Chapitre 5-Les fonctions. 1 / 15

		1.2 Puissance Bouge, CàD $a^b = a^{\text{bouge}}$	3	4.1 Somme, Produit, Quotient, Composée	
		1.4 Sinus hyperbolique,		4.1 Somme, Froduit, Quotient, Composee	
2 Comment calculer une dérivée. 6 5 Variations des fonctions.	2	Comment calculer une dérivée.	6	5 Variations des fonctions.	11
	_	Notion de fonction.	_	6 Exercice	1:

1 Les fonctions usuelles

1.1 Les Monôme

Définition : Un monôme, c'est CàD $X^2, X^3, ..., X^{-1}, ... X^{1/2}, X^{fixe}$.

Situations Particulières.

Selon la valeur de \square , il y a plusieurs manières différents de calculer x^{\square} .

> Lorsque $\square = n$ est un entier > 0. On a alors

$$\forall x \in \mathbb{R}, \quad x^n = x.x...x$$

> Lorsque $\square = -n$ est un entier < 0. On a alors

$$\forall x \in \mathbb{R}^*, \quad x^{-n} = \frac{1}{x^n} = \frac{1}{x \cdot x \dots x} = \frac{1}{x} \cdot \frac{1}{x} \dots \frac{1}{x}$$

> Lorsque $\square = 1/2$. On a alors

$$\forall a \ge 0$$
, $a^{1/2} = \sqrt{a} \stackrel{def}{=}$ L'unique solution positive
De l'équation $X^2 = a$

> Lorsque $\Box = \frac{1}{p}$. On a alors

$$\forall a \ge 0$$
, $a^{1/p} = \sqrt[p]{a} \stackrel{def}{=}$ L'unique solution positive
De l'équation $X^p = a$

> Lorsque $\square = \alpha = Bli$, on a la formule générale

$$\forall x > 0, \ x^{\alpha} \stackrel{def}{=} e^{\alpha \ln(x)}$$

Formulaire/Kulture

Dérivation

On sait que :
$$[x^2]' = 2x$$
, $[x^3]' = 3x^2$, ...

Les fonctions X^{α} sont dérivable sur $\mathcal{D}' = \mathbb{R}_+^*$

$$\forall x \in \mathbb{R}_+^*, \quad \frac{d}{dx} [x^{\alpha}] = [x^{\alpha}]' = \alpha . x^{\alpha - 1}$$

Kulture

> Lorsque α > 0, la fonction [$x \mapsto x^{\alpha}$] est croissante.

> Lorsque x est "petit", CàD $x \in]0,1[$

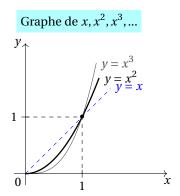
$$0 < x^3 < x^2 < x < \sqrt{x} = x^{1/2} < 1$$

> Lorsque x est "grand", CàD x > 1

$$1 < \sqrt{x} < x < x^2 < x^3$$

Chapitre 5-Les fonctions. 2 / 15

Un Bô dessin



Graphe de $x, x^{1/2}, x^{1/3}, ...$ y = x $y = x^{1/2} = \sqrt{x}$ $y = x^{1/3}$

1.2 Puissance Bouge, CàD $a^b = a^{\text{bouge}}$.

Définition 1.

$$a^b = a^{\text{bouge}} \stackrel{def}{=} e^{b \ln a}$$

On a par exemple

$$2^{x} = e^{x \ln 2}$$

$$x^{x} = e^{x \ln x}$$

$$(\sin x)^{x} = e^{x \ln(\sin x)}$$

$$(\sin x)^{\sin x} = e^{\sin(x)\ln(\sin x)}$$

$$(\ln x)^{\ln x} = e^{\ln(x)\ln(\ln x)}$$

Théorème 2. Propriétés de la fonction $x \mapsto 2^x$.

