E	DL : Équations Différentielles Linéaire.		3.2 Résoudre l'équation homogène.3.3 Méthode de variation de la constante.	
1	Primitives 1.1 Rappel		4 EDL2 à coefficients constants 4.1 Vocabulaire et description des solutions	5 5
2	Primitiver une égalité	2	4.3 Solution particulière	7
3	EDL1	3	5 Le principe de Cauchy	8
	3.1 Vocabulaire et description des solutions	3	6 Exercices	9

1 Primitives

1.1 Rappel

La grille classique pour les calculs de primitive est

- > Monôme : par exemple $\frac{1}{x^n \sqrt{x}}$
- > Mélange : par exemple $\sqrt{2x} + \frac{1}{2x} = \sqrt{2}\sqrt{x} + \frac{1}{2}\frac{1}{x}$
- > Produit, Quotient : Bli,Bli

MAIS
$$\frac{\square'}{\square}$$
 et \square' et même \square' \square^{α} : par exemple $\frac{1}{x \ln(x)}$ et $\frac{\ln(x)}{x}$

- > Composée simple : $f(u) \rightsquigarrow \frac{1}{u'} F(u)$ avec u' = KONSTANTTE; par exemple $\cos(2t)$, $e^{\frac{-t}{\tau}}$ ou $\sqrt{1-x}$
- > Nouvô mais usuelle : $\frac{1}{1+x^2} \rightsquigarrow \arctan(x)$ ou $\frac{1}{\sqrt{1-x^2}} \rightsquigarrow \arcsin(x)$
- > DES=décomposition en éléments simples : par exemple $\frac{1}{x(x-1)}$ ou $\frac{1}{x^2-1}$
- > Trigo avec produit \infty plus de produit

Théorème 1. Kulture ou IPP

On peut aussi connaitre

> Une primitive de te^{-t} est de la forme $(at+b)e^{-t}$ Une primitive de $(t^2+1)e^{2t}$ est de la forme $(at^2+bt+c)e^{2t}$

CàD (poly du même degré) × la même exp

> Une primitive de $\cos(t) e^{-t}$ est de la forme $\left[a\cos(t) + b\sin(t)\right] e^{-t}$ Une primitive de $\sin(t) e^{2t}$ est de la forme $\left[a\cos(t) + b\sin(t)\right] e^{2t}$

De façon plus générale les intégrales/primitives suivantes se font avec des IPP

$$\int_{-\infty}^{\infty} \ln(t) dt \qquad \int_{-\infty}^{\infty} \arctan(t) dt \qquad \int_{-\infty}^{\infty} t e^{-t} dt \qquad \int_{-\infty}^{\infty} \sin(t) e^{2t} dt$$

Il restera au programme une dernière primitive difficile que l'on verra au moment du cours sur DES.

1.2 Une primitive difficile.

Trouver une primitive de $\frac{1}{1+x+x^2}$

2 Primitiver une égalité

Théorème 2. Primitivation des égalités.

Soit $f: x \mapsto f(x)$ et $g: x \mapsto g(x)$ deux fonctions continues sur un intervalle I.

On suppose que $\forall x \in I$, f(x) = g(x)

On peut primitiver l'égalité C'est possible car les fonctions sont continues,

Ainsi il existe une constante K tel que : $\forall x \in I$, F(x) = G(x) + K

De plus quand on primitive une égalité, on conserve les ⇔

Exemple classique en math : on va résoudre l'équation f'' = 0.

$$f'' = 0$$
, CàD $\forall x \in \mathbb{R}$, $f''(x) = 0$.

On primitive l'égalité

Ainsi il existe
$$a \in \mathbb{R}$$
 tel que : $\forall x \in \mathbb{R}$, $f'(x) = 0$ $+ a = a$.

Une primitive $de = 0$

On primitive à nouveau l'égalité

Ainsi il existe
$$b \in \mathbb{R}$$
 tel que : $\forall x \in \mathbb{R}$, $f(x) = \underbrace{ax}_{Une\ primitive\ de\ a} + b$.

Conclusion: $f'' = 0 \iff \text{il existe a,b tel que} : \forall \in \mathbb{R}, \ f(x) = ax + b$

Théorème 3. Deux applications classiques "

En physique

En mécanique, on rencontre y'' = g où g est la gravitation!!!! On a alors

$$y'' = g \iff y''(t) = g \iff y'(t) = gt + \underbrace{K}_{=y'(0)}$$

$$\iff y(t) = \frac{1}{2}gt^2 + y'(0)t + \underbrace{L}_{y(0)}$$

$$\text{Conclusion}: \forall t \ge 0, \ y(t) = \frac{1}{2}gt^2 + \underbrace{y'(0)}_{=v_0}t + \underbrace{y(0)}_{=h_0}$$

En math

Soit f une fonction \mathscr{C}^{∞} et $n \in \mathbb{N}$. On a l'équivalence

 $f^{(n)} = 0 \iff La \text{ fonction } f \text{ est un polynôme de degré} \leq n$

3 EDL1

3.1 Vocabulaire et description des solutions.

Définition 4. Vocabulaire.

Soit I un intervalle.

Soit $a: x \mapsto a(x)$, $b: x \mapsto b(x)$ et $\lambda: x \mapsto \lambda(x)$ des fonctions continues de I, à valeurs dans \mathbb{R} .

> Une équation fonctionnelle

est une équation où l'inconnue est une fonction, souvent notée *y*.

- > Une équation différentielle est une équation fonctionnelle faisant intervenir γ , γ' .
- > Une équation différentielle linéaire d'ordre 1 est une équation de la forme

$$\lambda(x) y' + a(x) y = b(x)$$
Partie Homogène
2-ième membre

> Une équation différentielle linéaire d'ordre 1 normalisé est une équation de la forme

$$1 y' + a(x) y = b(x)$$
Partie Homogène Normalisée 2-ième membre

L'équation différentielle homogène associé est donc y' + a(x)y = 0.

Vocabulaire: Résoudre ou intégrer une équation différentielle,

c'est trouver toutes les fonctions **dérivables** y qui vérifient l'équation.

