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1 Famille libre, famille liée.

Définition 1. Libre-Lié
Soit E un R-espace vectoriel et i, v, W, U1, U, ..., Ui, des vecteurs de E.
Famille libre.

On dit que la famille (%, v, w) est libre
SSiVa,ﬁ,YER, — — — -
[au+ﬁv+yv =0 = a:ﬁ:y:()]
Généralisation : On dit que la famille (i1, U3, ..., Uy,) est libre Ssi
[11m+1252’+...+/1nu—;,:_o’ — 11:12:...:1,1:0]

Meéthodologie : La famille (u, v, w) est libre

—

Ssil’équation a @ + BV +y W = 0 admet une unique solution @ = f=y =0

Famille liée.

On dit que la famille (%, 7, w) est liée Ssi elle n’est pas libre,
Ssiil existe @, B,y €R, nontousnuitel que: @ i + BV +yw = 0
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Théoréme 2. Libre/Liée et CL
Lié et CL
> La famille (u, vV, W) est liée
Ssi on peut compléter les "pointillés" ....... U+, Ut W=0

. —_— — —> .,
> La famille (u, v, w) estliée
Ssi un des vecteurs U, v ou w est CL des autres

Libre et CL Soit E un R-espace vectoriel et u1, uz,..., u; des vecteurs de E.
> Quand une famille est libre alors on peut identifier les scalaires, CaD

n —_ n —
Y arup=)_ Pl
k=1 k=1 = Vke{l,2,..,n}, ar =P

la famille (u3, Uz, ..., ) est libre

> Quand une famille est liée, c’est faux
1 0 1 1 0 1
1o J1{V)o( 3 )=0 o J=o( 3 )+1( 1)

n n
Onsuppose que Y ay g = Y Py Uy et quela famille (u1, u3, ..., up) estlibre
k=1 k=1

+1

Démonstration :

Onvamontrer que: V ke ({l,2,.,n}, ay =Py

Ona Zzzlakfk zzzzlﬁkfk

= Y@ -Brug=0

n —
Ainsi ) (ag —Py) ux = 0 ETlafamille est libre
k=1
donconaVvke({l,2,.,n}, ap—Pr=0 < aj=P.

2/23
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2 Théoremes qui concluent : libre ou liée

2.1 Sansrien faire.

Théoréme 3.
Une famille qui contient le vecteur nul est forcément liée.

Démonstration : On considere la famille (i3, 43, ..., iy, 0).
ona

Donc la famille est liée.

Définition 4. Non-colinéaire
Soit E un R-espace vectoriel et 1/, v deux vecteurs de E.

>On dit que U est proportionnel 8 7

Ssiilexiste A e Rtelque u = AV

> On dit que 7 et v sont colinéaires (notée //) a
Ssi u est proportionnela 7 OU 7 est proportionnel a u

Théoreme.
Deux vecteurs non nuls et non colinéaires sont libres.

Définition 5. Famille en escalier
Soit #, U, W,.... des vecteurs dans R” ou .4, | (R).

On dit que la famille 7, 7, 0, ... est en escalier Ssi chaque vecteur est # 0 et chaque vecteur plus "court”
que le précédent.

Théoreme.
Une famille en escalier est libre.

Exemples : les familles suivantes sont en escalier

1 0 0 1 2 2
; Z g 2 0 0 2 -2 0
S ) . , 5 1 'l 2 I'l o 1 'l o I'l o
3 -2 2 3 0 0

2.2 Avecle Déterminant.

Théoréeme 6.
det(famille) #0 < la famille est libre

det(famille) =0 <> la famille est liée

2.3 Avecledegré2a?2 #.

Théoréme 7. Polyndme de degré 2 a 2 différents
Soit (Py, Py, ..., Pp) une famille de polynéme avec des degrés 2 a 2 différents,

Alors la famille (Py, Py, ..., P;;) est libre.

Situation classique : SiVke{0,1,2,..,n}, degPy=k
alors la famille est libre.

Généralisation : Silesordresde grandeurssont2a2 #,....
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3 Famille génératrice.

Définition 8. Famille génératrice
Soit E un R-espace vectoriel et F un sous-espace vectoriel de E.