La fonction $[2^X]$ est dérivable sur \mathbb{R} et

$$\forall x \in \mathbb{R}, \ \frac{d}{dx} \left[2^x \right] = \frac{d}{dx} \left[e^{x \ln(2)} \right]'$$

$$Or \left[e^u \right]' = u' e^u$$

$$= \ln(2) \cdot e^{x \ln(2)} = \ln(2) \cdot 2^x$$

1.3 Logarithme/Exponentielle

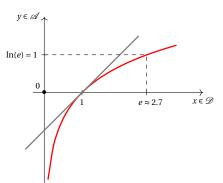
Théorème 3. Propriétés/Formulaire de la fonction ln.

> La fonction ln est dérivable

$$\sup \mathcal{D} =]0, +\infty[$$

$$\forall x > 0, \frac{d}{dx} [\ln(x)] = [\ln(x)]'$$

> Le fonction ln réalise une bijection (one-to-one) de $\mathcal{D} =]0, +\infty[$ sur $Im = \mathbb{R}$



ln(1) = 0 ln(e) = 1

Formulaire: $\forall a, b, x, \Box \in \mathbb{R}_+^*$

$$\ln(ab) = \ln(a) + \ln(b), \quad \ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b), \quad \ln\left(\frac{1}{x}\right) = -\ln(x), \quad \ln(\Box^{\alpha}) = \alpha \ln(\Box)$$

Démonstration : le formulaire se démontre, on le fera en classe.

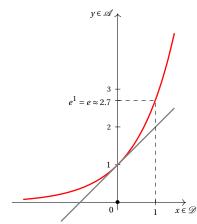
Théorème 4. Propriétés/Formulaire de la fonction exp.

> La fonction ln est dérivable sur $\mathcal{D} = \mathbb{R}$

$$\forall x > 0, \frac{d}{dx} [e^x] = [e^x]' = e^x$$

>> Le fonction exp réalise une bijection (one-

to-one) de $\mathcal{D} = \mathbb{R}$ sur Im = $]0, +\infty[$



Formulaire: $\forall x, a, b \in \mathbb{R}$

$$e^{a+b} =$$
 , $e^{a-b} =$, $e^{-x} =$, $(e^x)^2 =$, $e^{(x^2)} =$

Démonstration : le formulaire se démontre mais c'est plus délicat. On y a reviendra plus tard.

Chapitre 5-Les fonctions. 4/15

Théorème 5. Lien entre ln et exp. =

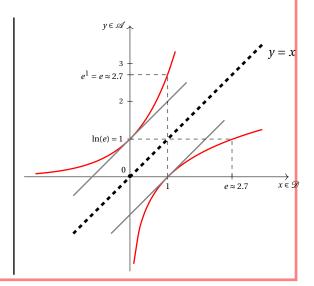
Les fonctions ln et exp forment un couple Bijection/Réciproque,

$$Cad \forall x > 0, y \in \mathbb{R}$$
 $ln(x) = y \iff x = exp(y)$

De plus

$$> \forall x \in \mathbb{R}, \ln(e^x) = x$$

 $> \forall x > 0, e^{\ln(x)} = x$



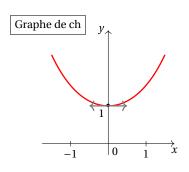
1.4 Sinus hyperbolique,.....

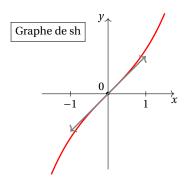
Définition 6.

Les fonctions cosinus hyperboliques et sinus hyperbolique sur $\mathbb R$, notées respectivement ch et sh, sont définies de $\mathbb R$ à valeurs dans $\mathbb R$ par

$$\forall \ x \in \mathbb{R}, \quad ch(x) = \frac{e^x + e^{-x}}{2} \quad et \quad sh(x) = \frac{e^x - e^{-x}}{2}$$

Théorème 7. Propriétés des fonctions sinh et cosh.