Théorème 5. Description de la forme des solutions d'une EDL1

Soit *a*, *b* des fonctions continues sur un intervalle *I*.

Soit l'équation normalisée : y' + a(x)y = b(x).

Alors les solutions y de l'equa diff sont la somme de

- > Une solution particulière $y_p: x \longmapsto y_p(x)$ de l'équa diff complète
- > Les solutions $h: x \longrightarrow h(x)$ de l'équa diff homogène

Ainsi on a :
$$\forall x \in I$$
, $y(x) = y_p(x) + h(x)$

Soit y une solution quelconque de l'équation complète et y_p une solution particulière de l'équation complètes.

On a
$$y'+$$
 $a(x) y = b(x)$
 $y'_p + a(x) y'_p = b(x)$

On fait la différence ainsi $(y - y_p)' + a(x)(y - y_p) = 0$

Conclusion : $y = y_p + h$

3.2 Résoudre l'équation homogène.

Théorème 6. Le théorème générale

Soit *a* des fonctions continues sur un intervalle *I*.

On suppose que : h est une fonction solution de l'équation différentielle : y' + a(x)y = 0.

On note $A: x \mapsto A(x)$ une primitive (sur *I*) de la fonction $a: x \mapsto a(x)$

Alors il existe une constante K tel que $\forall x \in I$, $h(x) = Ke^{-A(x)}$

D'une part.

les fonctions de la forme $Ke^{-A(x)}$ sont solution de l'équation différentielle.

D'autre part. On suppose que *h* est une solution de l'équation différentielle.

On va montrer que h(x) est forcément de la forme $h(x) = K e^{-A(x)}$

On étudie la fonction $\varphi: x \longmapsto h(x)e^{A(x)}$

On déduit de l'étude que la fonction φ est constante sur I

CàD
$$\forall x \in I$$
, $h(x)e^{A(x)} = K \iff h(x)e^{A(x)} = Ke^{-A(x)}$

Théorème 7. Le théorème spécial physique

On suppose que : h(t) vérifie l'équation différentielle : $y' + \frac{1}{\tau}y = 0$.

On sait que $1/_{ au}$ "Une primitive $t/_{ au}$ Ici la variable c'est t

Alors il existe une constante K tel que $\forall t \ge 0$, $h(t) = K e^{-t/\tau}$

3.3 Méthode de variation de la constante.

Théorème 8. Solution particulière de l'equa diff complète

Soit *a*, *b* des fonctions continues sur un intervalle *I*.

Soit l'équation normalisée : y' + a(x)y = b(x).

- > Est ce que l'on ne vous a pas donné une solution particulière y_p à la question Q.1.a?
- > Sinon À la physicienne, on essaye une solution particulière "évidente",

CàD on essaye
$$y_p: x \longrightarrow C$$
 ou $y_p: x \longmapsto Cx$ avec $C = C_{onstante}$

> Sinon Méthode de variation de la constante

On cherche une solution particulière de la forme $\lambda(x) h(x)$.

Les calculs conduisent alors à : $\lambda'(x)$ $h(x) = b(x) \iff \lambda'(x) = \frac{b(x)}{h(x)}$ $\frac{b(x)}{h(x)} = \frac{b(x)}{h(x)}$

Théorème 9. Principe de Superposition.

Soit u, v, w_1, w_2 sont des fonctions définie sur un intervalle I.

On suppose de plus que sur I la fonction u ne s'annule pas, CàD $\forall x \in I, u(x) \neq 0$.

On suppose

- > La fonction y_1 est une solutions particulière (sur I) de : $u(x)y' + v(x)y = w_1(x)$.
- > La fonction y_2 est une solutions particulière (sur I) de : $u(x)y' + v(x)y = w_2(x)$.

Alors la fonction $y_1 + y_2$ est une solutions particulière (sur *I*) de l'équation différentielle $u(x)y' + v(x)y = w_1 + w_2$.

4 EDL2 à coefficients constants

4.1 Vocabulaire et description des solutions.

Définition 10. Vocabulaire.

Soit *I* un intervalle ouvert non vide.

Soit a, b et c trois constantes et f une fonction continue sur I

> On dit que

$$ay'' + by' + cy = f(x)$$
Partie Homogène 2-ième membre

est une équation différentielle linéaire du deuxième ordre.

> On dit que : ay'' + by' + cy = 0 est l'équation différentielle homogène associée.

Théorème 11. Description de la forme des solutions d'une EDL2

Soit a, b, c des constantes et ϕ une fonction continue sur un intervalle I. Soit l'équation normalisée : $ay'' + by' + cy = \phi(x)$.

Alors les solutions y de l'equa diff sont la somme

- > D'une solution particulière y_p de l'équa diff complète
- > Des solutions h de l'équa diff homogène.

CàD on a :
$$\forall x \in I$$
, $y(x) = y_p(x) + h(x)$

C'est la même démonstration que pour l'ordre 1.

4.2 Résolution de l'équation homogène.

Définition 12. Équation Caractéristique.

Soit a, b, c trois constantes et soit (H) l'équation différentielle homogène ah'' + bh' + ch = 0

On dit que : $aX^2 + bX + c = 0$ est l'équation caractéristique de (H).

Théorème 13. Équa diff classique d'ordre 2.

Soit l'équa diff classique d'ordre 2 (homogène) ah'' + bh' + ch = 0 avec a, b, c des constantes, et son équation caractéristique $ax^2 + bx + c = 0$

Lorsque
$$\Delta = b^2 - 4ac > 0$$

Alors l'équation caractéristique admet 2 solutions distinctes r et r' dans $\mathbb R$. et les solutions h sont de la forme

$$\forall x \in \mathbb{R}, \ h(x) = \lambda e^{rx} + \mu e^{r'x} \quad avec \ \lambda, \mu \ des \ constantes.$$

Lorsque
$$\Delta = b^2 - 4ac = 0$$

Alors l'équation caractéristique admet 1 seule solution r = r' et les solutions h sont de la forme

$$\forall x \in \mathbb{R}, \ h(x) = \lambda e^{rx} + \mu x e^{rx} = (\lambda + \mu x) \cdot e^{rx}$$
 avec λ, μ des constantes.

