
DM 11-Bonus Arithétique .

Exercice 1. CONCOURS CENTRALE-SUPÉLEC MP-MPI 2025 - Mathématiques 1 - 4h, calculatrices autorisées

Notations
— Si x ∈ R, on note bxc sa partie entière.
— Si p est un nombre premier et si n ∈ N?, on note vp(n) la valuation p-adique de n, c’est-à-dire le plus grand entier naturel

k tel que pk divise n.
— Si x est un réel supérieur ou égal à 1, on note π(x) le nombre de nombres premiers inférieurs ou égaux à x. En d’autres

termes,
π(x) = card({p premier, p 6 x}) =

∑
p6x

p premier

1

où card(A) désigne le cardinal de l’ensemble fini A.
— En rouge, les indication que j’ai ajoutées

Le but de cette partie est d’établir l’encadrement suivant de la fonction π :

∀x ∈ [3,+∞[ ln(2)
6

x

ln(x) 6 π(x) 6 4 x

ln(x) .

I - Calculs préliminaires

1. Soit n ∈ N∗. Montrer que
∏

n+26p62n+1
p premier

p 6

(
2n+ 1
n

)
6 4n.

Indication : Pour la minoration, on (re)-lira la démonstration de cours : Si/Lorsque p est premier alors pour tout k ∈ {1, .., (p− 1)}, p divise
(p
k

)
2. Montrer que, pour tout n ∈ N∗, ∏

p6n
p premier

p < 4n.

On pourra procéder par récurrence et effectuer l’hérédité en discutant suivant la parité de n.
3. En déduire que, pour tout réel x > 1, ∏

p6x
p premier

p < 4x.

4. Montrer que, pour tout n ∈ N∗,
4n

2n 6

(
2n
n

)
< 4n.

5. Soit p un nombre premier. Montrer que, pour tout n ∈ N,

vp(n!) =
+∞∑
k=1

⌊
n

pk

⌋
.

C’est le théorème de Legendre, voir TD

6. En déduire que, pour tous n ∈ N∗, k ∈ N et p nombre premier : si pk divise
(

2n
n

)
, alors pk 6 2n.



II - Majoration de π(x)
7. Soit n ∈ N∗. Justifier que ∏

p6n
p premier

p >
∏

√
n<p6n

p premier

p.

8. En déduire que, pour tout n ∈ N∗,
n(π(n)−π(

√
n))/2 < 4n.

9. Soit n ∈ N, n > 2. Justifier que
π(
√
n) 6

√
n <

n

ln(n) ,

puis en déduire que
π(n) 6 4 ln(n)

n
.

On pourra remarquer que 2 > ln(4).

10. Soit x > 3. En utilisant la croissance de la fonction t 7→ t

ln(t) sur l’intervalle [e,+∞[, montrer que

π(x) 6 4 x

ln(x) .

III - Minoration de π(x)
11. Soit n ∈ N∗. Montrer que (

2n
n

)
6 (2n)π(2n).

12. Soit n ∈ N∗. Vérifier que
2n ln(2)
ln(2n) − 1 >

n ln(2)
ln(2n) ,

puis en déduire que
π(2n) > n

ln(2)
ln(2n) .

13. Soit x > 3. Montrer que
π(x) > ln(2)

6
x

ln(x) .

On pourra poser n = bx/2c et utiliser 12.

L’inégalité précédente a été asymptotiquement améliorée en 1896, ainsi on admettra dans la suite du problème le (difficile)
résultat suivant, appelé théorème des nombres premiers,

π(x) ∼
x→+∞

x

ln(x) .

Rapport du jury
Q1 La majoration a souvent été bien traitée.
Par contre, la minoration a posé des problèmes. Beaucoup de candidats ont tenté sans succès de la montrer par récurrence. Il faut utiliser le
lemme de Gauss. À noter que les correcteurs ont vu plusieurs fois (2n)! = 2nn!.
Q2 Cette question nécessite une récurrence forte que peu de candidats ont vue.

