
MPSI DM 12 Lundi 12 Janvier.

Exercices classiques
Exercice 1. [Correction] On considère la fonction f : x 7−→ f (x) = ex2

1. Calculer f ′(x) et f ′′(x)

2. Montrer que pour tout n ∈ N, il existe un polynôme Pn tel que ∀,x ∈ R, f (n)(x) = Pn (x) .ex2

et Pn+1 (X) en fonction en de Pn (X) .
3. Déterminer le degré de Pn = Pn (X)
4. Parité.

(a) Démontrer, par récurrence, que : ∀ n ∈ N, Pn (−X) = (−1)n
Pn (X) .

(b) Autre démonstration.
La fonction f est la fonction définie au début de l’exercice.

> Calculer f (−x) en fonction de f (x) .
> On dérive n fois cette égalité.
> Conclure.

5. Une relation de récurrence d’ordre 2.
(a) Écrire une équation différentielle linéaire d’ordre 1 vérifiée par la fonction f éviter les fractions.
(b) On dérive n fois cette égalité Calculer[ xf (x) ](n) avec Leibniz.

(c) En déduire une relation entre Pn+2, Pn+1 et Pn.

Exercice 2. [Correction] On veut résoudre dans R[X] l’équation différentielle : (x2 − 1) y′′ + 2x y′ − 6y = 0
On suppose que P est un polynôme 6= O et solution de l’équation différentielle

1. Justifier que : deg(P ) = 2
2. Déterminer les polynômes qui vérifient E.

L’exercice 1 peut être remplacer par celui-ci

Exercice 3. [Correction] Par abus de langage, dans tout le problème on confond polynôme et fonction polynôme.
On appelle f la fonction de [0,+∞ [ dans R définie par :

f(0) = 0 et ∀x ∈]0,+∞[, f(x) = e−
1/x

Quelques propriétés de la fonction f

Dans toute cette partie, n désigne un entier naturel non nul.
1. Montrer que f est de classe C∞ sur l’intervalle ]0,+∞[ et qu’il existe un polynôme Pn tel que :

∀x ∈]0,+∞[, f (n)(x) = Pn(x)
x2n

e−
1
x

et montrer que : (1) : Pn+1(X) = (1− 2nX)Pn(X) +X2P ′n(X)
2. Donner la valeur de Pn(0) et déterminer le degré de Pn

3. Vérifier que f est solution, sur l’intervalle [0,+∞[, de l’équation différentielle : x2y′ − y = 0
Puis, en utilisant la formule de Leibnitz, montrer que :

(2) : Pn+1(X) + (2nX − 1)Pn(X) + n(n− 1)X2Pn−1(X) = 0

4. Déduire des relations (1) et (2) les relations :

(3) : Pn(x) = 1− n(n− 1)
∫ x

0
Pn−1(t)dt

(4) : n(n− 1)Pn(x)− [(2n− 2)x− 1]P′n(x) + x2P′′n(x) = 0

1



Un problème plus difficile et plus originale

Exercice 4. [Correction] Les polynômes de Bernoulli

On considère la suite de polynôme définie par

B0 = 1 et ∀n > 1, B′n = nBn−1 et
∫ 1

0
Bn(t) dt = 0

Afin de mieux comprendre comment cette définition fonctionne, je calcule le polynôme B1.
Tout d’abord,

on a B′1 (X) = 1.B0 (X) = 1 =⇒
On primitive

B1 (X) = X + k où k est une constante à déterminer

On a ensuite∫ 1

0
B1 (t) dt =

∫ 1

0
(t+ k) dt =

[
t2

2 + kt

]1

0
= 1

2 + k =⇒ k = −1
2

Conclusion : B1 (X) = X − 1
2 .

1. Bien définie ?

(a) Montrer que B2 (X) = X2 −X + 1
6 .

(b) Justifier que : la démarche proposée définie de manière unique la suite de polynôme (Bn) .

Ainsi il existe une unique suite de polynôme vérifiant la récurrence et l’initialisation du début.

2. Déterminer le degré et coef dominant de Bn (X) .
3. Montrer que ∀n > 2, Bn (0) = Bn (1) .
4. On considère les polynômes Pn (X) = (−1)n

Bn (1−X).
Montrer que Pn (X) et Bn (X) vérifient la même initialisation et la même relation de récurrence.