Propriétés des fonctions ch et sh

- > Comme la fonction Cosinus, la fonction ch est dérivable, paire et ch(0) = 1. De plus $\forall x \in \mathbb{R}$, ch'(x) = [ch(x)]' = sh(x). complément: [ch(u)]' = u'.sh(u)
- > Comme la fonction Sinus, la fonction sh est dérivable, impaire et sh(0) = 0. de plus $\forall x \in \mathbb{R}$, sh'(x) = [ch(x)]' = ch(x). Complément: [sh(u)]' = u'.ch(u)
- $> \forall x \in \mathbb{R}, \ ch^2(x) sh^2(x) = 1$

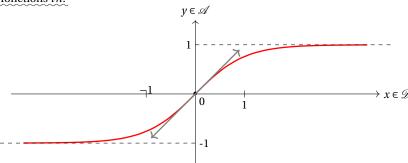
Tangente hyperbolique (th ou tanh)

Théorème 8. Définition et propriétés de th

La fonction tangente hyperbolique, notées th, est définie de $\mathbb R$ à valeurs dans $\mathbb R$ par

$$\forall x \in \mathbb{R}, \quad th(x) \stackrel{def}{=} \frac{sh(x)}{ch(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Graphe de la fonctions *th*.



Propriétés de la fonctions th.

- > La fonction th est dérivable sur \mathbb{R} .
- > La fonction th est strictement croissante, impaire sur $\mathbb R$.
- > On a les limites $\lim_{x \to +\infty} th(x) = 1$ et $\lim_{x \to -\infty} th(x) = -1$
- > La fonction th réalise une bijection strictement croissante de $\mathbb R$ sur] –1,1[.

Chapitre 5-Les fonctions. 6 / 15

2 Comment calculer une dérivée.

Rédaction type

> On justifie que h est dérivables de \mathcal{D}' .

> Puis $\forall x \in \mathcal{D}'$, $h'(x) = \frac{d}{dx}[h(x)] = \text{On calcule la dérivée}$ \vdots = On simplife/factorise la dérivée

Reconnaitre/Dériver un monôme.

$$x^{2} \leadsto 2x$$

$$x^{3} \leadsto 3x^{2}$$

$$x^{4} \leadsto 4x^{3}$$

$$\frac{1}{x} = x^{-1} \leadsto (-1)x^{-2} = \frac{-1}{x^{2}}$$

$$\frac{1}{x^{2}} = x^{-2} \leadsto (-2)x^{-3} = \frac{-2}{x^{3}}$$

$$\sqrt{x} = x^{1/2} \leadsto (1/2)x^{-1/2} = \frac{1}{2\sqrt{x}}$$

$$\frac{1}{\sqrt{x}} = x^{-1/2} \leadsto (-1/2)x^{-3/2} = \frac{-1}{2x\sqrt{x}}$$

$$\frac{1}{x^{n}\sqrt{x}} = x^{-n-1/2} \leadsto (-n-1/2)x^{n-1/2-1} = \frac{-(n+1/2)}{x^{n+1}\sqrt{x}}$$

Formules classiques.

$$\frac{d}{dx}\left[2f(x)-3g(x)\right]=2\left[f'(x)\right]-3\left[g'(x)\right],\qquad \frac{d}{dx}\left[f(x)g(x)\right]=u'v+uv',\qquad \frac{d}{dx}\left[\frac{f(x)}{g(x)}\right]=\frac{u'v-uv'}{v^2}$$

Dérivée des composées.

Formule générale :
$$\frac{d}{dx}[f(u)] = u'f'(u)$$

Chapitre 5-Les fonctions. 7 / 15

3 Notion de fonction.

3.1 Ensemble de définition.

Définition 9.

Qu'est ce qu'une fonction?

Une fonction f de \mathscr{D} à valeurs dans \mathscr{A} est une correspondance qui, à tous éléments x de \mathscr{D} associe un unique élément de \mathscr{A} , noté f(x).

Notations classiques:
$$f$$
 ou $[f: x \mapsto f(x)]$ ou $\left[f: \begin{array}{c} \mathscr{D} \to \mathscr{A} \\ x \mapsto f(x) \end{array}\right]$

Ensemble de Définition.

 \mathcal{D} , c'est l'ensemble de Définition/Départ de la fonction f.

Comment déterminer \mathcal{D} ?

On sait que : $x \in \mathcal{D} \iff$ on peut calculer le nombre f(x)

Rédaction type pour \mathcal{D} .