Soit (14, U, ..., i) une famille de vecteur de E.
On dit que la famille (7, e3, .., ;) est une famille génératrice de F Ssi

F =vect(e],e3,...,en)

Théoréme 9. Opérations complémentaires sur les vect(....)

Soit E un R-espace vectoriel et U, V,w, A des vecteurs de E.

> Le CL n'augmente pas le vect.

R } = H=vect(u,v,w)

> Le vect(...) n’est pas modifié par pivot

. —_ - — . e
On modifie u, v, w avec le pivot A,

4 Base, Coordonnées, Vecteur des coordonnées.

Définition 10. Base

Soit E un R-espace vectoriel et (e1,..., en) une famille génératrice de E

On dit que la famille (e, ..., e,) est une base de E
Ssila famille est libre et génératrice de E.

Les bases et dimensions classiques qu’il faut connaitre.
11 faut connaitre

e
1

> ( ,7, 76)) est la base classique de R® > (X% x1, ..., X" estlabase classique de R, [X].

Iciona 1 =(1,0,0), J =(0,1,0) et k = (0,0,1). .
aone ! ¢ (X9, x1,..., x84 x2020) ) estlabase classique de R[X].

> (E{, E,E;;) est la base classique de .#3,; (R)
1y . 0
0 )”"2( 0

> (E11, E21, E12, E2») estla base de .45 (R)

1 0 0o 0
Ol\aE“:( 0 0 )’E21=( 1 0 ).

Ainsi dim(#>(R)) = cardinale(Base) = 4

Ainsi dim(R, [X]) = cardinale(Base) = n+1

(0
otF3= (1] ) Ainsi dim(R[X]) = cardinale(Base) = co

OnaE_'{:
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Théoréeme 11. Coordonnées et matrice des coordonnées

UEeE
= ilexisteuy,..., Uy
B =(e1,ey,..,en) est une base de E telsquet = uy ey +---+uyey,
et de plus les scalaires sont uniques.

Vocabulaire : Les scalaires u1, ..., u,, sont les coordonnées du vecteur U aumsibase 2.

Matrice colonne des coordonnées

U —e
— 2% e
. z -
La matrice colonne des coordonnées U = # aty (u) =
Up —eén

Démonstration : On va faire Les scalaires sont uniques puis ils existent

Onsuppose que U = uj ]+ +Upen et U = uj ]+ + Uy en

On va montrer que uj = u’l, up = ué,

On sait que
— — — = ) —
U=ujer+--+upep=uje;+---+uyey
! !
= U] = Uy, U2 = Uy, ....
gy = = — .
la famille (e1, ez, ..., en) est libre

Comme (e7,e3,..., ep,) est une base, la famille est donc génératrice de E, CaD E = vect(eq, e3,..., en), ainsi on a

(u)eE
= ilexisteuy,..., U
E = vect(e, e3,...,en) tels que U = uy €1 +--+ up e

Théoréme 12. Formulaire sur les matrices de coordonnées
Soit E un R-espace vectoriel et 4 une base de E.

. — — _— — —_— —> —_— .
Soit uy, uy, ..., uy, v des vecteurs de E et Uy, Uy, ..., Uy, V leur matrice colonne.

Ona
> La matricede 27 —37, cest2U —3V.
> (uq, Uy, ..., Uy) estlibre esp. base) Ssi (U7, Ua, ..., Uy) est libre (resp. base)
Démonstration : Ona2u —37 =2(uje] +---+ unen) —3(v1e1 +---+ vpep) = L.]e1 +---+ [..]en.

Donc on a la matrice de 27 — 37, C’est bien 20U —3V.

—

Comme le coordonnées des vecteurs sont uniques,ona i = 0 < U =0
Ainsi A+ +Apliy =0 &= AU +-+A,U, =0.
— —

On en déduit le deuxiéme point avec = et <= .

u U
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5 Lalgorithme de Gauss et rang d'une famille.

Définition 13. Les transformations de Gauss
Soit E un R-espace vectoriel et (ej, ..., &) une famille de E.