Lorsque
$$\Delta = b^2 - 4ac < 0$$

Alors l'équation caractéristique admet 2 solutions $r = \alpha + i\beta$ et $r' = \overline{r} = \alpha - i\beta$ et les solutions h sont de la forme

$$\forall \ x \in \mathbb{R}, \ h(x) = \lambda \, e^{\alpha x} \cos(\beta \, t) + \mu \, e^{\alpha x} \sin(\beta \, t) \quad avec \, \lambda, \mu \ des \ constantes.$$

Remarque: Les constantes λ , μ se calculent avec les conditions initiales.

Démonstration: Démonstration "Version écrit"

On va résoudre l'équation diff
$$y'' - 5y' + 6y = 0$$

Ici $a = 1$, $b = -5$, $c = 6$ et $r = 2$ et $r' = 3$ sont les sol de l'eq caract

> Question/Étape 1 : Montrer que :

$$f$$
 est sol de $y'' - 5y' + 6y = 0$ Ssi $g = f' - 2f$ est sol de $y' - 3y = 0$

Démonstration : C'est longuet à rédiger mais pas difficile. On fait ⇒ et ←

Conclusion:
$$y'' - 5y' + 6y = 0 \iff \begin{cases} g = f' - 2f \\ et \\ g' - 3g = 0 \end{cases}$$

> Question/Étape 2 : On résout (A) puis on résout (B)

$$->$$
 Les sol de $g'-3g=0$ sont : $\forall x \in \mathbb{R}, \ g(x)=Ae^{3x}$ avec $K \in \mathbb{R}$

-> Les sol de $f'-2f=g=Ae^{3x}$ sont (Je vous laisse faire les calculs qui sont plus ambigus qu'il y parait)

$$\forall x \in \mathbb{R}, \ f(x) = \underbrace{A'e^{3x}}_{Une\ sol\ part} + \underbrace{B'e^{2x}}_{Les\ sol\ de\ l'eq\ Homo}$$

Conclusion on a bien :
$$\forall x \in \mathbb{R}, f(x) = \dots e^{3x} + \dots e^{2x}$$
. Yes!!!

Démonstration: Démonstration "Version oral péchue"

Soit *h* une solution de l'équation différentielle homogène

On va chercher l'équation différentielle vérifiée par la fonction $f = h.e^{-rx} \iff h = f e^{rx}$

Situation $\Delta \neq 0$

> On calcule h' et h", on trouve

$$\begin{array}{lll} h' &= f'e^{rx} + rfe^{rx} & et & h" &= f"e^{rx} + 2rf'e^{rx} + r^2ye^{rx} \\ &= (f' + rf)e^{rx} &= (f'' + 2rf' + r^2f)e^{rx} \end{array}$$

> Comme h vérifie (H), on a

$$\begin{split} ah'' & +bh'+ch=0 \\ & \iff (af''+2rf'+r^2f)e^{rx}+(bf'+rf)e^{rx}+cf.e^{rx}=0 \\ & \iff \left[af''+(2ra+b)f'+(ar^2+br+c)f\right]e^{rx}=0 \\ & Or\ e^{rx}\neq 0\ et\ ar^2+br+c=0\ car\ r\ est\ une\ sol\ de\ l'équation\ caractéristique. \\ & \iff af''+(2ra+b)f'=0 \end{split}$$

> On remarque que comme r et r' sont solution de l'équa caractéristique,

on a
$$r + r' = -b/a$$
 et donc $2ra + b = a(2r + \frac{b}{a}) = a(2r - r - r') = 2a(r - r')$

$$af'' + (2ra + b)f' = 0 \iff af'' + a(r - r')f' = 0 \iff f'' - (r - r')f' = 0$$

On applique la théorie des équations différentielles d'ordre 1 à la fonction f' et on en déduit $\forall x$, $f'(x) = \alpha e^{(r'-r)x}$.

> On primitive, on a $f(x) = \beta e^{(r'-r)x} + \alpha$

Conclusion:
$$\forall x$$
, $h(x) = f(x)e^{rx} = \lambda e^{rx} + \mu e^{r'x}$

Fini.

Situation $\Delta = 0$

C'est la même démonstration mais comme $\Delta=0$ on a en plus r=-b/2a donc $ar^2+br=0$ Ainsi $af''+bf'+cf=0 \iff af''=0$. Ainsi $f''=0 \iff f'=\alpha \iff f=\alpha x+\beta$

Conclusion:
$$\forall x$$
, $h(x) = f(x)e^{rx} = (\alpha x + \beta)e^{rx}$

4.3 Solution particulière.

Théorème 14. Le principe du miroir.

Pour trouver une solution particulière de l'équation

$$ay'' + by' + cy = f(x)$$

Il n'y a pas de méthode directe, la méthode de variation de la constante n'est pas transposable (en sup du moins) donc il faut s'adapter!!!

Le principe du miroir

$$f(x)$$
 $--|- y_p(x)$

> Lorsque f(x) = Poly de degré 1,

on cherche une solution particulière $y_p(x)$ = Poly de degré 1.

> Lorsque f(x) = (Poly de degré 1) $\times e^{ax}$,

on cherche une solution particulière $y_p(x) = (\text{Poly de degré 1}) \times e^{ax}$

> Lorsque $f(x) = \cos(\omega x)$,

on cherche une solution particulière $y_p(x) = \lambda \cos(\omega x) + \mu \sin(\omega x)$

5 Le principe de Cauchy

Théorème 15. Principe de Cauchy d'ordre 1.

Lorsqu'on résout une équation différentielle linéaire d'ordre 1, les solutions dépendent d'une constante k que l'on peut déterminer avec une condition initiale.

Il n'y a alors plus d'indétermination et la solution est unique.

Principe de Cauchy Il existe une unique fonction f

> vérifiant une équa dif d'ordre 1

et

> satisfaisant à la condition initiale $f(x_0) = a$.

