Exercice 1. [Correction] On considère la fonction f définie par

$$f(x) = x \ln(x) + (1 - x) \ln(1 - x)$$

- 1. Montrer que le graphe de la fonction f admet la droite $x=\frac{1}{2}$ pour axe de symétrie.
- 2. Déterminer \mathscr{D} , l'ensemble de définition et \mathscr{D}' , l'ensemble de dérivabilité de la fonction f. Déterminer et simplifier f'.
- 3. Variation.
 - > Résoudre l'inégalité : $\frac{x}{1-x}\geqslant 1$. En déduire les variations de la fonction f.
 - > On admet que : $\lim_{\square \to 0^+} \left[\square \ln(\square) \right] = 0$, en déduire les limites aux borne de \mathscr{D} .
- 4. En déduire, sur \mathscr{D} , un encadrement de $x^x (1-x)^{1-x}$

Exercice 2. [Correction] Soit $n, k \in \mathbb{N}$ avec $k \in \{1, ..., n\}$. On considère $u_k = \frac{1}{n^k} \binom{n}{k}$

- 1. Simplifier $\frac{u_{k+1}}{u_k}$ puis justifier que : $\frac{u_{k+1}}{u_k} \leqslant \frac{1}{2}$.
- $2. \ \ \text{En d\'eduire que}: \forall \, k \in \{1,2,...,n\}, \ \ u_k \leqslant \left(\frac{1}{2}\right)^{k-1}.$
- 3. Application : Montrer, en utilisant la formule du binôme et Q2, que : $\forall n \in \mathbb{N}, \left(1 + \frac{1}{n}\right)^n \leqslant 3$

Exercice 3. [Correction] On considère la suite (A_n) définie par

$$\forall n \in \mathbb{N}^*, \ A_n = \prod_{k=1}^n \left(1 + \frac{k}{n^2} \right)$$

- 1. Montrer que : $\forall x \ge 0, \ 1 + x \le e^x$.
- 2. En déduire un majorant pour la suite (A_n) , CàD déterminer K tel que $\forall n \in \mathbb{N}^*, \ A_n \leqslant K$

Exercice 4. [Correction] Soit $n \ge 2$ et $x_1, ..., x_n \in \mathbb{R}_+^*$

On note

$$>G=\sqrt[n]{x_1\,x_2...x_n}=\left(x_1\,x_2...x_n
ight)^{1/n}$$
 , c'est la moyenne géométrique

$$>M=rac{1}{n}\sum_{k=1}^n x_k=rac{x_1+x_2+\cdots+x_n}{n}$$
, c'est la moyenne arithmétique.

Le but de l'exercice est de démontrer l'inégalité arithmético-géométrique, CàD

$$G\leqslant M$$
, CàD $\sqrt[n]{x_1\,x_2...x_n}\leqslant rac{x_1+x_2+\cdots+x_n}{n}$

- 1. Montrer que : $\forall x > 0$, $\ln(x) \leq x 1$
- 2. Vérifier que : $\sum_{k=1}^{n} \left(\frac{x_k}{M} 1 \right) = O$
- 3. À l'aide des questions précédentes, montrer que : $G \leqslant M$

Exercise 5. [Correction] Pour tout
$$n \in \mathbb{N}^*$$
, on considère $S_n = \sum_{k=1}^n (-1)^{k-1} \frac{\binom{n}{k}}{k}$

$$1. \ \, \text{Montrer que, pour tout } n \in \mathbb{N}^*, \, S_{n+1} - S_n = \sum_{k=1}^{n+1} (-1)^{k-1} \frac{\binom{n+1}{k} - \binom{n}{k}}{k} \qquad \text{On convient que } \binom{n}{n+1} = 0$$

2. Montrer que : $\forall n, k \in \mathbb{N}$, avec $0 \leqslant k \leqslant n$

$$\frac{1}{k} \left[\binom{n+1}{k} - \binom{n}{k} \right] = \frac{1}{n+1} \binom{n+1}{k}$$

3. En déduire que : $\forall n \in \mathbb{N}^*, \ S_{n+1} - S_n = \frac{1}{n+1}$

4. Montrer que :
$$S_n = \sum_{k=1}^n \frac{1}{k}$$

Exercice 6. [Correction] On considère la suite (I_n) définie par

$$\forall n \in \mathbb{N}, \ I_n = \int_0^1 \frac{t}{1+t^n} dt$$

- 1. Calculer I_0 et I_2 . Calculer I_1 avec le changement de variable u=1+t
- 2. Montrer que la suite (I_n) croissante, CàD Pour tout $n \in \mathbb{N}$, déterminer le signe de $I_{n+1}I_n$

$$3. \ \ \mathsf{Montrer} \ \mathsf{que} : \forall \, n \in \mathbb{N}, \ I_n = \frac{1}{2} - \int_0^1 \frac{t^{n+1}}{1+t^n} dt. \ \textit{Remarque} : \textit{Ce n'est pas une IPP}.$$

4. Montrer, à l'aide d'un encadrement, que :
$$\int_0^1 \frac{t^{n+1}}{1+t^n} dt \xrightarrow[n \to \infty]{} 0.$$

Que peut-on en déduire?

