Exercice 1. [Correction] On définit les suites (I_n) et (S_n) :

$$\forall n \in \mathbb{N}, \quad I_n = \int_0^{\frac{\pi}{4}} \tan^n(x) \ dx \quad et \quad S_n = 1 - \frac{1}{3} + \frac{1}{5} - \dots + \frac{(-1)^n}{2n+1} = \sum_{k=0}^n \frac{(-1)^k}{2k+1}$$

1. Étude de la suite (I_n)

(a) Montrer que : $\forall x \in \left[0, \frac{\pi}{4}\right], \ 0 \le \tan(x) \le \frac{4}{\pi}x$

C'est une inégalité classique de convexité, que l'on verra plus tard. Donc faites une étude fonction et pousser jusqu'à h''

(b) En déduire que : la suite (I_n) converge vers 0.

2. Étude de la suite (S_n)

(a) Trouver une primitive de $\frac{\square'}{\square}$, de $\square'\square$ et de $\square'\square^{\alpha}$.

En déduire que : $\forall k \in \mathbb{N}$, $I_{2k+2} + I_{2k} = \frac{1}{2k+1}$

(b) En déduire par un télescopage que :

$$\forall n \in \mathbb{N}, \ S_n = \frac{\pi}{4} + (-1)^n I_{2n+2}$$

(c) La suite (S_n) converge-t-elle?

Exercice Bonus

Exercice 2. [Correction] On suppose a > 0. Calculer $\cos(\arctan a)$ et $\sin(\arctan a)$