Exemple historique.

En terminale, la fonction exp est définie à l'aide de ce principe, CàD

La fonction exp est l'unique fonction vérifiant l'équa diff y' = y et tel que y(0) = 1

Théorème 16. Principe de Cauchy d'ordre 2.

Quand on résout une équation différentielle linéaire d'ordre 2,

les solutions dépendent de 2 constante λ et μ que l'on peut déterminer avec une condition initiale.

Il n'y a alors plus d'indétermination et la solution est unique.

Principe de Cauchy Il existe une unique fonction f

> vérifiant une équa dif d'ordre 2

et

> satisfaisant aux conditions initiales $f(x_0) = a$ et $f'(x_0) = b$.

Exemples.

La fonction cos est l'unique fonction vérifiant

vérifiant l'équa diff y'' = -y et tel que y(0) = 1 et y'(0) = 0

La fonction cosh est l'unique fonction vérifiant

vérifiant l'équa diff y'' = +y et tel que y(0) = 1 et y'(0) = 0

Kulture : En intégrant les équations différentielle, on a montré que le problème de Cauchy avait une solution unique. Notre justification est valide car l'équation différentielle est linéaire et donc on sait la résoudre.

Cauchy a démontré ces théorèmes pour toutes les équations différentielles linéaire et non-linéaire. Mais sa démonstration ne permet pas de résoudre explicitement les équations différentielle non-linéaire mais seulement (et c'est déjà remarquable) de justifier qu'elles ont une unique solution.

Exercices

– Équation du premier ordre ———

Exercice 1. [Correction] Résoudre les équations différentielles.

1. Sur
$$]0, +\infty[$$
, $(1+x^2)$ $y'(x) + 2x$ $y(x) = \frac{1}{x}$

2. Sur
$$]0, +\infty[$$
, $2xy' - 3y = \sqrt{x}$

3. sur]0,1[,
$$xy' + 2y = \frac{1}{1-x^2}$$

3. sur]0,1[,
$$xy' + 2y = \frac{1}{1 - x^2}$$

4. Sur $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, $\cos t \ y' + \sin t \ y = 1$

Exercice 2. [Correction] Trouver une équation différentielle d'ordre 1 dont les solutions sont les fonctions définie par

$$\forall x \in \mathbb{R}, \quad f(x) = \frac{x+A}{1+x^2}$$

- 1. Identifier qui doit être la solution de l'équation homogène et la solution particulière.
- 2. Déterminer l'équation différentielle homogène.
- 3. Déterminer le second membre.

Exercice 3. Soit $\lambda \neq -1$ et f l'unique fonction solution de l'équation différentielle $y' + y = e^{\lambda x}$ et tel que f(0) = 1.

Déterminer f puis trouver les réels λ tels que la fonction f est bornée sur \mathbb{R}^+ .

Exercice 4. [Correction] Trouver les fonctions f de [0,1] à valeur dans \mathbb{R} telle que

$$f' + f = f(0) + f(1)$$
.

Exercice 5. [Correction] On considère sur \mathbb{R} l'équation différentielle (E).

$$y' + y - xy^2 = 0 \qquad (E)$$

On suppose que la fonction y est une solution de (E) et on suppose que la fonction y ne s'annule pas.

On considère sur $\mathbb R$ la fonction z par la formule $z(x) = \frac{1}{v(x)}$

- 1. Déterminer l'équation (E') vérifiée par la fonction z.
- 2. Déterminer z(x) puis y(x).

Exercice 6. [Correction] Soit f une fonction dérivable vérifiant

$$\forall x, y \text{ dans } \mathbb{R}, f(x+y) = f(x) + f(y)$$

Pour une rédaction propre et claire, on utilisera la phrase : "J'applique l'égalité avec"

- 1. Montrer que f(0) = 0.
- 2. Pour la suite, on note $\alpha = f'(0)$.
 - (a) Montrer que : $\forall t$, $f'(t) = \alpha$.
 - (b) Déterminer f.

Exercice 7. [Correction] Soit f une fonction dérivable vérifiant

$$f(x+y) = f(x) f(y)$$
 pour tout $x \in \mathbb{R}$ et $y \in \mathbb{R}$ (E)

Pour une rédaction propre et claire, on utilisera la phrase : "J'applique l'égalité avec"

- 1. Calculer f(0) et que la fonction f est positive.
- 2. On suppose que f(0) = 0.

Montrer que : la fonction f est constante égale à 0.

- 3. On suppose que f(0) = 1. Et on note $\alpha = f'(0)$.
 - (a) Montrer que : $\forall t \in \mathbb{R}, f'(t) = \alpha f(t)$
 - (b) Résoudre l'équation différentielle
 - (c) Déterminer f.

Exercice 8. Le but est de déterminer les fonctions f définie sur $\mathcal{D} = \mathbb{R}_+^*$, vérifiant

$$\forall x, y > 0, f(xy) = f(x)f(y)$$

- 1. Généralité.
 - (a) Montrer f(1) = 0 ou f(1) = 1.
 - (b) Montrer que la fonction f est positive.
 - (c) On suppose que f(1) = 0.

Déterminer f.

On suppose dorénavant que f(1) = 1

2. On suppose que f est dérivable et que f(1) = 1. On note $f'(1) = \alpha$.

Déterminer f.

Indication : on montrera que f est solution d'une équation différentielle.

3. On suppose que f est simplement continue et que f(1) = 1.

Montrer que la fonction f est dérivable puis déterminer f.

Indication: Comme f est continue alors elle admet des primitives puis on primitive.

