DM 11-Bonus Arithétique .

Exercice 1. CONCOURS CENTRALE-SUPELEC MP-MPI 2025 - Mathématiques 1 - 4h, calculatrices autorisées

Notations

— Siz € R, on note |x] sa partie entiére.

— Si p est un nombre premier et si n € N*, on note v,(n) la valuation p-adique de n, c'est-a-dire le plus grand entier naturel
k tel que p* divise n.

— Si x est un réel supérieur ou égal a 1, on note 7(x) le nombre de nombres premiers inférieurs ou égaux a x. En d’autres

termes,
7(z) = card({p premier, p < z}) = Z 1
p<zT
p premier
ou card(A) désigne le cardinal de I'ensemble fini A.
— En rouge, les indication que j'ai ajoutées
Le but de cette partie est d'établir I'encadrement suivant de la fonction 7 :
In(2) = x
Vz € [3, < <4
T € [3,Foc 6 In(z) m(@) < In(z)

I - Calculs préliminaires

2 1
1. Soit n € N*. Montrer que H p < < n > < 4™,

n
n+2<p<2n+1
p premier

P
Indication : Pour la minoration, on (re)-lira la démonstration de cours : Si/Lorsque p est premier alors pour tout & € {1,..,(p — 1)}, p divise (2)

H p < 4"

psn
P premier

2. Montrer que, pour tout n € N*,

On pourra procéder par récurrence et effectuer I'hérédité en discutant suivant la parité de n.

H p < 4*.

p<T
p premier

il <2”) < 4m,
2n n

5. Soit p un nombre premier. Montrer que, pour tout n € N,

vp(nl) = f HJ .

k=1 p

3. En déduire que, pour tout réel z > 1,

4. Montrer que, pour tout n € N*,

C’est le théoreme de Legendre, voir TD

2
6. En déduire que, pour tous n € N*, k € N et p nombre premier : si p* divise ( n) alors p* < 2n.
n



IT - Majoration de 7(z)

7. Soit n € N*. Justifier que

Il v 11 »
p<n Vn<p<n
p premier p premier

8. En déduire que, pour tout n € N*,
p (T =T(V)/2 g1

9. Soit n € N;n > 2. Justifier que

puis en déduire que

On pourra remarquer que 2 > In(4).

10. Soit « > 3. En utilisant la croissance de la fonction ¢ — —— sur l'intervalle [e, +00[, montrer que

In(t)

III - Minoration de m(x)

11. Soit n € N*. Montrer que

2n
< (2 7r(2n).
(%) < 20

2n1n(2) nln(2)
In(2n) > In(2n)’

12. Soit n € N*. Vérifier que

puis en déduire que

w(2n) = n

13. Soit = > 3. Montrer que

On pourra poser n = |x/2]| et utiliser 12.

L'inégalité précédente a été asymptotiquement améliorée en 1896, ainsi on admettra dans la suite du probleme le (difficile)
résultat suivant, appelé théoreme des nombres premiers,

()

T

v—too In(z)

Rapport du jury
Q1 La majoration a souvent été bien traitée.
Par contre, la minoration a posé des problémes. Beaucoup de candidats ont tenté sans succés de la montrer par récurrence. |l faut utiliser le

lemme de Gauss. A noter que les correcteurs ont vu plusieurs fois (2n)! = 2"nl.
Q2 Cette question nécessite une récurrence forte que peu de candidats ont vue.
Attention au fait qu'un produit sans facteur vaut 1 et pas 0.

Q3 Une question facile qu'il convient de ne pas négliger : bien indiquer que p étant un entier, on a: p < <= p < |z] et que la fonction
t —> 4! est croissante.

Q4 Comme pour la question Q1, la majoration est souvent bien traitée au contraire de la minoration, qui résulte d'une simple récurrence.
Q5 Cette question, assez classique, a rarement été bien traitée.
Q6 Une question rarement faite.
C'est une conséquence directe de la question précédente en utilisant le fait que |2z| —2|z| € {0,1}
Q7 Une question facile souvent faite.
Il faut bien indiquer quand méme qu’un nombre premier est supérieur a 1, sinon on ne peut conclure.
Q8 Une question trés souvent correctement faite.



Q9 La preuve de la majoration a posé souvent des problémes a cause de nombreuses erreurs de calcul. Il faut se ramener a I'étude de la
fonction e — v/t — In(t)

Q10 Beaucoup de candidats oublient de mentionner que x > 3 implique que x > |z] > e ce qui permet d'utiliser la croissance.

Q11 Question délicate qui demande d'utiliser la question Q6.