CàD P0 = ..., P ′n = ... et
∫ 1

0
Pn(t) dt = ...

En déduire que : ∀ n ∈ N, Bn (1−X) = (−1)n
Bn (X).

5. Un jolie égalité.

(a) Montrer, par récurrence, que : ∀n > 1, Bn(X + 1)−Bn(X) = nXn−1.

(b) En déduire le calcul de
n∑

k=1
k2.

6. On va montrer que : ∀n > 1, Bn (2X) = 2n−1
[
Bn (X) +Bn

(
X + 1

2

)]
Dans ce but, on introduit le polynôme Qn (X) = Bn (2X)− 2n−1

[
Bn (X) +Bn

(
X + 1

2

)]
.

En on admet qu’un polynôme périodique est forcément constant (on démontera ceci bientôt)

(a) Vérifier Qn

(
X + 1

2

)
−Qn (X) = 0.

Conclusion : le polynôme Qn est 1/2 -périodique et donc constant
CàD il existe une constante kn ∈ R tel que Qn(X) = kn

(b) En considérant Q′n+1, montrer que Qn = O.

Remarque : On peut démontrer en suivant la même méthode une égalité encore plus générale

∀ a ∈ N∗, ∀ n ∈ N∗, Bn (aX) = an−1
a−1∑
k=0

Bn

(
X +

k

a

)



Une précision culturelle.
Les polynômes de Bernoulli Bn (X) et les nombres de Bernoulli bn = Bn (0) , ont de très nombreuses propriétés.
L’ une des plus remarquable est la formule due à Euler

+∞∑
k=1

1
k2n

= (−1)n (2π)2n

2 (2n)!b2n

> Si n = 1 alors B2 (X) = X2 −X + 1
6 =⇒ b2 = B2 (0) = 1

6 , on obtient

+∞∑
k=1

1
k2 = 1 + 1

4 + 1
9 + 1

16 + ........ = +(2π)2

2 (2)! b2 = π2

6 ≈ 1, 644 9

> Si n = 2 alors B4 (X) = X4 − 2X3 +X2 − 1
30 =⇒ b4 = B4 (0) = − 1

30 ,on obtient

+∞∑
k=1

1
k4 = 1 + 1

24 + 1
34 + 1

44 + ........ = − (2π)4

2 (4)! b4 = π4

90 ≈ 1, 082 3

> Les valeurs suivantes sont b6 = 1
42 , ..., b12 = −691

2730 = Moche !!!, ......

D’une façon générale, on sait calculer les nombres bn par récurrence
mais Il n’y a pas d’expression simple et directe pour les nombres bn



Solution de l’exercice 1 (Énoncé)
1. Calculer f ′(x) et f ′′(x)

On a : f ′ (x) = d

dx

[
ex

2
]

= 2x ex
2

ET

f ′′(x) = d

dx

[
2x ex

2
]

= 2
(

1ex
2

+ x (2x) ex
2
)

=
(
4x2 + 2

)
ex

2

2. On va démontrer par récurrence

H 〈n〉 :
∣∣∣∣il existe un polynôme Pn tel que
∀,x ∈ R, f (n)(x) = Pn (x) .ex

2

Initialisation avec n = 0
Comme ∀x, f (0)(x) = f(x) = ex

2
, P0 = 1 convient.

Ainsi H<0> est vraie
Hérédité On suppose H 〈n〉 .

On va montrer H<n+1>

On a f (n+1) (x) = d

dx

[
f (n) (x)

]′[
Pn (x) .ex

2
]′

= [Pn (x)]′ .ex
2

+ Pn (x) .
[
ex

2
]′

= ... =
[
P ′n (x) + 2xPn (x)

]
.ex

2
.

On choisit Pn+1 = Pn+1 (X) = P ′n (X) + 2XPn (X) .
Comme Pn est un polynôme, on a bien Pn+1 est un polynôme et il convient

Conclusion : H<n+1> est vraie

3. Déterminer le degré de Pn = Pn (X)
A l’aide de la question Q1, on a P0 = 1, P1 = 2X et P2 = 4X2 + 2
On fait par récurrence

H 〈n〉 : Pn (X) = 2nXn + .....