——— Équation du deuxième ordre ———

Exercice 9. Résoudre, sur \mathbb{R} , les équations différentielles suivantes

$$y'' = 0$$
 $y'' = g$
 $y'' - y = 0$ $y'' + 4y' = 0$
 $y'' + 4y = 0$
 $y'' - 4y' + 3y = 0$ $y'' - 6y' + 9y = 0$ avec $y(0) = 1$ et $y'(0) = 1$

Exercice 10. Trouver une solution particulière pour les équations différentielles suivante

$$y'' + y' + y = 3$$

 $y'' + y' + y = 2x$
 $y'' + y = x$ et $y'' + y = e^{4x}$ $puis$ $y'' + y = x + e^{4x}$
 $y'' + y = \cos(2x)$

Exercice 11. Soit f une fonctions vérifiant : $\forall x \in \mathbb{R}$, f'(x) = f(-x)

- 1. Montrer que f est solution d'une équation différentielle d'ordre 2.
- 2. Trouver f.

Exercice 12. [Correction] On suppose que la fonction y est solution de l'équation différentielle

$$\forall x > 0, \ x^2, y''(x) + 3x, y'(x) + y(x) = x^3.$$

On considère la fonction z définie par $z: t \mapsto z(t) = y(e^t)$.

On dit en langage vulgaire que l'on fait le changement de variable $x = \sin t$.

- 1. Trouver l'équation différentielle vérifiée par la fonction z
- 2. Déterminer la fonction z puis la fonction y.

Exercice 13. [Correction] On considère l'équation différentielle (E)

$$\forall x > 0, \ y'' + 3y' + 2y = \frac{x-1}{x^2}e^{-x}$$
 (E)

- 1. Résoudre l'équation homogène.
- 2. Chercher une solution particulière y_0 de la forme $y_0(x) = z(x)e^{-x}$, où z est une fonction à déterminer.
- 3. Conclure.

Exercice 14. Soit $y: x \mapsto y(x)$ une solution de l'équation différentielle (E)

$$\forall x \in]-1,1[, (1-x^2)v''-xv'+v=0$$
 (E)

On considère la fonction z par $z(t) = y(\sin t)$.

On dit en langage vulgaire que l'on fait le changement de variable $x = \sin t$.

- 1. Déterminer \mathscr{D} et \mathscr{D}' les ensembles de définition et de dérivabilité de z. Déterminer l'équation (E') vérifiée par z.
- 2. Déterminer z puis y.

Exercice 15. [Correction] Soit $f:]0, +\infty[\longrightarrow \mathbb{R}$ continue deux fois dérivables vérifiant l'équation différentielle

$$\begin{cases} f'(x) = f\left(\frac{1}{x}\right) \text{ pour tout } x > 0 \\ f(1) = 1 \end{cases}$$

- 1. Montrer que : pour tout t > 0, $t^2 f''(t) + f(t) = 0$.
- 2. On considère la fonction g définie par $g(u) = f(e^u)$.
 - (a) Déterminer l'ensemble de définition et de dérivabilité de g et montrer que g est solution d'une équation différentielle linéaire.
 - (b) Déterminer g.
- 3. Déterminer f.

Exercice 16. On cherche à déterminer les fonctions deux fois dérivables vérifiant

$$f'(x) = 2f(-x) + x$$
 pour tout $x \in \mathbb{R}$ (E)

- 1. On considère l'équation différentielle (F) y'' + 4y = 2x + 1.
 - (a) Résoudre l'équation différentielle homogène.
 - (b) Déterminer une solution particulière de la forme $y_p: x \mapsto ax + b$
 - (c) Donner les solution de (F).
- 2. Résolution de (E).

Soit f une solution de (E).

- (a) Démontrer que f est solution de (F).
- (b) Pourquoi ne peut-on pas conclure?
- (c) Démontrer que l'on a

$$\forall x \in \mathbb{R}, \ f(x) = \frac{x}{2} + \frac{1}{4} + \lambda [\cos(2x) + \sin(2x)]$$

——— Principe-Processus de Cauchy. ———

Exercice 17. On veut que : $\forall x, y \in \mathbb{R}$, $e^{x+y} = e^x + e^y$

Montrer que les fonction $f: x \longmapsto e^{x+y}$ et $g: x \longmapsto e^x e^y$ vérifie le même 'processus de Cauchy'

$$y' - y = 0$$
 et $y'(0) = e^y$

Conclure

Exercice 18. Soit les fonction $f: x \mapsto \cos(x+a)$ et $g; x \mapsto \cos(x)\cos(a) - \sin(x)\sin(a)$

- 1. Vérifier f est solution de l'équa diff y'' = -y. Calculer f(0) et f'(0).
- 2. Vérifier g est solution de l'équa diff y'' = -y. Calculer g(0) et g'(0).
- 3. En déduire (à l'aide du principe de Cauchy) que : cos(x + a) = cos(x)cos(a) sin(x)sin(a).

Exercice 19. [Correction] Soient $a \in \mathbb{R}^*$ et h une fonction de \mathbb{R} à valeurs dans \mathbb{R} continue et périodique de période T > 0 On étudie l'équation différentielle : (E) y' + ay = h(x)

- 1. Montrer que, si f est une solution sur \mathbb{R} de l'équation (E), alors la fonction $g: x \longmapsto f(x+T)$ l'est aussi.
- 2. En déduire qu'une solution f est T-périodique si et seulement si f(0) = f(T)
- 3. Écrire toutes les solutions de l'équa diff (E).

En déduire que l'équation (E) admet une unique solution T-périodique.

Correction.

Solution de l'exercice 1 (Énoncé)

1. A faire

2. On résout sur $]0,+\infty[$

$$\forall x > 0, \ 2xy' - 3y = \sqrt{x}$$
 $\iff y' - \frac{3}{2x}y = \frac{\sqrt{x}}{2x}$

Une primitive de $-\frac{3}{2x}$ est $-\frac{3}{2}\ln|x| = -\frac{3}{2}\ln x$

$$\iff \left[y' - \frac{3}{2x} y \right] e^{-\frac{3}{2} \ln x} = \frac{1}{2\sqrt{x}} e^{-\frac{3}{2} \ln x}$$

$$\iff \left[y \cdot e^{-\frac{3}{2} \ln x} \right]' = \frac{1}{2\sqrt{x}} \cdot e^{-\frac{3}{2} \ln x} = \frac{1}{2x^{-2}}$$