Transformation n°1 : Dilatation par des scalaires a; # 0

(e1,ez2...,ep) ~~ (a1 e1,aze...,anep)

Transformation n°2 : On échange de deux vecteurs

— — — —
(cor €1y ey €]y 00) oo (s €y ey €4500)

Transformation n°3 : On choisit un pivot et avec ce pivot,
Avec ce pivot, on modifie les autres vecteurs.

Théoréme 14. Lalgorithme de Gauss
Par une succession de transformation de Gauss,

on peut transformer une famille en une famille en escalier
avec souvent a la fin des vecteurs nuls
Alissue de I'algorithme de Gauss, on peut conclure
> On peut savoir si la famille est libre ou liée.
> On n’a pas changgé le vect.

> On obtient une base du vect compléter par des vecteurs nuls.

Démonstration : Pour chaque transformation de Gauss, on a (e, ;..., en) ~ (e}, €)..., €},)
On démontre pour chaque transformation avec = et <= oucet> que

> (e1,e...,ep) estlibre < (e’l,eé...,e;l) est libre.

> vect(e],e3...,en) = vect(e), ey... ey)

Ala fin, on a une base du vect car on n’a pas changé le vect donc la famille est génératrice et comme elle est en escalier elle est libre.

Exemple
1) (4)(5) w1\ 0\ 0 4 1 0
s Cs-413 G
2 |5 || 6 [ 2925 2 || 23 || 24 |35 2 || =3
3 6 7 3 -6 -8 3 -6
L JL IL ] L IL ]
T = =
Suite a I'algorithme de Gauss, on peut conclure
>Comme ala fin w' = 0, la famille initiale (7, 7, ) est liée.
1 4 5 0
Eneffet,ona .L| 2 |+74 5 |+.3.] 6 |=]| 0
3 6 7 0
> On n'a pas changé le vect, donc vect(, ¥, W) = vect(u', v, w') = vect(u', V', 0)
— — 0
Etsurtout (i, ', B0 =| 2 |,| -3 |estunebasede H = vect(@, 7, @)
3 )

Conclusion: H est dirigé par 2 vecteurs non // donc H est un plan vectoriel.

6/23
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Définition 15. Rang d’'une famille de vecteur

Le rang de la famille ¥, 7, w, ... est, noté rg (u, v, w,...),
égale au nombre de vecteur non-nul qu'il reste a Uissu d’'un algorithme de Gauss.

Théoreme.
—_ - — . . —_ = —
rg(u,v,w,...) = dimension du ssev vect (U, v, w,...)

6 Dimension d’un espace vectoriel.

6.1 Toutes les Bases ont le méme cardinal.

Théoréme 16. Trop nombreux — lié

> 2 vecteurs sur une méme droite vectorielle sont proportionnelles donc liés.

> 3 vecteurs dans un méme plan vectoriel sont liés (faites un dessin, c’est évident).

Dans un espace engendré par n vecteurs,

une famille de n + 1 vecteurs est liée.

Démonstration : Le résultat se démontre par récurrence sur n le nombre de vecteur.
1l est clair que si 2 vecteurs sont dans vect(a) alors ils sont colinéaires et donc liés; ainsi l'initialisation est faite.
On fait I'hérédité. On suppose que (¥1,..., yn+2) sont dans vect(ey, ..., en+1)-

Ainsi yj = ajy e1+...+aj p+1 €ntl

Si }7{ = 6, la famille est liée et c’est fini.
Siy1 # 0 alors une des coordonnées est # 0 par exemple ayp # 0. Suivant I'idée de Gauss, on modifie V2, .. Yn+2 €t on considére
= - Gig—  — —_ . —
Viei2,3,.,(n+2)}, yi=yi—- —Lyl =..e] +..+0ep+..ens1
alp

A cause de '’hypothese de récurrence, on sait que la famille (y;)gsismg est liée ainsi il y a une CL = 0 qui permet de construire pour les
()7{, .. Yn+2) une CL = 0. 1a famille est donc liée.

Théoréme 17. Cardinal des Bases
Soit E un R-espace vectoriel.

On suppose que & = (e1, ..., e,) et € = (e, ..., e;?) sont deux bases de E.

Alors  card($B)=n=p=card(¥)

Démonstration : On démontre avec un RA que n < p.
On suppose que 1> p.
> On sait que % est une base de E, donc elle engendre (dirige) E.