On peut calculer le nombre f(x) Ssi $\left\{\begin{array}{c} \text{Liste} \\ \text{des conditions} \end{array}\right.$

Conclusion : la fonction f est définie sur $\mathcal{D} = \dots$

Théorème 10.

On considère une fonction numérique f de $\mathscr D$ à valeurs dans $\mathscr A$

> Ne pas confondre : la fonction f et le nombre f(x).

Plus précisément f(x) c'est la fonction évaluée, appliquée en x.

> La grande propriété "évidente" des fonctions : Lorsque x = 2 alors f(x) = f(2)

Plus généralement, Lorsque x = x' alors f(x) = f(x')

3.2 Paire-impaire, Périodique,... Avec des quantificateurs

Définition 11.

On considère f une fonction numérique définie sur \mathcal{D} .

Paire/impaire.

- > On dit que la fonction f est paire Ssi
- > On dit que la fonction f est impaire Ssi

Périodique.

On dit que la fonction *f* est *T*-périodique Ssi

croissante.

On dit que la fonction f est croissante Ssi

Majorée.

On dit que la fonction *f* est Majorée Ssi

Bornée.

On dit que la fonction *f* est Bornée Ssi

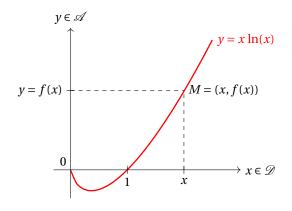
Chapitre 5-Les fonctions. 8 / 15

3.3 Antécédent et Graphe

Définition 12. Représentation graphique

Soit f une fonction numérique définie sur ${\mathcal D}$

La représentation graphique d'une fonction dans un repère orthonormé est la collection des points de coordonnées (x, f(x)) où x varie dans \mathcal{D} .



Définition 13. Antécédent-Image.

Soit une fonction f de \mathcal{D} à valeurs dans \mathcal{A} et $x \in \mathcal{D}$ et $y \in \mathcal{A}$.

On suppose que y = f(x)

Du point de vue de x = a.

Comme y = f(a),

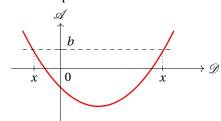
on dit que *y* est l'image de *a*.



Du point de vue de y = b.

Comme b = f(x),

on dit que x est un antécédent de b.



Théorème : Les antécédents de b sont les solutions de l'équation f(X) = b

Chapitre 5-Les fonctions. 9 / 15

4 Opérations sur les fonctions.

4.1 Somme, Produit, Quotient, Composée.

Définition 14.

Somme-Produit-Quotient

On considère f et g deux fonctions numérique définie respectivement sur \mathcal{D}_f et \mathcal{D}_g On définit les fonctions

$$[f+g]: x \longmapsto f(x) + g(x), \quad [fg]: x \longmapsto f(x).g(x) \quad \text{et} \quad \left[\frac{1}{f}\right]: x \longmapsto \frac{1}{f(x)}$$

Composée des fonctions

On considère f et g deux fonctions numériques

On appelle composée de f et g, notée $g \circ f$ la fonction

$$(g \circ f): x \longmapsto g(f(x)) = g(\square) \text{ avec } \square = f(x).$$

On peut détailler en écrivant $x \mapsto^f f(x) = y \mapsto^g g(y) = g(f(x))$

Attention: En général $g \circ f \neq f \circ g$

Théorème 15. Ensemble de définition de $g \circ f$

> Au brouillon, on identifie: $x \xrightarrow{f} f(x) = \Box \xrightarrow{g} g(\Box) = g(f(x))$

> Puis on rédige.

on peut calculer le nombre h(g(f(x))) Ssi $\left\{ \begin{array}{l} x \in \mathcal{D}_f \\ y = \square = f(x) \in \mathcal{D}_g \end{array} \right.$

4.2 Continuité et Dérivabilité.

Définition 16. Continue.

On considère f une fonction numérique et $a \in \mathcal{D}$.

Définition de Continue.

La fonction f est continue en a Ssi $f(x) \xrightarrow{r \to a} f(a)$

Interprétation "intuitive".