Ainsi il existe une constante k telle que $x^{-\frac{3}{2}}y(x) = \frac{1}{2}\frac{x^{-1}}{(-1)} + k$

Conclusion: pour
$$x > 0$$
, $y(x) = \left(-\frac{1}{2x} + k\right)x^{\frac{3}{2}} = -\frac{1}{2}\sqrt{x} + kx\sqrt{x}$

3. On résout sur]0,1[

$$\forall x \in]0,1[, \ x y'(x) + 2y(x) = \frac{1}{1 - x^2}$$

$$\iff y'(x) + \frac{2}{x}y(x) = \frac{1}{x(1 - x^2)}$$

Une primitive de $\frac{2}{x}$ est $2\ln|x| = 2\ln x$

$$\iff \left(y'(x) + \frac{2}{x}y(x)\right)e^{2\ln x} = \frac{1}{x(1-x^2)}e^{2\ln x}$$

$$\iff \left[y(x)e^{2\ln x}\right]'e^{-2\ln x} = \frac{1}{x(1-x^2)}x^2$$

$$\iff \left[y(x)e^{2\ln x}\right]' = \frac{x}{(1-x^2)} = -\frac{x}{(x^2-1)}$$

Ainsi $\forall x \in]0,1[, x^2y(x) = -\frac{1}{2}\ln|x^2 - 1| + K = -\frac{1}{2}\ln(1 - x^2) + K$

Conclusion:
$$\forall x \in]0,1[, y(x) = -\frac{1}{2} \frac{\ln(1-x^2)}{x^2} + \frac{K}{x^2}$$

4. On résout sur $]0,\pi[$

> Méthode classique.

$$\forall x \in]0, \pi[, \sin(x) y'(x) - \cos(x) y(x) = 1$$

$$\iff y'(x) - \frac{\cos x}{\sin x} y(x) = \frac{1}{\sin(x)}$$

Une primitive de $-\frac{\cos x}{\sin x} |est| - \ln|\sin(x)| = -\ln(\sin(x))$

$$\iff$$
 $\left[y'(x) - \frac{\cos x}{\sin x}y(x)\right]e^{-\ln\sin x} = \frac{1}{\sin(x)}e^{-\ln\sin x}$

$$\iff \left[y(x)e^{-\ln\sin x} \right]' = \frac{1}{\sin^2(x)}$$

Après tout ces calculs, il y a un gros problème, c'est

$$\frac{1}{\sin^2 x} \stackrel{\mathsf{Une}\ \, \mathsf{Primitive}}{\leadsto} BOF$$

Remarque : une primitive de $\frac{1}{\sin^2(x)}$ est $-\frac{\cos(x)}{\sin(x)}$ donc on peut continuer.

> Méthode astucieuse.

On a

$$\forall x \in]0, \pi[, \sin(x) y'(x) + \cos(x) y(x) = 1 \iff [\sin(x) y(x)]' = 1$$

Ainsi il existe une constante k telle que : $\sin x \cdot y = x + k$

$$\iff \forall x \in]0, \pi[, \ y(x) * = \frac{x}{\sin(x)} + \frac{k}{\sin(x)}$$

Solution de l'exercice 2 (Énoncé) On doit avoir

$$f(x) = \frac{x+A}{1+x^2} = \frac{x}{1+x^2} + \frac{A}{1+x^2}$$
Sol particulière Sol de l'eq Homogène

On commence par trouver l'équation homogène $\operatorname{Comme} \left[\frac{1}{1+x^2} \right]' = 2x \frac{-1}{(1+x^2)^2}$

Ainsi l'équation homogène est : $(1+x^2)y' + 2xy = 0$

Puis trouve le second membre pour que $\frac{x}{1+x^2}$ soit une sol particulière

On a : Second Membre =
$$(1+x^2)\left[\frac{x}{1+x^2}\right]' + 2x\frac{x}{1+x^2}$$

Solution de l'exercice 4 (Énoncé) Les fonctions f sont des solutions de l'équation différentielle y' + y = K où K est une constante, ainsi avec la théorie classique on trouve

$$\forall x \in [0,1], \quad f(x) = \lambda e^{-x} + K$$

De plus f soit effectivement une solution Ssi

$$K = f(0) + f(1) = (\lambda e^{-0} + K) + (\lambda e^{-1} + K)$$
$$\iff K = -(1 + e^{-1})\lambda$$

Conclusion : Les fonctions cherchées sont : $\forall x \in [0,1], \quad f(x) = \lambda e^{-x} - (1 + e^{-1})\lambda$

Solution de l'exercice 5 (Énoncé) On suppose que la fonction y est solution de l'équation différentielle

$$y' + y = x y^2.$$

Remarque : Il y a y^2 donc l'équation différentielle n'est pas linéaire et Donc le théories classiques ne s'appliquent pas.

1. On suppose que la fonction y ne s'annule pas sur \mathfrak{D} .

On considère la fonction z définie par $z(x) = \frac{1}{y(x)}$.

On a
$$z(x) = \frac{1}{y(x)}$$

comme la fonction y ne s'annule pas sur $\mathfrak D$

La fonction z est bien définie et ne s'annule pas sur ${\mathfrak D}$

$$\Rightarrow \text{ On a donc } y(x) = \frac{1}{z(x)} \text{ et } y'(x) = [y(x)]'$$
$$= \left[\frac{1}{z(x)}\right]'$$
$$= \frac{-z'(x)}{|z(x)|^2}$$

Conclusion :
$$y'(x) + y(x) = [y(x)]^2$$

On remplace y(x) et y'(x)

$$\implies \frac{-z'(x)}{[z(x)]^2} + \frac{1}{z(x)} = \left[\frac{1}{z(x)}\right]^2$$

$$\implies -z'(x) + z(x) = 1$$

2. l'équation différentielle vérifiée par la fonction z est classique donc Avec la théorie classique s'applique, on déterminer la fonction z puis la fonction y.