5. En peu plus précis.

$$\text{(a) Montrer que}: \forall\, n\in\mathbb{N},\,\, \int_0^1\frac{t^{n+1}}{1+t^n}dt = \frac{\ln 2}{n} - \frac{2}{n}\int_0^1t\ln\left(1+t^n\right)\,dt$$

(b) Montrer que :
$$\forall x \ge 0$$
, $\ln(1+x) \le x$

puis montrer, à l'aide d'un encadrement, que :
$$\int_0^1 t \ln{(1+t^n)} \ dt \xrightarrow[n \to \infty]{} 0$$

(c) En déduire la limite, quand
$$n o \infty$$
, de : $n \left(I_n - rac{1}{2}
ight)$

Exercice 7. [Correction] On considère la suite (S_n) définie par

$$\forall n \in \mathbb{N}^*, \ S_n = \sum_{k=1}^n \left(\frac{k}{n}\right)^n$$

- 1. Monotonie. Soit $n \in \mathbb{N}^*$
 - (a) On considère la fonction $h: x \longmapsto (n+1) \ln \left(\frac{x+1}{n+1} \right) n \ln \left(\frac{x}{n} \right)$.

Montrer que la fonction h est positive sur [1, n].

- (b) En déduire que : $\forall k \in \{1,...,n\}, \ \left(\frac{k}{n}\right)^n \leqslant \left(\frac{k+1}{n+1}\right)^{n+1}$ puis que la suite (S_n) est monotone.
- 2. Majoration.
 - (a) Montrer que : $\forall x > 0, \ \ln(x) \leqslant x 1$
 - (b) En déduire que : $\forall\,k\in\{0,1,...,n\},\;\left(\frac{k}{n}\right)^n\leqslant e^{k-n}.$
 - (c) En déduire que la suite (S_n) est majorée par $\displaystyle \frac{e}{e-1}$

Solution de l'exercice 1 (Énoncé)

1. Montrer que le graphe de la fonction f admet la droite $x=\frac{1}{2}$ pour axe de symétrie.

Comme $f\left(\frac{1}{2}-h\right)=\dots$ et $f\left(\frac{1}{2}+h\right)=\dots$, on a bien égalité. Ce qui conclut.

2. Déterminer \mathscr{D} , l'ensemble de définition et \mathscr{D}' , l'ensemble de dérivabilité de la fonction f.

On peut calculer le nombre f(x) Ssi $\left\{ \begin{array}{l} x>0\\ 1-x>0 \end{array} \right.$

Donc la fonction f est définie sur $\mathcal{D} =]0,1[$

De plus la fonction f est fabriquée avec les fonctions classiques et les opérations usuelles, ainsi la fonction f est dérivable sur $\mathscr{D}' = \mathscr{D}$

Déterminer et simplifier f'.

On a
$$\forall x \in \mathscr{D}, \ f'(x) = \ln(x) - \ln(1-x) = \ln\left(\frac{x}{1-x}\right)$$

3. Résoudre l'inégalité : $\frac{X}{1-X} \geqslant 1$. En déduire les variations de la fonction f.

$$\frac{x}{1-x} \geqslant 1 \iff \frac{x}{1-x} - 1 \geqslant 0$$
$$\iff \frac{2x-1}{1-x} \geqslant 0$$

On fait un bô tableau de signe

x	$-\infty$		$\frac{1}{2}$		1		$+\infty$
$\frac{2x-1}{1-x}$		_	0	+	II	_	

$$\iff x \in \left[\frac{1}{2}, 1\right[$$

On a : $f'(x) \geqslant 0 \iff \ln\left(\frac{x}{1-x}\right) \geqslant 0 \iff \frac{x}{1-x} \geqslant 1 \iff x \in \left\lceil \frac{1}{2}, 1 \right\rceil$

Préciser les limites aux borne de D

On a

On a
$$\lim_{x\to 0^+}f(x)=\lim_{x\to 0^+}\left(x\ln(x)+(1-x)\ln(1-x)\right)=0+0=0$$
 et
$$\lim_{x\to 1^-}f(x)=0$$
 à cause de la symétrie.