Attention au fait qu’un produit sans facteur vaut 1 et pas 0.
Q3 Une question facile qu’il convient de ne pas négliger : bien indiquer que p étant un entier, on a : p 6 x ⇐⇒ p 6 bxc et que la fonction
t 7−→ 4t est croissante.
Q4 Comme pour la question Q1, la majoration est souvent bien traitée au contraire de la minoration, qui résulte d’une simple récurrence.
Q5 Cette question, assez classique, a rarement été bien traitée.
Q6 Une question rarement faite.

C’est une conséquence directe de la question précédente en utilisant le fait que b2xc − 2bxc ∈ {0, 1}
Q7 Une question facile souvent faite.

Il faut bien indiquer quand même qu’un nombre premier est supérieur à 1, sinon on ne peut conclure.
Q8 Une question très souvent correctement faite.



Q9 La preuve de la majoration a posé souvent des problèmes à cause de nombreuses erreurs de calcul. Il faut se ramener à l’étude de la
fonction e 7−→

√
t− ln(t)

Q10 Beaucoup de candidats oublient de mentionner que x > 3 implique que x > bxc > e ce qui permet d’utiliser la croissance.
Q11 Question délicate qui demande d’utiliser la question Q6.
Q12 Comme pour la question Q9, beaucoup d’erreurs de calcul. Trop de candidats donnent directement 2n 6 2n sans justification.
Q13 Une question facile si on la traite avec soin. Beaucoup pensent que 2bxc = b2xc. Trop de candidats n’ont pas utilisé l’indication.



Solution de l’exercice 1 (Énoncé) I - Calculs préliminaires

1. Soit n ∈ N∗. Montrer que
∏

n+26p62n+1
p premier

p 6

(
2n+ 1
n

)
6 4n.

Majoration ?

On sait avec le binôme que
2n+1∑
k=0

(
2n+ 1
k

)
= (1 + 1)2n+1 = 2.4n

De plus
(

2n+ 1
n

)
=
(

2n+ 1
n+ 1

)
et

2n+1∑
k=0

(
2n+ 1
k

)
= (1 + 1)2n+1

De plus on a
2n+1∑
k=0

(
2n+ 1
k

)
=

n−1∑
k=0

(
2n+ 1
k

)
+
(

2n+ 1
n

)
+
(

2n+ 1
n+ 1

)
+

2n+1∑
k=n+2

(
2n+ 1
k

)
> O + 2

(
2n+ 1
n

)
+ O

Conclusion : 2
(

2n+ 1
n

)
6 2.4n Yes ! ! !

Minoration ?
On note A =

∏
n+26p62n+1
p premier

p

On sait que A divise (2n+ 1)! = n! (n+ 1)!
(

2n+ 1
n

)
car (2n+ 1)! =

∏
tout les p entre 1 à (2n + 1)

p

De plus A est premier avec n! et (n+ 1)!
car les facteurs premiers de n! et (n+ 1)! sont 6 n+ 1 et ceux de A sont > n+ 2

Conclusion : D’après Gauss A divise
(

2n+ 1
n

)
ainsi comme tout est positif A 6

(
2n+ 1
n

)
2. Montrer que, pour tout n ∈ N∗,

∏
p6n

p premier

p < 4n.

On fait par récurrence forte : H<n> :
∏
p6n

p premier

p < 4n

Initialisation avec n = 2
On a

∏
p62

p premier

p = 2 6 42 = 16

Donc H<2> est vrai

Hérédité. On suppose H<1>, ..., H<n−1>, H<n>

> Si n+ 1 est pair donc non-premier
Alors

∏
p6n+1
p premier

p =
∏
p6n

p premier

p

On applique H<n>
6 4n 6 4n+1

> Si n+ 1 = 2α+ 1 est impair,

alors on a
∏

p6n+1
p premier

p =

 ∏
p6α+1
p premier

p


 ∏
α+26p62α+1
p premier

p


On applique H<α> et la question Q1
6 4α 4α

6 42α 6 42α+1

Dans toutes les situations on a conclut donc H<n+1> est vraie Fini
Remarque : C’est une récurrence forte car dans la situation n+ 1 = 2α+ 1 on a utilisé H<α> et α < n



3. En déduire que, pour tout réel x > 1,
∏
p6x

p premier

p < 4x.