Initialisation avec n = 0
Comme P0 = 1 , ainsi H<0> est vraie

Hérédité On suppose H 〈n〉 .

On va montrer H<n+1>

On a Pn+1 (X) = P ′n (X) + 2XPn (X)

=
[
2nnXn−1 + ....

]
+ 2X [2nXn + ....]

= 2n+1 Xn+1 + .....F ini

Conclusion : H<n+1> est vraie

Conclusion : Pour tout n ∈ N, on a deg(Pn) = n et son coefficient dominant est 2n

4. Parité.

(a) Démontrer, par récurrence, que : ∀ n ∈ N, Pn (−X) = (−1)n Pn (X) .
On fait par récurrence

H 〈n〉 : Pn (−X) = (−1)n Pn (X)
Initialisation avec n = 0

Comme P0 = 1 , on a P0(X) = 1 et P0(−X) = 1
ainsi H<0> est vraie

Hérédité On suppose H 〈n〉 .

On va montrer H<n+1>, CàD Pn+1 (−X) = (−1)n+1 Pn+1 (X)

On a Pn+1 (−X) = P ′n (−X) + 2 (−X)Pn (−X)

> Pn (−X) se calcule avec H<n>
> Pour calculer P ′n (−X), on dérive Pn (−X) = (1)nPn(X)



Ainsi [Pn (−X)]′ = [(1)nPn(X)]
=⇒ 	P ′n(−X) = (1)nP ′n(X)
=⇒ P ′n(−X) = −(1)nP ′n(X)

On a donc Pn+1 (−X) = − (−1)n P ′n (X)− 2X (−1)n Pn (X)
= (−1)n+1 P ′n (X) + 2X (−1)n+1 Pn (X)
= (−1)n+1 Pn+1 (X)

Conclusion : H<n+1> est vraie

(b) Autre démonstration.

On a facilement : ∀x, f(−x) = e(−x)2
= ex

2
= f(x)

On dérive n fois cette égalité, ainsi
[
f(−x)

](n)
=
[
f(x)

](n)

On a > [ f (x) ](n) = f (n) (x)

> [ f (−x) ](n) =composée= (−1)n f (n) (−x)

car f (−x) (−1) f ′ (−x) (−1) (−1) f ′′ (−x) ... (−1)n f (n) (−x)

Conclusion : (−1)n f (n) (−x) = f (n) (x)
Conclusion : ∀x, f (n)(−x) = (−1)nf (n)(x)

=⇒ Pn(−x) ex
2

= (−1)nPn(x) ex
2

=⇒ Pn(−x) = (−1)nPn(x) Y es

5. Une relation de récurrence d’ordre 2.
(a) On a facilement f ′ (x)− 2xf ′ (x) = 0

(b) On dérive n fois cette égalité, ainsi
[
f ′(x)

](n) − 2 [x f(x)](n) = 0

> On a
[
f ′ (x)

](n) = f (n+1) (x) = Pn+1 (x) .ex
2

> [ xf (x) ](n) = ..avec Leibniz.. = xf (n) (x) + nf (n−1) (x)

(c) On remplace f (n) (x) par Pn (x) .ex
2
et on obtient

Pn+1 (X) = XPn (X) + nPn−1 (X)
Conclusion : Pn+2 (X) = XPn+1 (X) + (n+ 1)Pn (X) Yes



Solution de l’exercice 2 (Énoncé)
1. Justifier que : deg(P ) = 2

Comme P est un polynôme 6= O, on peut écrire P = a
6=0

Xα + · · · .

