Exo 1.

On considère
$$A=\left(\begin{array}{ccc}1&2&2\\2&1&2\\2&2&1\end{array}\right)$$
 et on note h_A l'endomorphisme associé à la matrice A .

On considère les vecteurs
$$\overrightarrow{e_1} = (1, -1, 0), \overrightarrow{e_2} = (1, 0, -1)$$
 et $\overrightarrow{e_3} = (1, 1, 1)$

Montrer que $\mathscr{C} = (\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3})$ est une base de \mathbb{R}^3 .

Déterminer $D = \mathcal{M}at_{\mathscr{C}}(h_A)$.

Donner le lien entre A et D.

Exo 2.

On considère
$$A=\left(\begin{array}{ccc} 3 & 2 & 0 \\ 2 & 3 & 0 \\ 0 & 0 & 3 \end{array}\right)$$
 et on note h_A l'endomorphisme associé à la matrice A .

Déterminer une base
$$\mathscr{C} = (\overrightarrow{C_1}, \overrightarrow{C_2}, \overrightarrow{C_3})$$
 tel que $D = \mathcal{M}at_{\mathscr{C}}(h_A) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix}$

Remarque : faites $\overrightarrow{C_1}$ et $\overrightarrow{C_2}$

Donner le lien entre A et D.

Nom : Amorim, Baptiste, Baracan, Bonfils?, Brimont, Carrel, Chassaing, Garcia, Kerlerou, Nivet, Plante, Provenchère, Tregoat, Tripier.

Lundi 05 Mars.

Exo 1. Soit E un espace vectoriel de dimension n et h un endomorphisme de E Montrer que : h est bijectif Ssi h est injectif

Exo 2. Soit *A* une matrice carrée nilpotente.

Montrer, par récurrence sur la taille de la matrice A, que : tr(A) = 0.