> Comme 7 > p, on a une famille % = (ej,..., ;) qui contient "trop" de vecteurs dans un espace vectoriel engendré par p vecteurs
donc elle est liée.

> Or 4 est une base donc elle est libre.
Conclusion : La famille 4 est est libre et liée. OUPS

On démontre de méme que p < n.
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6.2 Dimension d'un espace vectoriel.

Définition 18. Dimension d’un ev, d’un ssev

On vient de justifier que toute les bases d'un espace vectoriel E ont le méme cardinal.

Par définition, c’est la dimension de E.

d
dim(E) éf Cardinal d’'une base
Attention : dim(E) = Cardinal de n'importe laquelle des bases de E.
Cette définition s’utilise dans les 2 sens, CaD
> Si on a trouvé une base de E alors on peut conclure que dim(E) = ...

> Si on sait que dim(E) = n,
alors les bases de E sont de cardinal exactement 7 (pas plus, pas moins).

Les dimensions classiques qu’il faut connaitre.
> Comme (T, 7) est une base de R?, on a dim(R?) = 2.
> Comme (7,7, 76)) est une base de [Rs, ona dim([RZ) =3.
> Comme (ej, ..., &,,) est une base de R”, on a dim(R") = n.

> Comme ((M;, ;) ,) estune base de .4, (R), on a dim (., (R)) = n?.

1<i,j<
> Comme (X, X, ..., X") est une base de R,[X],onadim(R,[X]) =n+1.

> Comme (XO,X,...,X",...) est une base de R[X], on a dim(R[X]) = co.

8/23
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7 Théoremes de la Base incomplete et Base extraite.

Théoréme 19. Fabriquer des Bases
Soit E un R-espace vectoriel.
. —_ —_ . 2 P . —_ _— . .
Soit (ey, ..., ) une famille génératrice de E et (y, ..., ;) est une famille libre.
Le théoreme de la base incomplete.
Toute famille libre d'un espace vectoriel E se compléte en une base.
Plus précisément on peut compléter la famille (37, ..., y7) avec des vecteurs choisis parmi les (e;)

et ainsi d’obtenir une base E.

CaD

Le théoréme de la base extraite.
De toute famille génératrice, on peut extraire une base.

Démonstration :
Démonstration du théoreme de la base incompléte.

On considére tOULES les familles liDTes fabriquées a partir de (77, ..., 77) et aumentées avec des vecteurs choisis dans (2, ..., &)
elles sont toutes de cardinal < n+r.

Cet ensemble n'est pas vide car la famille (371, ..., y7) étant libre, elle est dans I'ensemble. Ainsi cet ensemble est non vide et constitué
d’'un nombre fini de famille. Donc il y en a une qui a un cardinal maximal.

On va montrer que la famille libres de cardinal maximal, noté %, est une base.

La famille 4 est libre par construction.
On va montrer qu’elle est génératrice, CaD que E = vect(A).

> Linclusion est o est facile, avec la grande propriété des vect

> Pour l'inclusion est <. On utilise E = vect(ey, ..., &5), la grande propriété des vect et aussi le fait que 2 est la famille cardinal
maximal (ainsi 2 U ey est forcément liée et Z est libre donc ey = CL sur les vecteurs de ).

Démonstration du théoreme de la base extraite.
On applique le théoréme avec a la place de ()7{, - _)7;), une famille vide

Théoréme 20. Formulaire sur les dimensions.

card(Libre) < card(Base) < card(Génératrice)
1
dim(E)

Etaussi: card(Base) s < card(Génératrice et Liée)
trict

Démonstration : Une famille libre se compléte en une base et en la complétant son cardinal augmente
donc card(Libre) < card(Base).

De méme le théoreme de la bas extraite permet de conclure que : card(Base) < card(Géné)
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8 Avecles Dimension (Thm niveau 2).

8.1 Libre + cardinal.
Théoreme 21.
Soit E un R-espace vectoriel avec dim(E) = n.

Soit % une famille de vecteur de E.
Ona 2 est une famille libre de E
— A estunebasedeE

card(#) =dim(E) = n<oo
Attention : Le théoréme est faux si card (%) = dim(E) = oco.