De plus P est solution de l’équation différentielle, ainsi (x2 − 1)P ′′ + 2xP ′ − 6P = O

Ainsi on a(
X2 − 1

)
P ′′(X) + 2XP ′(X)− 6P (X) = O

⇐⇒
(
X2 − 1

) [
aα(α− 1)Xα−2 · · ·

]
+ 2X

[
aαXα−1 · · ·

]
− 6 [aXα · · · ] = O

⇐⇒ Xα [aα(α− 1) + 2aα− 6a] + · · · = O

⇐⇒ Xαa
[
α2 + α− 6

]
+ · · · = O

Donc a
6=0

[α(α− 1) + 2α− 6] = 0

De plus avec le discriminant, on obtient que : α(α− 1) + 2α− 6 = 0 ⇐⇒ α = 2 ou α = −3
Or α est un degré donc α ∈ N

Conclusion : deg(P ) = 2

2. Déterminer les polynômes qui vérifient E.
On cherche les solution de la forme P (X) = aX2 + bX + c ∈ H. On a(

X2 − 1
)
P ′′(X) + 2XP ′(X)− 6P (X) = O

⇐⇒
(
X2 − 1

)
[2a] + 2X [2aX + b]− 6

[
aX2 + bX + c

]
= O

⇐⇒ X2 [2a+ 4a− 6a] +X [2b− 6b] + [−a− 6c] = O

Donc b = 0 et a = −6c.
Conclusion : Les solutions P polynômiale de (E) sont P = 6cX2 − c = c

(
6X2 − 1

)
avec c ∈ R



Solution de l’exercice 3 (Énoncé)
1. Classique

> Sur ]0,+∞[, la fonction est définie avec des fonctions usuelles et les opérations classiques, ainsi f est C∞ sur
]0,+∞[

> On démontrer par récurrence

H 〈n〉 :

∣∣∣∣∣∣∣
Il existe un polynôme Pn

tel que ∀x > 0, f (n) (x) = Pn (x)
x2n exp

(
− 1
x

)
A la fin de l’hérédité, on choisit Pn+1 (x) = (1− 2nx)Pn (x) + x2P ′ (x).
Comme Pn est un polynôme, on a bien Pn+1 est un polynôme.

2. Donner la valeur de Pn(0)
On applique Pn+1 (X) = (1− 2nX)Pn (X) +X2P ′ (X) avec X = 0,

ainsi Pn(0) = (1− 2 (n− 1) 0)Pn−1 (0) + 02P ′n−1 (0)
= Pn−1 (0)

Conclusion : Pn(0) = Pn−1 (0) = Pn−2 (0) = ... = P0 (0) = 1

Déterminer le degré de Pn
On fait par récurrence à partir de n = 1

H<n> : deg(Pn) = n− 1, CàD Pn = a
6=0

Xn−1 + · · ·

3. Autour des Pn.

(a) Facile.
(b) On dérive n fois l’équation différentielle,... Fini.

4. On a
Pn+1 (x) = (1− 2nx)Pn (x) + x2P ′n (x)

Pn+1 (x) = (1− 2nx)Pn (x) + n (n− 1)x2Pn−1 (x)

}
=⇒

=⇒ x2P ′n (x) = n (n− 1)x2Pn−1 (x)

Donc P ′n (x) = n (n− 1)Pn−1 (X)

On intègre cette égalité sur [0, x] ainsi ∫ x

0
P ′n (t) dt = n (n− 1)

∫ x

0
Pn−1 (t) dt

Fini car Pn (0) = 1

5. On a facilement Pn+1 (x) = (1− 2nx)Pn (x) + x2P ′n (x)

=⇒ Pn+2 (x) = (1− 2 (n+ 1)x)Pn+1 (x) + x2P ′n+1 (x)
On remplace Pn+1 (x) par son expression en Pn (x)
On remplace P ′n+1 (x) en fonction de Pn (x)

= Expression en fonction Pn (x) , P ′n (x) , P ′′n (x)

On remplace maintenant Pn+2 (x) = (1− 2 (n+ 1)x)Pn+1 (x) + (n+ 1) (n)x2Pn (x) Fini OUf 1 ! ! !



Solution de l’exercice 4 (Énoncé)

1. En suivant la méthode, on a trouve facilement B2 (X) = X2 −X + 1
6

2. Justifier que : la démarche proposée définie de manière unique la suite de polynôme (Bn) .
On va démontrer par récurrence

H 〈n〉 : |Bn est unique.

> Initialisation n=0
B0 est donné par l’énoncé donc H 〈0〉 est vraie.