Quand x se rapproche de a alors le nombre f(x) se rapproche du nombre f(a)

Interprétation géométrique.

Le graphe de la fonction f n'a pas de discontinuité au point a.

Complément : On dit que la fonction f est continue sur ${\mathscr D}$

Ssi la fonction f est continue en tous les points de \mathcal{D} .

Théorème 17. Les résultats classiques

- > Toutes fonctions usuelles sont continues sur leur ensemble de définition.
- > Les fonctions fabriquées avec les fonctions usuelles et les opérations classiques sont continues.

Chapitre 5-Les fonctions. 10 / 15

Définition 18. Dérivable

On considère f une fonction numérique et $a \in \mathcal{D}$.

Dérivable. La fonction f est dérivable en a Ssi $T_{aux}(x) = \frac{f(x) - f(a)}{x - a} \xrightarrow[x \to a]{} \ell$ On note alors $\ell = f'(a)$.

Interprétation géométrique.

Le graphe de la fonction f admet une tangente au point a.

Complément : On dit que la fonction f est dérivable sur $\mathcal D$

Ssi la fonction f est dérivable en tous les points de \mathcal{D} .

Théorème 19. Dérivable

Dérivabilité des fonctions usuelles.

Les fonctions usuelles sont dérivables sur leur ensemble de définition,

sauf la fonction $\lceil \sqrt{X} \rceil$ qui est définie et continue en \mathbb{R}_+ et dérivable sur \mathbb{R}_+^* .

La fonction $[\sqrt{X}]$ n'est pas dérivable en 0.

Attention, Les réciproques sont fausses. On a

f est dérivable sur $\mathscr{D} \Longrightarrow f$ est continue sur $\mathscr{D} \Longrightarrow f$ est définie sur \mathscr{D}

Contre-Exemples

> la fonction $x \mapsto \lfloor x \rfloor$ est définie sur \mathbb{R} mais elle n'est pas continue \mathbb{R} .

Plus précisément. Elle est continue en a Ssi $a \notin \mathbb{Z}$ et elle n'est pas continue en a Ssi $a \in \mathbb{Z}$.

> la fonction $x \mapsto |x|$ est définie et continue sur $\mathbb R$ mais elle n'est pas dérivable sur $\mathbb R$ continue $\mathbb R$. Plus précisément. Elle n'est pas dérivable en 0.

Théorème 20. Règles classiques de dérivations

On considère f et g deux fonctions dérivables sur \mathcal{D}

> Alors $\forall (\lambda, \mu) \in \mathbb{R}$, la fonction $\lambda f + \mu g$ est dérivable sur \mathscr{D} .

De plus $(\lambda f + \mu g)' = \lambda f' + \mu g'$

> Alors la fonction f.g est dérivable sur \mathcal{D} .

De plus (f g)' = f' g + f g'

> Si de plus g ne n'annule pas alors $\frac{f}{g}$ est dérivable sur \mathcal{D} .

De plus
$$\left(\frac{f}{g}\right)' = \frac{f' g - f g'}{g^2}$$

> On considère f et u deux fonctions dérivables.

On suppose que la composée $f \circ u$ est définie sur \mathcal{D} .

Alors la fonction $f \circ u$ est dérivable sur \mathcal{D} . De plus on a

$$(f \circ u)' = u'.(f' \circ u)$$
, CàD $\frac{d}{dx}[f(u)] = u'.f'(u)$

Chapitre 5-Les fonctions.

5 Variations des fonctions.

Définition 21.

Soit f une fonction numérique définie sur \mathcal{D} et $I \subset \mathcal{D}$

> On dit que la fonction f est croissante sur I Ssi

$$\forall x, x' \in I, \quad [x \le x' \Rightarrow f(x) \le f(x')]$$

interprétation : une fonction croissante conserve les inégalités.

> On dit que la fonction f est décroissante sur I Ssi

$$\forall x, x' \in I, \quad [x \le x' \Rightarrow f(x) \ge f(x')]$$

interprétation : une fonction décroissante inverse les inégalités.