Ainsi on a le tableau

 on a ic tabica	-		
x	0	$\frac{1}{2}$	1
f(x)	0	- ln(2)	0

4. En déduire, sur \mathscr{D} , un encadrement de $x^x \left(1-x\right)^{1-x}$

Pour tout $x \in \mathcal{D}$, on a $x^x (1-x)^{1-x} = e^{x \ln(x)} e^{(1-x) \ln(1-x)} = e^{x \ln(x) + (1-x) \ln(1-x)} = e^{f(x)}$

Le tableau de variation assure que :
$$\forall \, x \in \mathscr{D}, \, -\ln(2) \leqslant f(x) \leqslant 0,$$
 Ainsi on a $\forall \, x \in \mathscr{D}, \, \underbrace{e^{-\ln 2}}_{=1/2} \leqslant x^x \, (1-x)^{1-x} \leqslant \underbrace{e^0}_{=1}$

Solution de l'exercice 2 (Énoncé)

1. Simplifier $\frac{u_{k+1}}{u_k}$ puis justifier que : $\frac{u_{k+1}}{u_k} \leqslant \frac{1}{2}$

On a:

$$\frac{u_{k+1}}{u_k} = \frac{\frac{1}{n^{k+1}} \binom{n}{k+1}}{\frac{1}{n^k} \binom{n}{k}} = \frac{n^k}{n^{k+1}} \frac{\frac{n!}{(k+1)! (n-k-1)!}}{\frac{n!}{k! (n-k)!}} = \frac{1}{n} \frac{n-k}{k+1}$$

On a

$$G-p=\frac{1}{2}-\frac{u_{k+1}}{u_k}=\frac{1}{2}-\frac{1}{n}\,\frac{n-k}{k+1}=\frac{n(k+1)-2(n-k)}{n(k+1)}=\frac{n(k-1)+2k}{n(k+1)}\geqslant 0\quad \text{car } k\geqslant 1$$

2. En déduire que :
$$\forall k \in \{1,2,...,n\}, \ u_k \leqslant \left(\frac{1}{2}\right)^{k-1}$$
.

À la mode geo ou récurrence

Solution de l'exercice 3 (Énoncé)

- 1. Facile : Différence avec $e^x 1 = e^x e^0$ OU BIEN étude de fonction.
- 2. On va majorer le produit A_n .

$$> \text{ Pour tout } k \in \{1,2,...,n\}$$

$$\left(1+\frac{k}{n^2}\right) \leqslant e^{\frac{k}{n^2}} \text{ On utilise Q1 avec } x=k/n^2>0.$$

> On "produise" de k=1 à k=n

Ainsi
$$A_n = \prod_{k=1}^n \left(1 + \frac{k}{n^2}\right) \leqslant \prod_{k=1}^n e^{\frac{k}{n^2}}$$

$$\leqslant e^{\frac{1}{n^2}} e^{\frac{2}{n^2}} \cdots e^{\frac{n}{n^2}}$$

$$\leqslant e^{\frac{1+2+\cdots+n}{n^2}}$$

$$\leqslant \exp\left(\frac{n(n+1)}{2}\right)$$

$$\leqslant \exp\left(\frac{n+1}{2n}\right) \leqslant \exp\left(\frac{n+n}{2n}\right) = e^1$$
Attention sa dépend de n

Solution de l'exercice 4 (Énoncé)

1. Montrer que : $\forall x > 0$, $\ln(x) \leq x - 1$

On étudie sur \mathbb{R}_+^* la fonction $h: x \longmapsto x - 1 - \ln(x)$

2. Vérifier que : $\sum_{k=1}^n \left(\frac{x_k}{M} - 1 \right) = \mathscr{O}$

On a

$$\sum_{k=1}^{n} \left(\frac{x_k}{M} - 1 \right) = \frac{1}{M} \sum_{k=1}^{n} x_k - \sum_{k=1}^{n} 1 = \frac{1}{M} nM - n = 0$$

3. On applique Q1 avec $\frac{x_k}{M}-1$, puis on somme de k=1 à k=n , ainsi

$$\sum_{k=1}^{n} \ln \left(\frac{x_k}{M} \right) \leqslant \sum_{k=1}^{n} \left(\frac{x_k}{M} - 1 \right) = 0$$

$$\implies \ln \left(\prod_{k=1}^{n} \frac{x_k}{M} \right) \leqslant 0$$

$$\implies \frac{\prod_{k=1}^{n} x_k}{M^n} \leqslant 1$$

$$\implies \prod_{k=1}^{n} x_k \leqslant M^n$$

$$\implies \left(\prod_{k=1}^{n} x_k \right)^{1/n} \leqslant M$$

Solution de l'exercice 5 (Énoncé)