11y aussi mais c’est moins utile
B est une famille génératrice
} = 2B est une base de E
card(%B) =n<oo

Démonstration : Une famille libre se compléte en une base et en la complétant son cardinal augmente
donc card(Libre) < card(Base).

De méme le théoréme de la bas extraite permet de conclure que : card(Base) < card(Géné)

Démonstration : Deux considérations préalable.
> Une famille libre se compléte en une base et en la complétant son cardinal augmente et donc card(Libre) < card(Base).

> De plus si la famille libre n’est pas une base alors I'inégalité est stricte .
On faitun RA: Si card(Libre) = n et la famille libre n’est pas une base alors avec le théoreme de la base incomplete, on obtient une base avec
un cardinal > n = dim E Absude!!

8.2 Inclusion et dimension.

Théoréme 22.
Soit E un R-espace vectoriel et F, G deux sous espaces vectoriels de E.

Alors Fc G = dim(F) < dim(G).

Application : comme dim(R®) = 3, les ssev de R® sont de dimension 0, 1, 2 ou 3.

Démonstration : Une base %F de F est une famille libre de E et

ainsi dimF = card(PBr) = card(Libreg) < card(baseg) = dim E

Théoréme 23.
Soit E un R-espace vectoriel et F, G deux sous espaces vectoriels.

Attention : dim F = dim G>===<F = G, par contre

FcG
= F=G
dim(F) = dim(G) < oo

Attention : Le théoreme est faux si dim(F) = dim(G) = oo.

Applications :
Si F est un ssev de R® de dimension 3 alors F = R3.

Si F est un ssev de dimension 0 alors F = {6}.

Démonstration : Comme F c G, une base Zr de F est une famille libre de G.
De plus card(%r) = dim F = dim G, ainsi
PBr est une famille libre de G

= A est une base de G
card(Bg) =dimG < co

Conclusion : F = vect(Br) =G.
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9 Exemples de calculs de dimension.

Théoreme 24. EDI,
Soit E 'ensemble des solutions de I'équation différentielle linéaire homogene d’ordre 1.

Yy +1y=0avecteR.

Alors E est un sous-espace vectoriel de # ® R de dimension 1.
Démonstration :
Onsaitque y est unesolutionde(E) < y +1y=0
<« 3, VIeR, y(H)=Aexp(— /1)
<> [yl = Alexp(—t/7)]

Comme les scalaires sont qcq et indépendants
Ainsi E = vect [exp (~1/7)]

Conclusion : E est un vect(...) donc c’est ssev. De plus il est engendré par un vecteur non nul, donc dim(E) = 1.

Théoreme 25. EDL,
Soit E 'ensemble des solutions de I'équation différentielle linéaire homogene d’ordre 2 a coeffi-
cients constants.

ay" +by' +cy=0avec(a,b,c) eR* xRxR.

Alors E est un sous-espace vectoriel de. #® R de dimension 2.
Démonstration : Je fais la démonstrations dans la situation o le discriminant de I'équation caractéristique est # 0.
On sait que y est une solutionde (E) < ay" +by +cy=0=0
< I, YxeR, y(x) = dexp(rx) +uexp(r'x)
< [yl = Alexp(rx)] + ulexp(r' x)]

Comme les scalaires sont qcq et indépendants
Ainsi E = vect ([exp(rx)], [exp(r' x)])

Conclusion : E est un vect(...) donc c’est ssev. De plus il est engendré par 2 vecteurs non nuls et non //, donc dim(E) = 2.

Théoréme 26. Suite d’ordre 2 classique
Soit E I'ensemble des suites vérifiant une relation de récurrence linéaire homogene d’ordre
2 a coefficients constants.

VYneN, aupeo+buyey +cu, =0 avec (a,b,c) e R* xR xR.

Alors E est un sous-espace vectoriel der" de dimension 2.
Démonstration : Je fais la démonstrations dans la situation ot1 le discriminant de I’équation caractéristique vaut 0.
On sait que (up)pen est une solutionde (E) <= VneN, aupi2+bupyy1+cupy=0
< A u, VneN, up=Ar""+punr”
= (Un)pen =A™ +p(nr™

Comme les scalaires sont qcq et indépendants
Ainsi E = vect ((r"), (nr'™))

Conclusion : E est un vect(...) donc c’est ssev. De plus il est engendré par 2 vecteurs non nuls et non //, donc dim(E) = 2.