Théorème. Pour déterminer le variation d'une fonction

> On détermine \mathscr{D} et \mathscr{D}'

> On calcule f' puis FFB enfin un bô tableau de signe/variation.

Exemples

> La fonction Sinus est croissante sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

> La fonction Sinus est décroissante sur $\left[\frac{\pi}{2}, \pi\right]$.

> La fonction Sinus n'est pas monotone sur \mathbb{R} .

Chapitre 5-Les fonctions. 12 / 15

6 Exercice

Exercice 1. Calculer la dérivée pour les fonctions suivantes On ne cherchera pas à déterminer D', l'ensemble de dérivation.

$$e^{-x}$$

$$\frac{x}{e^x-1}$$

$$exp\left(-\frac{1}{x^2}\right)$$
,

$$\frac{1}{\ln(3-2x)}$$

$$ln(1-ln x)$$

$$\frac{1}{\ln(4x-4x^2)}$$

$$\sin\left(\frac{\ln(2x)}{2}\right)$$

 x^x

Exercice 2. Calculer la dérivée On ne cherchera pas à déterminer \mathscr{D}' , l'ensemble de dérivation.

$$\frac{1}{\sqrt{1-x}}$$
, $\sqrt{1-2\sqrt{1-x}}$, $\sqrt{x^2-2x-3}$, $(\ln x)^{\ln x}$

Exercice 3. Pour les fonction suivantes, déterminer \mathcal{D} , \mathcal{D}' et calculer f'

$$f(x) = \ln(2-x)$$
 , $f(x) = \sqrt{\frac{1+x}{1-x}}$, $f(x) = \sqrt{\ln(\ln(x))}$, $f(x) = \frac{\sqrt{3x+7}}{4-x^2}$

Exercice 4. [Correction] Montrer que la fonction définie par l'expression $f(x, y) = y \cdot \ln(x^2 - y^2)$ vérifie

$$\frac{1}{x}\frac{\partial f}{\partial x} + \frac{1}{y}\frac{\partial f}{\partial y} = \frac{f(x,y)}{y^2}$$

cosh, sinh, tanh ————

Exercice 5. Soit $a, b \in \mathbb{R}$. Montrer que $\cosh^2(a) - \sinh^2(a) = 1$

Exercice 6. Soit $a, b \in \mathbb{R}$. Montrer les formules suivantes

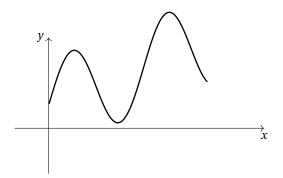
$$\cosh(a+b) = \cosh(a)\cosh(b) + \sinh(a)\sinh(b)$$

$$\sinh(a+b) = \sinh(a)\cosh(b) + \cosh(a)\sinh(b)$$

$$\tanh(a+b) = \frac{\tanh(a) + \tanh(b)}{1 + \tanh(a) \tanh(b)}$$

———— Généralités

Exercice 7. On considère la fonction $f: x \mapsto f(x)$ donnée approximativement par le graphe suivant



Dessiner les graphes approximatifs des fonctions suivantes

$$f: x \longmapsto f(x) + 1$$
$$f: x \longmapsto f(x+1)$$
$$f: x \longmapsto f(2x)$$

Exercice 8. [Correction] Montrer que les fonction suivantes sont impaires, CàD que $\forall x \in \mathcal{D}$, f(-x) = -f(x)

$$f(x) = \ln\left(\frac{2021 + x}{2021 - x}\right) \quad \text{ et } \quad f(x) = \frac{e^{2x} - 1}{e^{2x} + 1} \quad \text{ et } \quad f(x) = \ln\left(x + \sqrt{1 + x^2}\right) \text{ Plus difficile}$$

—— Étude de fonctions ————

Exercice 9. Pour les fonction suivantes, déterminer \mathcal{D} , \mathcal{D}' et calculer f'

$$f(x) = \frac{ax+b}{cx+d}$$
, $f(x) = \ln(2-x)$, $f(x) = \sqrt{\frac{1+x}{1-x}}$, $f(x) = \sqrt{\ln(\ln(x))}$, $f(x) = \frac{\sqrt{3x+7}}{4-x^2}$