> Hérédité On suppose que H 〈n〉 est vraie
D’après H<n>, on sait que Bn est unique,

CàD les coef ak tel que Bn =
∞∑
k=0

akX
k sont unique.

De plus B′n+1 = nBn donc en primitivant, on a Bn+1 = n

(
∞∑
k=0

ak
Xk+1

k + 1

)
+ k.

Reste à voir que la constante k est définie de façon unique.

On sait que 0 =
∫ 1

0
Bn+1 (t) dt =

[
ap

Xp+2

(p+ 1) (p+ 2) + ...+ a0
X2

2 + kX

]1

0

Ainsi k = −
(
ap

1
(p+ 1) (p+ 2) + ...+ a0

1
2

)
est unique ( à cause l’unicité des ak).

3. Déterminer le degré et coef dominant de Bn (X).
On démontre par récurrence H 〈n〉 : |Bn = Xn + ...

4. Montrer que ∀n > 2, Bn (0) = Bn (1) .

Soit n > 2 fixé. on a Bn (1)−Bn (0) =
∫ 1

0
B′n (t) dt

= n

∫ 1

0
Bn−1 (t) dt = 0 car n− 1 > 1

5. Montrer que : ∀ n ∈ N, Bn (1−X) = (−1)nBn (X).
On considère les polynômes Pn (X) = (−1)nBn (1−X).

On va montrer que Pn (X) vérifie la même initialisation et la même relation de récurrence que Bn
>P0 = (−1)0B0(1−X) = 1 = B0

>P ′n = [(−1)nBn(1− x)]′ = (−1)n 	B′n(1− x)
= (−1)n+1B′n(�) avec � = 1−X
= (−1)n+1nBn−1(�)
= n(−1)n+1Bn−1(1−X)
= nPn−1 car (−1)n+1 = (−1)n−1

>
∫ 1

0
Pn(t) dt = (−1)n

∫ 1

0
Bn(1− t) dt =On fait le changement de variable u = 1− t

Conclusion : même initialisation et même récurrence et unicité (voir Q2)
donc ∀ n ∈ N, Bn (1−X) = (−1)nBn (X)

6. Un jolie formule.
(a) Montrer, par récurrence, que : ∀n > 1, Bn(X + 1)−Bn(X) = nXn−1.

On démontre par récurrence H 〈n〉 :
∣∣Bn (X + 1)−Bn (X) = nXn−1

Initialisation n=1
On a B1 (X + 1)−B1 (X) =

(
X + 1− 1

2

)
−
(
X − 1

2

)
= 1 = 1.X0

Donc H 〈1〉 est vraie.
Hérédité On suppose H 〈n〉

On a [Bn (X + 1)−Bn (X)]′ = nBn−1 (X + 1)− nBn−1 (X)
On applique H 〈n〉
= n (n− 1)Xn−2

On primitive ainsi Bn (X + 1)−Bn (X) = nXn−1 + k

On évalue l’égalité en 0 ainsi k = 0 d’où le résultat.



(b) On vient de voir que k2 = B3 (k + 1)−Bn (k)
3 ainsi

n∑
k=1

k2 =
n∑
k=1

(
B3 (k + 1)−Bn (k)

3

)
Télescopage

= 1
3 [B3 (n+ 1)−Bn (1)]

7. On va démontrer que
∀n > 1, Bn (2X) = 2n−1

[
Bn (X) +Bn

(
X + 1

2

)]
Dans ce but, on introduit le polynôme Qn (X) = Bn (2X)− 2n−1

[
Bn (X) +Bn

(
X + 1

2

)]
.

(a) On trouve Qn
(
X + 1

2

)
−Qn (X) = 0

(b) Ainsi Qn est périodique donc constant, i.e. Qn = k̂n

— On a facilement Q′n = nQn−1.

— On fait un R.A. Si Qn = k̂n 6= 0. On a ainsi

Q′n+1 = (n+ 1) kn =⇒ Qn+1 = (n+ 1) knX + α

Donc Qn+1 n’est pas constant. Absurde.

(c) On procède exactement de même avec

Qn (X) = Bn (mX)−mn−1
m−1∑
k=0

Bn

(
X + k

m

)
et considérer Qn

(
X + 1

m

)
−Qn (X) .