Solution de l'exercice 6 (Énoncé) Soit f une fonction C^{∞} vérifiant

$$f(x+y) = f(x) + f(y)$$
 pour tout $x \in \mathbb{R}$ et $y \in \mathbb{R}$ (E)

Pour une rédaction propre et claire, on utilisera la phrase

"J'applique l'égalié avec

1. J'applique l'égalité avec x = 0 et y = 0, ainsi

$$f(0+0) = f(0) + f(0)$$
$$\implies f(0) = 0$$

- 2. Pour la suite, on note $\alpha = f'(0)$.
 - (a) je dérive l'égalité par rapport à x

$$\frac{d}{dx} \left[f(x+y) \right] = \frac{d}{dx} \left[f(x) + f(y) \right]$$
Ainsi on a $1.f'(x+y) = f'(x) + 0$

J'applique l'égalité avec x = 0 et y = t,

ainsi on a
$$f'(t) = \alpha$$
.

(b) On a maintenant

$$f'(t) = \alpha$$

$$\implies II \text{ existe } k \text{ tel que } f(t) = \alpha t + k$$

Attention : on n'a pas trouver f mais seulement la forme "possible", CàD $f(x) = \alpha x + k$

En effet on sait que f(0) = 0 donc forcément k = 0, CàD $f(x) = \alpha x$ Enfin lorsque $f(x) = \alpha x$, on a

$$f(x + y) = \alpha (x + y)$$
 et $f(x) + f(y) = \alpha x + \alpha y$

Conclusion : les fonctions dérivable vérifiant (*E*)

Sont: $\forall t \in \mathbb{R}, f(t) = \alpha t \text{ avec } \alpha \in \mathbb{R}$

Solution de l'exercice 7 (Énoncé) Soit f une fonction C^{∞} vérifiant

$$f(x+y) = f(x) f(y)$$
 pour tout $x \in \mathbb{R}$ et $y \in \mathbb{R}$ (E)

Pour une rédaction propre et claire, on utilisera la phrase

"J'applique l'égalié avec

1. J'applique l'égalité avec x = 0 et y = 0

Ainsi on a
$$f(0) =$$

$$\Leftrightarrow f(0) - [f(0)]^2 = 0$$

$$\Leftrightarrow f(0) [1 - f(0)] = 0$$

$$\Leftrightarrow f(0) = 0 \text{ ou } f(0) = 1$$

2. On suppose que f(0) = 0.

Pour tout $x \in \mathbb{R}$

On veut montrer que
$$f(x) = 0$$

J'applique l'égalité avec x = x et y = 0

Ainsi on a
$$f(x) = f(x) \cdot f(0) = f(x) \cdot 0 = 0$$

Conclusion: la fonction est constante égale à 0.

- 3. On suppose que f(0) = 1. Et on note $\alpha = f'(0)$.
 - (a) Pour tout $y \in R$. On dérive l'égalité (E) par rapport à x

Ainsi on a
$$\frac{d}{dx}[f(x+y)] = \frac{d}{dx}[f(x)f(y)]$$

 $\implies 1f'(x+y) = f'(x)f(y)$

On a donc la nouvelle égalité $\forall x, y \in \mathbb{R}, \ f'(x+y) = f'(x) f(y)$

J'applique cette nouvelle égalité avec x = 0 et y = t

Ainsi on a
$$f'(t) = f'(0) f(t) = \alpha f(t)$$

 $\implies f'(t) - \alpha f(t) = 0$

(b) On résout l'équation différentielle $f'(t) - \alpha f(t) = 0$

On trouve que
$$\forall t \in \mathbb{R}, f(t) = Ke^{\alpha t}$$

(c) On sait que $f(0) = Ke^{\alpha 0} = 1$ donc forcément K = 1, CàD $f(x) = e^{\alpha x}$ De plus, il est facile de vérifier que

Lorsque
$$f(x) = e^{\alpha x}$$
, alors on a bien $f(x+y) = f(x).f(y)$

Conclusion: les fonctions dérivable vérifiant (*E*)

Sont : $\forall t \in \mathbb{R}, f(t) = e^{\alpha t} \text{ avec } \alpha \in \mathbb{R}$

Solution de l'exercice 12 (Énoncé) On suppose que la fonction y est solution de l'équation différentielle

$$x^{2}.y''(x) + 3x.y'(x) + y(x) = x^{3}.$$

1. L'équation est linéaire du 2-ième orcre MAIS les coefficients ne sont pas constants

Donc le théories classiques ne s'appliquent pas.

2. On considère la fonction z définie par $z(t) = y(e^t)$.

On a
$$z(t) = y(e^t)$$
.
 \Rightarrow On a donc $z'(t) = [y(e^t)]' = e^t y'(e^t)$. et $z''(t) = [y(e^t)]''$
 $= [e^t . y'(e^t)]'$
 $= e^t . y'(e^t) + e^t . e^t . y''(e^t)$
 $= e^t . y'(e^t) + e^{2t} . y''(e^t)$

On sait que $x^2 \cdot y''(x) + 3x \cdot y'(x) + y(x) = x^3$.

 \rightarrow J'applique cette égalité avec $x = e^t$, ainsi

$$(e^t)^2 \cdot y''(e^t) + 3e^t \cdot y'(e^t) + y(e^t) = (e^t)^3$$
 On a donc
$$\left[\underbrace{(e^t)^2 \cdot y''(e^t) + 3e^t \cdot y'(e^t)}_{\text{C'est }z''(t)}\right] + 2 \left[\underbrace{e^t \cdot y'(e^t)}_{\text{C'est }z'(t)}\right] + y(e^t) = e^{3t}$$

Conclusion:
$$z''(x) + 2z'(x) + z(t) = e^{3t}$$

A noter : Les calculs ci dessus sont possibles SSi on peut écrire $x = e^t$ CàD si x > 0. Donc $\mathfrak{D} =]0, +\infty[$

Remarque : l'équation différentielle vérifiée par la fonction z est classique.