Exercice 10. Étudier la fonction $h: x \mapsto \ln\left(\frac{2x+1}{x+2}\right)$

Exercice 11. À l'aide d'étude de fonction, démontrer les inégalités suivantes (et interpréter géométriquement)

$$\forall x > -1, \ \ln(1+x) \le x \qquad \forall x \ge -1, \ \sqrt{1+x} \le 1 + \frac{1}{2}x \qquad \forall x \in \left[0, \frac{\pi}{2}\right], \ \frac{2}{\pi}x \le \sin(x) \le x$$

Exercice 12. On considère la fonction f de \mathbb{R} à valeurs dans \mathbb{R} par

$$\forall x \in \mathbb{R}, \quad f_n(x) = e^{-x} \left(1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} \right)$$

Calculer et simplifier f'(x)

Exercice 13. On admet qu'il existe une fonction $\arctan: \mathbb{R} \longrightarrow \mathbb{R}$ dérivable telle que : $\forall x \in \mathbb{R}$, $\arctan'(x) = \frac{1}{1+r^2}$

On considère la fonction f définie par : $f(x) = \arctan(x) + \arctan\left(\frac{1}{x}\right)$ Déterminer \mathscr{D} et \mathscr{D}' . Calculer et simplifier f'.

Exercice 14. On admet qu'il existe une fonction arcsin définie, continue sur [-1,1] et dérivable sauf aux bornes

On considère la fonction f définie par $f: x \mapsto f(x) = \arcsin(\sqrt{x}) - \frac{1}{2}\arcsin(2x - 1)$

Déterminer \mathscr{D} et \mathscr{D}' . Calculer et simplifier f'.

Exercice 15. [Correction] Montrer que : $\forall a, b \in \mathbb{R}_+$, $ab \le b \ln b + e^{a-1}$

Chapitre 5-Les fonctions. 15 / 15

Correction.

Solution de l'exercice 4 (Énoncé) On a

$$\frac{\partial f}{\partial x} = y \frac{2x}{x^2 - y^2} \quad \text{et} \quad \frac{\partial f}{\partial y} = \ln(x^2 - y^2) + y \frac{-2y}{x^2 - y^2} = \ln(x^2 - y^2) - \frac{2y^2}{x^2 - y^2}$$

Ainsi
$$\frac{1}{x} \frac{\partial f}{\partial x} + \frac{1}{y} \frac{\partial f}{\partial y} = \frac{2y}{x^2 - y^2} + \frac{1}{y} \ln(x^2 - y^2) - \frac{2y}{x^2 - y^2}$$

$$= \frac{1}{y} \ln(x^2 - y^2)$$

$$= \frac{1}{y^2} \left[y \cdot \ln(x^2 - y^2) \right] = \frac{1}{y^2} f(x, y)$$

Solution de l'exercice 8 (Énoncé) On a

$$f(-x) = \ln\left(\frac{2021 - x}{2021 + x}\right)$$
Or on a la formule $\ln\left(\frac{1}{\Box}\right) = \ln(\Box) = -\ln\left(\frac{\Box}{1}\right)$

$$C\grave{a}D \ln\left(\frac{Haut}{Bas}\right) = -\ln\left(\frac{Bas}{Haut}\right)$$

$$= -\ln\left(\frac{2021 + x}{2021 - x}\right) = -f(x)$$

$$f(-x) = \frac{e^{-2x} - 1}{e^{-2x} + 1}$$

$$= \frac{\frac{1}{e^{2x}} - 1}{\frac{1}{e^{2x}} + 1}$$

$$= \dots = \frac{1 - e^{2x}}{1 + e^{2x}} = -f(x)$$

$$f(x) = \ln\left(x + \sqrt{1 + x^2}\right)$$
$$= \ln\left(\frac{(\dots)^2 - (\dots)^2}{\sqrt{1 + x^2} + 1}\right)$$
$$= \dots = -f(x)$$

Solution de l'exercice 15 (Énoncé)

On fixe une des 2 variables puis on fait une étude de fonction.