On sait que ∀x > 1, on a bxc 6 x et x 7−→ 4x est croissante, ainsi∏
p6x

p premier

p =
∏
p6bxc
p premier

p 6 4bxc 6 4x

4. Montrer que, pour tout n ∈ N∗, 4n

2n 6

(
2n
n

)
< 4n.

Majoration ?
C’est le même raisonnement que pour la question Q1

Minoration ?

On sait que le plus grand coef de la ligne 2n du triangle de Pascal, c’est
(

2n
n

)
Ainsi on a

2n∑
k=0

(
2n
k

)
=(1+1)2n=4n

6
2n∑
k=0

(
2n
n

)
=(2n+1)(2n

n )

. OUPS. On a démontré 4n

2n+ 1 6

(
2n
n

)

Pour avoir la bonne majoration on va "ruser"

4n =
2n∑
k=0

(
2n
k

)
= 1 +

2n−1∑
k=1

(
2n
k

)
+ 1

6 2 +
2n−1∑
k=1

(
2n
n

)
6 2 + (2n− 1)

(
2n
n

)
Or 2 6

(
2n
n

)
pour n > 1

6

(
2n
n

)
+ (2n− 1)

(
2n
n

)
= (2n)

(
2n
n

)

5. Soit p un nombre premier. Montrer que, pour tout n ∈ N, vp(n!) =
+∞∑
k=1

⌊
n

pk

⌋
.

> Soit a, b ∈ N∗.
Justifier que : Le nombre de multiple positif de a qui sont 6 b est égale à bb/a c
Justifier que : Le nombre exact de multiple positif de ak(CàD multiple de ak et et pas de ak+1) qui sont 6 b

est égale à bb/ak c − bb/ak+1 c
> Soit n ∈ N∗ et p un nombre premier.

Justifier que : le nombre de fois qu’apparait le facteur p dans n! est égale à
1 fois nombre exact de multiple positif de p
PLUS 2 fois nombre exact de multiple positif de p2

PLUS 3 fois nombre exact de multiple positif de p3 etc ...
> En déduire que : le nombre de fois qu’apparait le facteur p dans n! est égale à bb/p c+ bb/p2 c+ bb/p3 c+ · · ·

6. En déduire que, pour tous n ∈ N∗, k ∈ N et p nombre premier : si pk divise
(

2n
n

)
, alors pk 6 2n.

On sait que : si pk divise
(

2n
n

)
alors k 6 vp

((
2n
n

))
et pk 6 pvp((

2n
n ))

On va majorer que : vp
((

2n
n

))



On a vp
((

2n
n

))
= vp

(
(2n)!
n!n!

)
= vp ((2n)!)− 2 vp ((n)!)

=
+∞∑
`=1

(⌊
2n
p`

⌋
− 2
⌊
n

p`

⌋)
∣∣∣∣∣∣
De plus on sait bxc 6 x < bxc+ 1 donc 2bxc 6 2x < 2bxc+ 2

Donc b2xc = 2bxc ou b2xc = 2bxc+ 1
On a donc 0 6 b2xc − 2bxc 6 1

Ainsi vp
((

2n
n

))
=

+∞∑
`=1

(⌊
2n
p`

⌋
− 2
⌊
n

p`

⌋)
La somme s’arrête quand p` > (2n) ⇐⇒ ` 6

⌊
ln(2n)
ln(p)

⌋

=

⌊
ln(2n)
ln(p)

⌋∑
`=1

(⌊
2n
p`

⌋
− 2
⌊
n

p`

⌋)

6

⌊
ln(2n)
ln(p)

⌋∑
`=1

1 =
⌊

ln(2n)
ln(p)

⌋
6

ln(2n)
ln(p)

Conclusion : on a pk divise
(

2n
n

)
⇐⇒ pk 6 pvp((

2n
n )) 6 p

ln(2n)
ln(p) = exp

(
ln(2n)
ln(p) . ln(p)

)
= 2n

II - Majoration de π(x)

7. Soit n ∈ N∗. Justifier que
∏
p6n

p premier

p >
∏

√
n<p6n
p premier

p.