Solution de l'exercice 13 (Énoncé) Correction rapide

1. L'équation caractéristique $X^2+3X+2=0$ a pour racine r=-1 et r=-2, ainsi d'après la théories des équations différentielles, il existe λ, μ tel que

$$\forall x \in]0, +\infty[, y_h(x) = \lambda e^{-x} + \mu e^{-2x}]$$

2. On cherche une solution particulière de l'équation complète de de la forme $y_D(x) = z(x) e^{-x}$.

On a
$$y_p(x) = z_p(x) e^{-x}$$

 $y'_p(x) = z'_p(x) e^{-x} - z_p(x) e^{-x}$
 $y''_p(x) = z''_p(x) e^{-x} - 2z'_p(x) e^{-x} + z_p(x) e^{-x}$

Ainsi

$$\begin{aligned} y_p'' + 3y_p' + 2y_p &= \frac{x-1}{x^2}e^{-x} \\ &\text{on replace} \\ &\iff \left[z_p''(x)\,e^{-x} - 2\,z_p'(x)\,e^{-x} + z_p(x)\,e^{-x} \right] \\ &\quad + 3\left[z_p'(x)\,e^{-x} - z_p(x)\,e^{-x} \right] + 2\left[z_p(x)\,e^{-x} \right] = \frac{x-1}{x^2}e^{-x} \\ &\text{on factorise, on regroupe et on simplifie par } e^{-x} \neq 0 \\ &\iff z_p''(x) + z_p'(x) = \frac{x-1}{x^2} \end{aligned}$$

Donc z_p^\prime est une solution d'une équation diff classique d'ordre 1 et on la résoutr avec la méthode classique

$$\begin{split} z_p'' + z_p' &= \frac{x-1}{x^2} \\ \iff \left[z_p' \, e^x \right]' &= \frac{x-1}{x^2} e^x \\ \text{Ainsi il existe } k \text{ tel que } \left[z_p' \, e^x \right] &= \frac{e^x}{x} + k \\ \text{On a donc} : \forall \, x > 0, \, \, z_p'(x) &= \frac{1}{x} + k \, e^{-x} \end{split}$$

Conclusion : $\forall x > 0$, $z_p(x) = \ln|x| - ke^{-x} + m$ est une solution particulière.

- 3. Comme l'équation différentielle est linéaire, les solutions sont la somme
 - > d'une solution particulière par exemple $y_p(x)=z_p(x)\,e^{-x}=\ln(x)\,e^{-x}$ je veux une sol part et je choisis k=m=0
 - > des solutions de l'équation homogène.

Conclusion : Les solutions y de l'équation différentielle sont de la forme $\forall x > 0, \ \gamma(x) = \ln(x) \, e^{-x} + \lambda \, e^{-x} + \mu \, e^{-2x}$ avec $k, m \in \mathbb{R}$

Solution de l'exercice 15 (Énoncé) Soit f une fonction de $]0,+\infty[$ à valeurs dans $\mathbb R$ continue deux fois dérivables vérifiant l'équation différentielle

$$\begin{cases} f'(x) = f\left(\frac{1}{x}\right) \text{ pour tout } x > 0 \\ f(1) = 1 \end{cases}$$

- 1. On sait que $f'(x) = f\left(\frac{1}{x}\right)$.
 - \rightarrow On dérive cette égalité [...]' = [...]',

Ainsi
$$f''(x) = \frac{-1}{x^2} f'\left(\frac{1}{x}\right)$$

 \rightarrow On applique $f'(\Box) = f\left(\frac{1}{\Box}\right)$ avec $\Box = \frac{1}{x}$

Ainsi
$$f'\left(\frac{1}{x}\right) = f(x)$$
, on a donc $f''(x) = \frac{-1}{x^2}f(x)$

On a bien $t^2 f''(t) + f(t) = 0$. Fini [rq les calculs sont valides sur l'intervalle]0,+ ∞ []

- 2. On considère la fonction g définie par $g(u) = f(e^u)$.
 - (a) On peut calculer le nombre g(u) Ssi $e^u \in D_f =]0, +\infty[_{Donc\ pas\ de\ problème\ car}\ e^\square>0.$

Donc g est def, C^0 et même C^{∞} sur \mathbb{R}

(b) On a $g(u) = f(e^u)$

$$\Rightarrow g'(u) = [f(e^u)]' = e^u f'(e^u) \text{ et } g''(u) = [e^u f'(e^u)]' = e^u f'(e^u) + (e^u)^2 f''(e^u)$$
On a done

$$A~g''\left(u\right)+B~g'\left(u\right)+C~g\left(u\right)=A~\left(e^{u}f'\left(e^{u}\right)+\left(e^{u}\right)^{2}f^{''}\left(e^{u}\right)\right)+B~e^{u}f'\left(e^{u}\right)+C~f\left(e^{u}\right)$$

$$= A (e^{u})^{2} f''(e^{u}) + (A+B) e^{u} f'(e^{u}) + C f(e^{u})$$

Je choisis
$$A = 1$$
 et $A + B = 0$ et $A = C$

$$= \left(e^u\right)^2 f^{''}\left(e^u\right) + \ f\left(e^u\right) = 0$$

Car c'est l'équa diff de Q1 avec $t = e^{u}$.

(c) La fonction g est solution de l'équation différentielle

$$1 g''(u) + (-1) g'(u) + 1 g(u) = 0$$

On sait la résoudre.

3. On sait que $f(e^u) = g(u)$, on applique avec $u = \ln x$ ainsi

$$f(x) = g(\ln x)$$

→ Attention : Comme la résolution est longue, on a surement fait des ⇒ donc il faut vérifier parmi les solutions trouvées, celles qui effectivement vérifient $f'(x) = f\left(\frac{1}{x}\right)$ et f(1) = 1

Solution de l'exercice 19 (Énoncé)

- 1. ok
- 2. ok
- 3. Les sol de (E) y' + ay = h(x) sont la somme

On a donc
$$\forall x \in \mathbb{R}$$
, $y(x) = f(x) + Ke^{-ax}$

La fonction y est périodique Ssi y(0) = y(T)

Ssi
$$f(0) + K = f(T) + KJe^{-aT}$$
 Ssi $T =$

Conclusion: l'équation (E) admet une unique solution T-périodique