Programme de colle de la semaine 7

du Lundi 10 Novembre au vendredi 14 Novembre.

Questions de cours.

> L'ensemble $\mathscr{P}(E)$

Définition de l'ensemble $\mathscr{P}(E)$.

Soit $E = \{1, 2, 3\}$. Donner la liste des éléments de $\mathscr{P}(E)$

Soit $E = \{1, 2, ..., n\}$. Justifier que l'ensemble $\mathcal{P}(E)$ est de cardinal 2^n

> Autour de l'injectivité.

Donner la définition de l'injectivité.

Donner la définition de la fonction f est croissante.

Démontrer qu'une fonction de \mathbb{R} à valeurs dans \mathbb{R} strictement croissante est injective.

> Un exemple "original". Plus difficile, il y a la correction en page 2

Définition de $x \in \mathbb{Q}$.

On a montrer au début de l'année que : $\sqrt{2} \notin \mathbb{Q}$.

Savez vous le démontrer? Je ne suis pas sûr qu'il faille vérifier.

Montrer que la fonction : $f:(a,b) \longmapsto a+b\sqrt{2}$ est injective de \mathbb{Z}^2 à valeurs dans \mathbb{R} .

> Propriétés de l'injectivité.

Signification de $g \circ f$

Démontrer que

$$\left. \begin{array}{c} f \text{ est inj} \\ g \text{ est inj} \end{array} \right\} \implies g \circ f \ inj \qquad et \qquad g \circ f \text{ est inj} \implies \text{f est inj} \\ \end{array}$$

> Définition de im(f) et la surjectivité.

Expliquer ce que signifie : "à valeurs dans \mathscr{A} ".

Définir l'ensemble Im(f).

Soit la fonction $f: x \longmapsto x + 1/x$

Donner le tableau de signe/variation de la fonction f et faire son graphe.

Expliquer comment on en déduit : inj, surj, bij et Im(f)

> Propriétés de la surjectivité.

Compléter et démontrer que

$$\left. \begin{array}{c} f \text{ est surj} \\ g \text{ est surj} \end{array} \right\} \implies g \circ f \text{ est surj} \qquad et \qquad g \circ f \text{ est surj} \implies \text{ g est surj}$$

> Bijection et équation. On suppose que la fonction f réalise une bijection de \mathscr{D} sur \mathscr{A}

Définition de f la fonction f est bijective.

Justifier que, pour tout $b \in \mathcal{A}$, l'équation f(X) = b admet une unique solution dans \mathcal{D}

Application 1 : Justifier que pour tout n, il existe un unique $x \in [0,1]$ tel que $x^n + x - 1 = 0$

Application 2: Justifier que pour tout n, il existe un unique $x \in \mathbb{R}_+$ tel que $x + \sin(x) = n$

> Je le fais lundi Bijection réciproque.

Définition et les exemples célèbres.

Propriété du couple bijection-bijection réciproque.

Comment calculer la bijection réciproque.

> Je le fais lundi Soit $f: \mathcal{D} \longrightarrow \mathcal{A}$ une fonction et $g: \mathcal{D} \longrightarrow \mathcal{D}$ deux fonctions

Démontrer que :

$$\left. \begin{array}{l}
g \circ f = id_{\mathscr{D}} \\
f \circ g = id_{\mathscr{A}}
\end{array} \right\} \implies \text{Alors la fonction } f \text{ est bijective} \\
\text{et } f^{-1} = g$$

Exercices.

——— Un exemple "original ———

> Définition de $x \in \mathbb{Q}$.

On a :
$$x \in \mathbb{Q} \iff$$
 On peut écrire $x = \pm \frac{a}{b}$ avec $a \in \mathbb{N}$ et $b \in \mathbb{N}^*$ \iff Il existe $(a,b) \in \mathbb{N} \times \mathbb{N}^*$ tel que $x = \pm \frac{a}{b}$

> Démonstration de : Soit $n \in \mathbb{N}$, on a alors : n^2 est pair $\implies n$ pair

On fait un RA. On suppose que : n^2 est pair et n n'est pas pair

Comme n est un entier et n n'est pas pair, donc n est impair et on peut écrire : n = 2k + 1Ainsi on $n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 1 + 2\underbrace{(2k^2 + 2k)}_{Entier}$ est impair

Conclusion : n^2 est pair et n^2 est impair OUPS

> Démonstration de $\sqrt{2} \notin \mathbb{Q}$. On fait pas un RA

On suppose que $\sqrt{2} = \frac{a}{b}$ et que a et b ne sont pas tous les deux pairs!!!!

Comme
$$\sqrt{2} = \frac{a}{b} \implies b\sqrt{2} = a \implies 2b^2 = a^2$$

Donc a^2 est pair ainsi a pair. Voir ci dessus

On a donc a = 2p avec $p \in \mathbb{N}$

Ainsi
$$2b^2 = a^2 \implies 2b^2 = (2p)^2 \implies b^2 = 2p^2$$

Donc b^2 est pair ainsi b pair.

Conclusion : a et b sont tous les deux pairs OUPS!!!!!

> Montrer que la fonction : $f:(a,b)\longmapsto a+b\sqrt{2}$ est injective de \mathbb{Z}^2 à valeurs dans \mathbb{R} .

Rappel : $(a, b) \in \mathbb{Z}^2 \iff a \in \mathbb{Z} \ et \ n \in \mathbb{Z}$

On suppose que : f(a, b) = f(a', b')

On va montrer que
$$a = a'$$
 et $b = b'$

On sait que : f(a,b) = f(a',b') signifie $a + b\sqrt{2} = a' + b'\sqrt{2}$.

On va montrer par un RA que b = b'.

On suppose que $b \neq b'$.

On a ainsi
$$a + b\sqrt{2} = a' + b'\sqrt{2} \implies \cdots \implies \sqrt{2} = \frac{a' - a}{b - b'}$$

C'est légitime car
$$b-b' \neq 0$$
 donc $\sqrt{2} = \frac{a'-a}{b-b'} \in \mathbb{Q}$ OUPS

Donc
$$b = b'$$

De plus on a maintenant $a+b\sqrt{2}=a'+b\sqrt{2} \implies a=a'+b\sqrt{2}-b\sqrt{2}=a'$

Donc
$$a = a'$$