Q12 Comme pour la question Q9, beaucoup d’erreurs de calcul. Trop de candidats donnent directement 2n < 2™ sans justification.
Q13 Une question facile si on la traite avec soin. Beaucoup pensent que 2|z | = [2z|. Trop de candidats n’ont pas utilisé I'indication.



Solution de I'exercice 1 (Enoncé) I - Calculs préliminaires

1. Soit n € N*. Montrer que H p < <2n * 1) < 4",

n
n+2<p<2n+1
p premier

Majoration ?

2n+1
2 1
On sait avec le bindme que Z ( et

k >:(1+1)2n+1:2.4n
k=0
o+ 1 m+1\ = (2041
n _ n n _ 2n41
Deplus< " )(n_'_l)et;( b )(1+1)

2n+1 -1 2n+1
2n+1\ 2n+1 2n+1 2n+1 2n+1
Deplusona%( i )—k()( A >—|—( n >+<n+1>+z< k )

k=n+2

2 1
Conclusion : 2( nt ) <24"  VYes!!l
n
Minoration ?

On note A = H P

n+2<p<2n+1
p premier

2 1
On sait que A divise (2n + 1) =n!(n + 1)!( n; )

car 2n+ 1) = H

p

tout les p entre 1 3 (2n + 1)
De plus A est premier avec n! et (n + 1)!

car les facteurs premiers de n! et (n + 1)! sont < n + 1 et ceux de A sont > n + 2

2 1
Conclusion : D'aprés Gauss A divise ( n

2 1
) ainsi comme tout est positif A < ( n )

n
2. Montrer que, pour tout n € N*, H p<4".

p<n
p premier

On fait par récurrence forte : Hep> : H p<4”

ps<n

p premier
Initialisation avec n = 2

On a H p=2<4>=16

P<2
p premier

Donc H o> est vrai

Hérédité. On suppose H<1>, vy I{<»,171>7 H<n>
> Sin+ 1 est pair donc non-premier

Alors H p= H P

p<n+l1

p<n
p premier

P premier
On applique H< >

< 477, < 4n+1
> Sin+1=2a+ 1 est impair,

alors on a H p= H D H P

p<n+1 pLa+l

a+2<pL2a+1
p premier p premier

p premier

On applique H..~ et la question Q1
< 4%4°
2 20+1
<47 g4
Dans toutes les situations on a conclut donc H<p+1> est vraie Fini

Remarque : C'est une récurrence forte car dans la situation n + 1 = 2a+ 1 on a utilisé Hens et a < n



3. En déduire que, pour tout réel x > 1, H p < 4"

P
p premier

On sait que Vo > 1, on a |z] < z et z — 4" est croissante, ainsi

II »= [] p<a <o

p<z p<|z]
p premier p premier

L 4" 2
4. Montrer que, pour tout n € N, — < ( n) < 4",
2n n

Majoration ?
C'est le méme raisonnement que pour la question Q1

Minoration ?

2
On sait que le plus grand coef de la ligne 2n du triangle de Pascal, c'est ( n)
n

2n 2n n
Ainsi on a Z <2:> < Z <2:> . OUPS. On a démontré 2n4+ 7 < <27;L>

k=0 k=0
L L

R G )

Pour avoir la bonne majoration on va "ruser"
2n 9 2n—1 9
n __ n _ n
ey (V)= (F) o
k=0 k=1
2n—1 9
n
<2
<203 (%)

<2+ (2n—1) (2”)

n

Or2< <2n> pourmn > 1
n

“+oo
5. Soit p un nombre premier. Montrer que, pour tout n € N, v,(n!) = {nJ .

> Soit a,b € N*.
Justifier que : Le nombre de multiple positif de a qui sont < b est égale a |0/, |
Justifier que : Le nombre exact de multiple positif de a*(CaD multiple de a* et et pas de a*!) qui sont < b
est égale 3 |b/gk | — [b/gh+1 |
> Soit n € N et p un nombre premier.

Justifier que : le nombre de fois qu'apparait le facteur p dans n! est égale a
1 fois nombre exact de multiple positif de p
PLUS 2 fois nombre exact de multiple positif de p*
PLUS 3 fois nombre exact de multiple positif de p* etc ...

