Programme de colle de la semaine 4

du Lundi 06 Octobre au Vendredi 10 Octobre.

Questions de cours.

 $> \underline{\text{Trigo et changement de variable.}}$ On va calculer $\int_{-\infty}^{\infty} \frac{1}{\cos(t)} dt$ avec le changement $u = \tan(t/2)$

Calculer dt en fonction de du et vérifier que : $\cos(t) = \frac{1 - u^2}{1 + u^2}$

Faites le changement de variable et finissez le calcul de l'intégrale avec une décomposition en éléments simples.

- > Un ensemble de définition et une dérivée. On considère la fonction f définie par $f(x) = \arctan\left(\sqrt{\frac{1+x}{1-x}}\right)$
 - > Déterminer \mathcal{D} , l'ensemble de définition et \mathcal{D}' , l'ensemble de dérivabilité de la fonction f.
 - > Calculer et simplifier f'
- > Une inéquation. On considère la fonction f définie par $f(x) = x \ln(x) + (1-x) \ln(1-x)$

 - > Déterminer \mathscr{D} , l'ensemble de définition et \mathscr{D}' , l'ensemble de dérivabilité de la fonction f. > Résoudre l'inégalité : $\frac{x}{1-x} \geqslant 1$. En déduire les variations de la fonction f.
 - \sharp Pour "résoudre une inégalité", on trouve le signe de G-p avec FFB et Bô tableau
- > Équation trigo. Résoudre l'équation $\tan(X) = -1$. \sharp la réponse N'est PAS : $\tan(X) = -1 \iff x = \arctan(-1) = -\frac{\pi}{4}$

Application: On va déterminer le nombre $A = \arctan(2) + \arctan(3)$.

Calculer tan(a + b). En déduire que A est une solution de l'équation tan(X) = -1

Justifier que : $\frac{\pi}{4} + \frac{\pi}{4} \leqslant A = \arctan(2) + \arctan(3) \leqslant \frac{\pi}{2} + \frac{\pi}{2}$. En déduire la valeur de $A = \frac{3 \cdot \pi}{2}$.

> Autour du nombre j.

Définition et propriétés du nombre j.

Factoriser les polynômes $X^3 - 1$ et $X^3 + 1$.

> Racines n-ième de l'unité.

Définition et propriétés des racines n-ième de l'unité.

Factoriser les polynômes $X^n - 1$ et $X^n - a^n$.

Bonus démonstration de : Les solutions de l'équation $X^n = 1$ sont les racines n-ième de l'unité.

> Une équation de degré 5. On considère l'équation : $(1+iz)^5 - (1-iz)^5 = 0$

Avec le binôme, justifier que l'équation est polynômiale de degré 5

Avec les racines de l'unité, justifier que les racines/solutions sont $z_k = \tan\left(k\frac{\pi}{5}\right)$ avec $k \in \{0, 1, ..., 4\}$.

Exercices.

Résolution d'équation et manipulation des racines n-ième.