1. A cause de la convention, $\binom{n}{n+1} = 0$

ainsi
$$S_n = \sum_{k=1}^n (-1)^{k-1} \frac{\binom{n}{k}}{k} = \sum_{k=1}^{n+1} (-1)^{k-1} \frac{\binom{n}{k}}{k}$$

On a donc

$$S_{n+1} - S_n = \sum_{k=1}^{n+1} (-1)^{k-1} \frac{\binom{n+1}{k}}{k} - \sum_{k=1}^{n} (-1)^{k-1} \frac{\binom{n}{k}}{k}$$

On regroupe les sommes

$$= \sum_{k=1}^{n+1} (-1)^{k-1} \frac{\binom{n+1}{k} - \binom{n}{k}}{k}$$

2. On a

$$\frac{1}{k} \left[\binom{n+1}{k} - \binom{n}{k} \right] = \frac{1}{k} \left[\frac{(n+1)!}{k! (n+1-k)!} - \frac{(n)!}{k! (n-k)!} \right]
= \frac{1}{k} \frac{(n)!}{k! (n-k)!} \left[\frac{(n+1)}{(n+1-k)} - 1 \right]
= \frac{1}{k} \frac{(n)!}{k! (n-k)!} \left[\frac{k}{(n+1-k)} \right]
= \frac{(n)!}{k! (n+1-k)!} = \frac{1}{n+1} \frac{(n+1)!}{k! (n+1-k)!} = \frac{1}{n+1} \binom{n+1}{k}$$

3. On a donc

$$S_{n+1} - S_n = \sum_{k=1}^{n+1} (-1)^{k-1} \frac{\binom{n+1}{k} - \binom{n}{k}}{k}$$

$$= \sum_{k=1}^{n+1} (-1)^{k-1} \binom{n+1}{k}$$

$$= \frac{-1}{n+1} \sum_{k=1}^{n+1} (-1)^k$$

$$= \frac{-1}{n+1} \left[\sum_{k=0}^{n+1} (-1)^k - \underbrace{1}_{k=0} \right] = \frac{-1}{n+1} \left[(1-1)^{n+1} - 1 \right] = \frac{1}{n+1}$$

On a maintenant

$$S_n - S_{n-1} = \frac{1}{n}$$

$$S_{n-1} - S_{n-2} = \frac{1}{n-1}$$

$$\vdots$$

$$S_2 - S_1 = \frac{1}{2}$$

On somme les égalités et on simplifie ainsi

$$S_n - S_1 = \sum_{k=2}^n \frac{1}{k}$$

$$\implies S_n = S_1 + \sum_{k=2}^n \frac{1}{k} = 1 + \sum_{k=2}^n \frac{1}{k} = \sum_{k=1}^n \frac{1}{k}$$

Solution de l'exercice 6 (Énoncé) On considère la suite (I_n) définie par

$$I_n = \int_0^1 \frac{t}{1+t^n} dt$$

1. On a

$$I_0 = \int_0^1 \frac{t}{1+1} dt = \int_0^1 Monome \ dt$$

$$I_2 = \int_0^1 \frac{t}{1+t^2} dt = \int_0^1 \frac{n'}{n} dt$$

$$I_1 = \int_0^1 \frac{t}{1+t} dt = \int_0^1 \left[\text{D\'ecomposition en \'el\'em\'ent simple} \right] dt$$

2. On a

$$\begin{split} I_{n+1} - I_n &= \int_0^1 \frac{t}{1 + t^{n+1}} dt - \int_0^1 \frac{t}{1 + t^n} dt \\ &= \int_0^1 \left[\frac{t}{1 + t^{n+1}} - \frac{t}{1 + t^n} \right] dt \\ &= \int_0^1 \left[t \frac{(1 + t^n) - \left(1 + t^{n+1} \right)}{(1 + t^{n+1}) \left(1 + t^n \right)} \right] dt \\ &= \int_0^1 \left[t \frac{t^n - t^{n+1}}{(1 + t^{n+1}) \left(1 + t^n \right)} \right] dt \\ &= \int_0^1 \left[t . t^n \frac{1 - t}{(1 + t^{n+1}) \left(1 + t^n \right)} \right] dt \\ &\text{Or } \left[t . t^n \frac{1 - t}{(1 + t^{n+1}) \left(1 + t^n \right)} \right] \text{ est } \geqslant 0 \quad \text{sur } [0, 1] \\ &\text{donc l'intégrale est } \geqslant 0 \quad \text{Fini} \end{split}$$

