n) < k+1 \\ &\iff k = \left\lfloor \frac{1+\sqrt{8n-7}}{2} \right\rfloor \end{aligned}$$