11/23
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10 Exercices

Petite Dimension

Exercice 1. [Correction]
1. Discuter selon les parametres u, v € R, si la famille

_a) = (u»zyo)r 77) = (U)O)_l)’

T =(0,2u,v)

est libre ou liée et quand elle est liée, expliciter une CL nulle.

2. Déterminer, dans les différentes situations, dim[vect(?i, b, ).

. . 1 3
Exercice 2. [Correction] Soit Az( 2 1 )

1. Montrer que la famille (I, A, AZ) lie.
Déterminer dimvect (I, A, Az).
2. Soit neN. Déterminer dimvect (I, A, A?,..., A").

Exercice 3. [Correction] On considére les polyndmes

Pi=X-2)(X-3) P,=X-1DX-3)

P3=(X-DX-2)

1. Montrer la famille & = (P;, P,, P3) est libre puis que c'est une base de R, [X].

2. Expliciter les coordonnées de [X°] dans la base %.

Exercice 4.
1. Montrer que la famille ( [1],[cos(x)], [cos(2x)] ) est libre.
2. Montrer que la famille ( [1 1, [cos(x)], [cos?(x)] ) est libre.
I

3. Montrer que la famille ( [1], [cos(x)], cos(2x)],[cosz(x)] ) est liée.

Exercice 5. la famille ([ll,id,c_oé,arctan) est-elle libre ou liée?

Exercice 6.
1. Soit H={M € 4,(R), tel que tr(M) =0}.
Montrer que H est un ssev et déterminer une base de H.
2. Soit G={Me 43®), tel que M" = M}.

Montrer que G est un ssev et déterminer une base de H.

Exercice 7. [Correction]
1. Soit H={PeRs[X], tel que 3P =(X+1)P'}.
Montrer que H est un ssev et déterminer une base de H.
2. Soit G={PeRy[X], tel que P(1) = P(2) = 0}.

Montrer que G est un ssev et déterminer une base de H.

. . . 3 1
Exercice 8. [Correction] Soit A la matrice ( 7 1 )

On note H |'ensemble des matrices qui commutent avec A.
1. Traduire M € H. Calculer AM et MA.

. Montrer que H est un ssev de M, (R) et déterminer une base de H.

2
3. Montrer que (I, A) est une autre base de H.
4. En déduire que A% et A7 sont des CL sur (I, A).

13723
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Grande Dimension

Exercice 9. [Correction]
1. On consideére les fonctions Vx € R, fi(x)= ek avec ke {0,1,2,...,n}
Montrer que la famille £ = (fy, f1, f2,-.-» fn) est une famille libre.

2. On considére les polyndmes P; = Xi(X— 1)”_i aveci€10,1,2,...,n}
Montrer que la famille & = (Py, P, Ps, ..., Py) est une base de R,[X].

3. Montrer que la famille ([1], [sin(X)], [sin®(X)], .., [sin” (X)]) est libre.

Exercice 10. [Correction] Déterminer une base et la dimension de

H={u=(x, -, xn) €ER" tel que x; +2x2+--+nx, =0}

Exercice 11. [Correction]
1. Quels est la dimension de ., (R) ?

2. Soit A€ .4,(R) une matrice carrée.

. . 2 .7
Pourquoi la famille (In,A,AZ,...,A” ) est-elle liée. Que peut-on conclure?

Exercice 12. [Correction] On considére les polynémes
n+1
Li=][XxX-k  aveci€{0,1,2,..,n}
k=1
k#i
1. Explicité Ly et L;.
2. Soit i €{0,1,2,...,n}.
Déterminer le degré de L;.
Peut-on en déduire que la famille & = (Lo, L1, Ly, ..., L) est une base de R, [X].
3. Montrer 4 = (Ly,L1,Ls,...,Ly,) est une base de R, [X].

4. Expliciter les coordonnées de [1] dans la base . Généraliser pour P qcq dans R, [X].

Exercice 13. [Correction] Soit n e N*
1. Quels est la dimension de R, [X]?