> En déduire que : le nombre de fois qu'apparait le facteur p dans n! est égale a Lb/pj + Lb/pQ 1+ Lb/p3 I+

* . . C .. 2
6. En déduire que, pour tous n € N”, k£ € N et p nombre premier : si pk divise ( n) alors p’C < 2n.
n

On sait que : si pk divise (2n) alors k < vp (<2n>> et pk < p“p((zf))
n n
On va majorer que : vp n



On a v, ((i’;)) —u, (g’g) — vy ((20)!) — 20, ()
+oo
> ([F-2[7))

De plus on sait |z] < z < |z| + 1 donc 2|z| < 2z < 2|x] + 2
Donc [2z] = 2|z] ou [22] = 2|z| + 1
On adonc0< |2z] —2|z] <1

o ((2))-£(2] = 2

=1

In(2
La somme s'arréte quand p° > (2n) <= £ < { n( n)J
Rocd
2n n
-3 (52 [7))
=1

| 2 |

< 1= In(2n) < In(2n)
— In(p) In(p)
2 2n In(2n)
Conclusion : on a p" divise ( n) — pr< p“p((n)) <p @ =exp
n
IT - Majoration de 7(z)
7. Soit n € N*. Justifier que H P> H p.
p<n Vn<p<n
p premier P premier
' ng o n < <n P
C'est "évident" car {;{’E;rﬁief} c{, bsne } ainsi

I »=| II » IT »|>2| II »

p<n 1<p<<Vn Vn<p<n Vn<p<n
D premier p premier p premier p premier

8. En déduire que, pour tout n € N*, n("(M=7(Vm)/2 - yn
On sait avec Q2 que

4> I p2 I »

p<n Vn<p<n
D premier p premier
= | I Vn
Vn<p<n
p premier

> (Vi)"Y 2 (T

9. Soit n € N, n > 2. Justifier que 7(v/n) < v/n < n

In(n)’
On a : 7(+v/n) = card({p premier, p < v/n}) = Z 1
PV
p premier
< Y 1=|val<va
1<p<v/n

Pour la deuxieme majoration,

il faut voir que pour n > 2, tout est positif donc : v/n < % < /n > In(n)
n(n

On conclut en étudiant la fonction h : t — v/t — In(t)
In(n)

n

puis en déduire que m(n) < 4




On a avec Q8
n(ﬂ(n)—W(\/ﬁ))/Q < 4"

n21n(4) n n
< 4
= () In(n) m(vn) In(n) @)+ In(n)
Conclusion : m(n) < SIS 2In(4)+1] <5 o
' In(n) = “ln(n)
t
10. Soit z > 3. En utilisant la croissance de la fonction ¢ — @ sur l'intervalle [e, +-00[, montrer que 7(z) < 41ng(cx).
Ona w(z)=n(|vz])
x
<4f(t\/§J) avecf:xr%m
< 4f (z) car f est croissante sur [e, +oo] et e < 3 < L\/ﬂ <z
III - Minoration de 7(z)
. * 2n 7(2n)
11. Soit n € N*. Montrer que < (2n) .
n
Comme (2:) est un entier qui divise (2n)! donc ces facteurs premiers sont < (2n)
2n v ()
P P n
on a donc (n) = H P
p<2n
p premier
2n
De plus avec la question Q6, on sait que p””(( ")) < 2n
2n
C . . < _ m(2n)
onclusion : on a (n) < H (2n) = (2n)
p<2n
p premier
. g 2n1n(2) nln(2)
12. t N, Vérif 1=
Soit n € érifier que n(2n) Tn2n)
On a 2nn(2) nln(2)  nln(2)
In(2n) In(2n) ~ In(2n)
__In(2")
"~ In(2n)
On vérifie facilement par récurrence que Vn > 1, (2n) < 2". De plus la fonction In est croissante,
Conclusion : on a bien : V > 1, In(2") >1
In(2n)
In(2
Puis en déduire que w(2n) > nlnrz(Qrz)
2n

477/
On sait d'aprés Q4 et Q11, que : — < (
2n n

) < (Zn)w(Qn)

4TL
Ainsi 7(2n)In(2n) > In ( — ).
insi 7(2n) In(2n) n<2n)

. . g e, 2nn(2) nln(2)
On ré-organise et on utilise I'inégalité —-1= et cela conclut.
In(2n) In(2n)

In(2
13. Soit = > 3. Montrer que 7(z) > né ) I f 3 On pourra poser n = |x/2| et utiliser 12.
n(z

On note n = |[z/2], ainsi n < % /9

w(z) = 7(2n) car la fonction 7 est croissante
In(2)
> D’apres Q12
nln(2n) aprés Q
T In(2)
> (= - =|z/2| >T/g — 1
(2 ) In(z) carn = |z/2] /2

Enfin pour > 3, (E —1) — % =



In(2
Conclusion : Pour tout > 3, on a m(z) > M r
6 In(x)