3. On a
$$\int_0^1 t \, dt = = \frac{1}{2}$$
. Ainsi on a

$$\frac{1}{2} - \int_0^1 \frac{t^{n+1}}{1+t^n} dt = \int_0^1 t \, dt - \int_0^1 \frac{t^{n+1}}{1+t^n} dt$$

$$= \int_0^1 \left[t - \frac{t^{n+1}}{1+t^n} \right] dt$$

$$= \int_0^1 \left[\frac{t(1+t^n) - t^{n+1}}{1+t^n} \right] dt$$

$$= \int_0^1 \left[\frac{t}{1+t^n} \right] dt = I_n$$

Si
$$t\in[0,1]\,,\;0\leqslant\frac{t^{n+1}}{1+t^n}\leqslant\frac{t^{n+1}}{1+0}=t^{n+1}$$
 On intègre l'inégalité sur $[0,1]$

Ainsi
$$0 \le I_n - \frac{1}{2} \le \int_0^1 \frac{t^{n+1}}{1+t^n} dt$$

$$\leq \int_0^1 t^{n+1} dt = \left[\frac{t^{n+2}}{n+2} \right]_0^1 = \frac{1}{n+2}$$

 $\mathsf{Comme}\; Majoration = \frac{1}{n+2} \underset{n \to +\infty}{\longrightarrow} 0, \, \mathsf{on} \, \, \mathsf{a} \, \, \mathsf{avec} \, \, \mathsf{le} \, \, \mathsf{th\'eor\`eme} \, \, \mathsf{des} \, \, \mathsf{deux} \, \, \mathsf{gendarmes} \, \, I_n \underset{n \to +\infty}{\longrightarrow} \frac{1}{2} \, .$

- 5. En peu plus précis
 - (a) On fait une IPP

$$u' = \frac{t^{n-1}}{1+t^n} \rightsquigarrow u = \frac{1}{n} \ln \left(1 + t^n\right)$$

$$v = t^2 \qquad \rightsquigarrow \rightsquigarrow v' = 2t$$

A finir

- (b) On utilise les intégrales avec $\ln{(1+x)} = \ln{(1+x)} \ln{1} = \int_{1}^{1+x} \frac{1}{t} dt$
- (c) On va montrer que :

$$Quotient = \frac{Petit}{gros} = \int_0^1 t \ln(1 + t^n) dt \xrightarrow[n \to \infty]{} 0$$

On utilise l'inégalité précédente,

ainsi
$$t \in [0,1]$$
, $0 \leqslant t \ln(1+t^n) \leqslant t.t^n$

On intègre l'inégalité sur [0,1]

On a
$$0\leqslant \int_0^1 t \ln{(1+t^n)} \ dt \leqslant \int_0^1 t.t^n \ dt$$

$$\leqslant \left[\frac{t^{n+2}}{n+2}\right]_0^1 = \frac{1}{n+2}$$

Avec le théorème des 2 gendarmes $\int_0^1 t \ln{(1+t^n)} \ dt \xrightarrow[n \to \infty]{} 0$. Fini.

Solution de l'exercice 7 (Énoncé)

- 1. Monotonie. Soit $n \in \mathbb{N}^*$
 - (a) Étude de fonction et tableau de signe.
 - (b) Pour tout $k \in \{1,...,n\}$. Comme la fonction \ln est croissante, on a

$$\left(\frac{k}{n}\right)^n \leqslant \left(\frac{k+1}{n+1}\right)^{n+1} \iff \ln\left(\frac{k}{n}\right)^n \leqslant \ln\left(\frac{k+1}{n+1}\right)^{n+1} \\ \iff h(k) \geqslant 0 \textit{Fini}$$

On a
$$S_{n+1} - S_n = \cdots \geqslant 0$$

- 2. Majoration.
 - (a) On étudie la fonction $h: x \longmapsto (x-1) \ln(x)$
 - (b) Pour tout $k \in \{0,1,...,n\}$, on a

$$\left(\frac{k}{n}\right)^n = e^{n\ln(k/n)} \leqslant e^{n(k/n-1)} = e^{k-n}$$

(c) On a

$$S_n = \sum_{k=1}^n \left(\frac{k}{n}\right)^n \leqslant = \sum_{k=1}^n e^{k-n}$$

$$\leqslant e^{-n} \sum_{k=1}^n e^k$$

$$\leqslant e^{-n} \left(\frac{1 - e^{n+1}}{1 - e} - 1\right)$$

$$\leqslant \frac{e(1 - e^{-n})}{e - 1} \leqslant \frac{e}{e - 1}$$