2. Soit P un polynéme de degré n.
Soit k € Z. Déterminer le degré de P(X + k)

Justifier que la famille |P(X), P(X+1), P(X+2),---, P(X+n),P(X+n+1)| est liée.

Exercice 14. On considére
C, ={1,cos(X),cos(2X),...,cos(nX)} et F,, = vect(Cy)
¢,= {l,cos(X),cosz(X),...,cos"(X)} et §,=vect(C,)

1. Base et dimension de §;,.
Montrer que €,, est une base de §,. Que peut-on conclure?
2. Base et dimension de F;,.

2n
(a) Discuter selon p,q=0 la valeur de I, 4 =f cosptcosqtdt
0

(b) Montrer que C, est une base de Fj,. Que peut-on conclure?
3. Montrer que F,, = §,, puis que F,, =8,
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Correction.

Solution de I'exercice 1 (Enoncé)

—

1. Onadet(@,b,C)=.=2u—202

> Lorsque det(...)=0 < u=v ou u=-v la famille est liée.
> Lorsque det(...) #0 < u#v ou u#—v la famille est libre.

—

2. On note H= vect(?i,z, c).

> Lorsque det(.)#0 < u#v ou u#—v.

La famille (Z,Z,?) est libre et génératrice de H donc c'est une base de H
Ainsi dim(H) = cardinal(Base) = 3.

> Lorsque det(..)=0 < u=v ou u=-v

La famille (71’,7;,_5) est liée et génératrice de H donc dim(H)<3-1=2.

De plus, (E,E) est une famille de H libre car #0 et non// Donc dim(H) =2

Conclusion : dim(H) =2 et la famille (7,3) est une base de H.

Solution de I'exercice 2 (Enoncé)

a*+bc ac+cd )

1. On a facilement A —( ba+db be+d?

On compléte

Ag_(a2+hc ac+cd)_ (a c
“\ ba+db bc+d* | T b d

Ainsi la famille est liée.
2. On note H= yect(lg, A, Az). On a

> H est dirigée par une famille liée de 3 vecteurs
Donc dim(H)<3-1=2

> Comme (Iz, A) est une famille de H libre car #0 et non//
Donc dim(H) =2
Conclusion : dim(H) =2 et la famille (I, A) est une base de H.



Chapitre 19-2 : Espace Vectoriel : base, dimension (Season two).

Solution de I'exercice 3 (Enoncé)

1. Les polynémes sont tous de degré 2.
2. On utilise : libre et dimension=cardinal.

Libre 7

On étudie I'équation vectorielle aPy+ bPy+ cP3=0

On va montrer que a=b=c=0.

On aque :VxeR, aPi(x)+ bPa(x)+ cP3(x)=0
On applique en x=1, x=2, x=3 et on conclut.

Conclusion
P = (P1, Py, P3) est une famille libre de H

cardinal(#$) =3 = % est une base de Ry [X]

dim®2[X]) =3 <00

3. Tout d'abord on justifie que la CL existe.

B = (P1, Py, P3) est une base de Ry[X]
= il existe a,b,c tel que

1€R,[X]

Puis on calcule les scalaires.
> J'applique I'égalité en x=1, ainsi a(1-2)(1-3)+0+0=1

1
donc a=—
2

> Pour calculer b et ¢ avec x=2 et x=3.

aP1(X)+ bPy(X)+ cP3(X) = X°
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Solution de I'exercice 7 (Enoncé)

1. Classique

PeH < PeR3[X] et 3P=(X+1)P’
— P=a+bX+cX?+dX3 et 3P=(X+1)P'
= 3(a+bX+cX?+dX3) = (X+1)(b+2cX +3dX?)
> 3a+3bX+3cX?+3dX3 = b+ X[b+2c]+ X% [2¢ +3d] + X3 [3d]

3a =b
3b =b+2c
=
3¢ =2c+3d
3d=3d
3a- b =0
2b-2c =0
=
c-3d =0
0=0
a 1
— Sol= b =d 3
c 3
d 1

— P=d(1+3X+3X%+X%)
<> Pevect(1+3X+3X%+X3)

Conclusion : H=vect(1+3X +3X% + X3) est la droite dirigée par (1 +3X+3X%+ X%

Remarque : 1+3X+3X2+ X3 =1+ X)3.