C’est "évident" car
{√

n<p6n
p premier

}
⊂
{

p6n
p premier

}
, ainsi

∏
p6n

p premier

p =

 ∏
1<p66

√
n

p premier

p


 ∏
√
n<p6n
p premier

p

 > 1

 ∏
√
n<p6n
p premier

p


8. En déduire que, pour tout n ∈ N∗, n(π(n)−π(

√
n))/2 < 4n.

On sait avec Q2 que

4n >
∏
p6n

p premier

p >
∏

√
n<p6n
p premier

p

>
∏

√
n<p6n
p premier

√
n

>
(√

n
)π(n)−π(

√
n) = (n)

π(n)−π(
√
n)

2

9. Soit n ∈ N, n > 2. Justifier que π(
√
n) 6

√
n <

n

ln(n) ,

On a : π(
√
n) = card({p premier, p 6

√
n}) =

∑
p6
√
n

p premier

1

6
∑

16p6
√
n

1 =
⌊√

n
⌋
6
√
n

Pour la deuxième majoration,
il faut voir que pour n > 2, tout est positif donc :

√
n <

n

ln(n) ⇐⇒
√
n > ln(n)

On conclut en étudiant la fonction h : t 7−→
√
t− ln(t)

puis en déduire que π(n) 6 4 ln(n)
n

.



On a avec Q8

n(π(n)−π(
√
n))/2 < 4n

=⇒
(
π(n)− π(

√
n)

2

)
ln(n) < n ln(4)

=⇒ π(n) < n2 ln(4)
ln(n) + π(

√
n) 6 n

ln(n)2 ln(4) + n

ln(n)

Conclusion : π(n) < n

ln(n) [2 ln(4) + 1] 6 5 n

ln(n)

10. Soit x > 3. En utilisant la croissance de la fonction t 7→ t

ln(t) sur l’intervalle [e,+∞[, montrer que π(x) 6 4 x

ln(x) .

On a π(x) = π
(⌊√

x
⌋)

6 4f
(⌊√

x
⌋)

avec f : x 7−→ x

ln(x)
6 4f (x) car f est croissante sur [e,+∞[ et e 6 3 6

⌊√
x
⌋
6 x

III - Minoration de π(x)

11. Soit n ∈ N∗. Montrer que
(

2n
n

)
6 (2n)π(2n).

Comme
(

2n
n

)
est un entier qui divise (2n)! donc ces facteurs premiers sont 6 (2n)

on a donc
(

2n
n

)
=

∏
p62n

p premier

pvp((
2n
n ))

De plus avec la question Q6, on sait que pvp((
2n
n )) 6 2n

Conclusion : on a
(

2n
n

)
6

∏
p62n

p premier

(2n) = (2n)π(2n)

12. Soit n ∈ N∗. Vérifier que 2n ln(2)
ln(2n) − 1 >

n ln(2)
ln(2n)

On a 2n ln(2)
ln(2n) −

n ln(2)
ln(2n) = n ln(2)

ln(2n)

= ln(2n)
ln(2n)

On vérifie facilement par récurrence que ∀n > 1, (2n) 6 2n. De plus la fonction ln est croissante,

Conclusion : on a bien : ∀ > 1, ln(2n)
ln(2n) > 1

Puis en déduire que π(2n) > n
ln(2)

ln(2n) .

On sait d’après Q4 et Q11, que : 4n

2n 6

(
2n
n

)
6 (2n)π(2n)

Ainsi π(2n) ln(2n) > ln
( 4n

2n

)
.

On ré-organise et on utilise l’inégalité 2n ln(2)
ln(2n) − 1 >

n ln(2)
ln(2n) et cela conclut.

13. Soit x > 3. Montrer que π(x) > ln(2)
6

x

ln(x) . On pourra poser n = bx/2c et utiliser 12.

On note n = bx/2c, ainsi n 6 x/2
π(x) > π(2n) car la fonction π est croissante

> n
ln(2)

ln(2n) D’après Q12

>
(
x

2 − 1
) ln(2)

ln(x) car n = bx/2c > x/2 − 1

Enfin pour x > 3,
(
x

2 − 1
)
− x

6 = x

3 − 1 > 0



Conclusion : Pour tout x > 3, on a π(x) > ln(2)
6

x

ln(x) .


