Exercice 1. [Correction] Soit
$$\tanh: x \longmapsto \frac{\sinh(x)}{\cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Montrer que la fonction \tanh réalise une bijection de $\mathbb R$ sur un intervalle à déterminer.

Déterminer sa bijection réciproque.

Exercice 2. La fonction W de Lambert

Dans tout le sujet, on note
$$f: \left| \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & xe^x \end{array} \right.$$

On admet que :
$$\lim_{x \to +\infty} f(x) = +\infty$$
 et $\lim_{x \to -\infty} f(x) = 0$

- 1. La fonction W.
 - (a) Justifier que f réalise une bijection de $[-1,+\infty[$ sur $[-e^{-1},+\infty[$.

Dans toute la suite du sujet, on note W sa bijection réciproque.

(b) Propriétés de la fonction W

Propriétés élémentaires : $W(x) = \Big| def \Big|$ et la fonction W réalise une Bij de ... sur ... et la monotonie et la parité.

Calculer W(0) et W(e).

Faire sur un même dessin les graphes des fonctions f est W.

(c) Justifier la grande propriété de la fonction ${\cal W}$

$$\operatorname{C\`aD} \, \forall \, x \in \mathtt{\`a} \ \operatorname{pr\'eciser}, \ W(x) \, e^{W(x)} = x$$

(d) Donner les ensemble $\mathscr D$ de définition/continuité et $\mathscr D'$ de dérivabilité de la fonction W

et Justifier (en utilisant Q1c) que :
$$\forall x \in \mathscr{D}'$$
 et $x \neq 0$, $W'(x) = \frac{W(x)}{x(1+W(x))}$

- (e) On va démontrer que : $\frac{W(x)}{\ln(x)} \xrightarrow[x \to \infty]{} 1$.
 - i. Justifier que pour tout $x > 0, W(x) = \ln(x) \ln(W(x))$.
 - ii. En déduire que : pour tout x > e, $0 \le \ln(W(x)) \le \ln(\ln(x))$.
 - iii. Déduire des deux question précédente un encadrement de $\frac{W(x)}{\ln(x)}$ et conclure que $\lim_{x\to +\infty} \frac{W(x)}{\ln(x)} = 1$.
- 2. La fonction V
 - (a) Montrer que f réalise une bijection de $]-\infty,-1]$ sur $[-e^{-1},0[$.

Dans toute la suite du sujet, on note ${\cal V}$ sa bijection réciproque.

(b) Propriétés de la fonction V

Propriétés élémentaires : $V(x) = \cdots$, Bij de ... sur ..., monotonie, parité.

Faire sur un même dessin les graphes des fonctions f est V.

3. Les équations $f(x) = \beta \iff x e^x = \beta$

Faites le graphe de la fonction f

Discuter selon les valeurs $\beta \in \mathbb{R}$ le nombre de solution de l'équation $f(X) = \beta$

et exprimer les solutions à l'aide des fonctions W et V

4. Application d'une autre équation

On considère a et b deux réels non nuls, et $c \in \mathbb{R}$.

On s'intéresse à l'équation $(E): ae^x + bx = c$, d'inconnue $x \in \mathbb{R}$.

Montrer que :
$$\forall x \in \mathbb{R}$$
, on a $ae^x + bx = c \iff \left(-x + \frac{c}{b}\right)e^{-x + \frac{c}{b}} = \frac{a}{b}e^{\frac{c}{b}}$.

En déduire comment on pourrait résoudre l'équation (E)

5. Application d'une autre-autre équation

Soit x > 0. Justifier qu'il existe un unique réel $z \in \mathbb{R}$ tel que $x = e^{-z}$.

En déduire, pour $\lambda \in \mathbb{R}$, comment on pourrait résoudre l'équation l'équation $\frac{x}{\ln(x)} = \lambda$, d'inconnue $x \in \mathbb{R}_+^* \setminus \{1\}$.

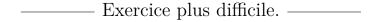
—— Bijection sans trop de calcul. ——

Exercice 3. [Correction] Soit f, g, h trois fonctions composables.

On suppose que $g \circ f$ et $h \circ g$ sont des fonctions bijectives.

- 1. Justifier sans calcul que g est bijective. On notera g^{-1} la bijection réciproque.
- 2. Exprimer f à l'aide de deux fonctions bijectives. (Rq on sait que les fonction $g \circ f$ et $h \circ g$ et g et g^{-1} sont bijectives) Ainsi f est bijective.
- 3. Montrer que h est bijective.
- 4. Généralisation : Soient $f:E\to F,\,g:F\to G$ et $h:F\to E$ trois fonctions.

On suppose que : $f \circ h \circ g$ est une fonctions surjective et que $h \circ g \circ f$ et $g \circ f \circ h$ sont des fonctions injectives. Montrer que f, g et h sont bijectives.



Exercice 4. Lire l'exo et passer si c'est trop bizarre.

On considère les opérateurs R et S, définie par pour toutes les fonctions $f: \mathbb{R} \longrightarrow \mathbb{R}$, on pose

$$> R(f) = f(x+1)$$
, CàD $R(f)$ c'est la fonction $x \longmapsto f(x+1)$.

$$> S(f) = f(x-1)$$
, CàD $S(f)$ c'est la fonction $x \longmapsto f(x-1)$.

- 1. Calculer l'image du polynôme X^2+X+1 , CàD calculer $R(X^2+X+1)$
- 2. Montrer que : $R \circ S = id$ et $S \circ R = id$

Conclusion : R réalise une bijection de sur et S est sa bij réciproque.

Exercice 5. [Correction] Soient f, g deux fonction de E à valeurs dans E.

On suppose que :

$$> f\circ g\circ f = g \quad \text{et} \quad g\circ f\circ g = f$$

- > f est injective.
- 1. Justifier que : g est injective
- 2. Montrer que : $f\circ g\circ f\circ g\circ f\circ g=f.$ En déduire que $\forall\,e\in E,\ [g\circ f\circ g\circ f\circ g](e)=e.$
- 3. En déduire que g et f sont bijectives.

Exercice 6. On considère A et B deux parties non vides d'un ensemble E.

On considère la fonction f de $\mathscr{P}(E)$ à valeurs dans $\mathscr{P}(A) \times \mathscr{P}(B)$ définie par

$$\forall X \in \mathscr{P}(E), \quad f(X) = (X \cap A, X \cap B)$$

- 1. Calculer f(E), f(A), f(B), et $f(\emptyset)$.
- 2. Montrer que f est injective si et seulement si $A \cup B = E$.
- 3. Montrer que f est surjective si et seulement si $A \cap B = \emptyset$.
- 4. Dans le cas où f est bijective, expliciter f^{-1} la bijection réciproque.