2. Ona

PeG < PeRy[X] et P(1) =0erP(2) =0
< P=a+bX+cX>+dX>+eX* et P(1)=0etP(2) =0
a+ b+ c+ d+ e=0
{a+2b+4c+8d+16e:0

a+b+ c+ d+ e=0
b+3c+7d+15e=0

a 2 6 14
. b -3 -7 -15
— Sol=| ¢ |=c¢ 1 +d 0 +e 0
d 0 1 0
e 0 0 1
— P= cl(2—3X+X2)I+dl(6—7X+X3)I+el(14— 15X+X4)I
A B D

<= Pevect(AB,C)

Conclusion : G est le ssev dirigé par (A, B,C). La famille est libre (car les degré sont 2 a 2 #0)

Ainsi (A, B,C) est une base de G et dim(G) = card(Base) =3

Solution de I'exercice 8 (Enoncé)

. a c¢
1. Sth-( b od

2. Ona

)E./ﬂz([R). On a

3a+b 3c+d

-7a+b -7c+d

AM:( 3c=7b c+d

ot MA:(3a—7b a+b)

MeH < AM=MA

3a+b 3c+d \ _(3a-7b a+b
-7a+b -7c+d )\ 3¢-7b c+d

<= On écrit le systéme et on résout et on conclut quec dim(H) =2

171723
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3. On utilise : libre et dimension=cardinal.

(Ip, A) est une famille libre de H car #0 et non//
cardinal =2 = (I, A) est une base de H
dim(H) =2 <o

4. Ona A2.A=A3 =A.A2, donc A% commute avec A, ainsi A%eH.
On a maintenant

(I, A) est une base de H
= il existe a,b tel que
A%eH A’=abL+bA

On fait de méme avec A1
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Solution de I'exercice 9 (Enoncé)

1. La famille (fy, fi,... fn) n'est pas une famille de vecteur colonne, ni une famille de polynéme

C'est une famille de fonction donc on va suivre la définition.
On suppose que : ag fo+ar fi+tazfo+--+anfn=0
ainsi on a que : Yx€R, ag+aj e’ +ap et +

L

cetape™ =0
]
Gauche Droite
On va montrer que aqg=a; =---=ap =0
Voici 2 facons de conclure.

> Avec les ordres de grandeur quand x — co.

N

Quand x — oo le plus "gros" a gauche, c'est : ape™,
donc forcément a;, =0.

On poursuit en regardant a nouveau le plus gros. Fini
> Avec les polynémes.

On remarque que : ag+aj e* + ap % +---+an ™ = P(0)

avec O=¢* et PM)=ag+a; O+ ap 0%+ +a, 0%
On utilise maintenant le théoreme fondamental des polynémes

P(O)=0

Quand x varie dans R,

alors 0= e* prend toutes les valeurs dans R
Donc une infinité de valeurs

Comme le polynéme P est nul, tous ses coefficients sont nuls donc ag =a; =--- = a, =0 Fini.

2. La famille (Py,Py,..., Py) n'est pas une famille de vecteur colonne, mais c’est une famille de polynéme

Donc pour montrer libre, on va essayer avec les degrés.

> On essaye avec |'étude des degrés. On a facilement Vi€ {0,1,...,n}, deg(P;) = n.

Donc les degrés ne permettent pas de conclure.

> On essaye avec la def de libre. On suppose que : ayPyp+a; Py+azPr+---+a, P, =0
ainsi on a que : aX°X -+ X' X-D" 1t a, X' x-1%= 0

Gauche

On va montrer que ag=a; =---=ap =0

On va utiliser I'ordres de grandeur quand x — 0.

Quand x — 0 I'ordre de grandeur de P;(x) c’est x! donc le plus gros c'est Py, puis le suivant c'est Py,
puis Py, ... etc.

Quand x — 0 le plus "gros" a gauche, c'est : apx",
donc forcément agy =0.

On poursuit en regardant a nouveau le plus gros. Fini
3. La famille (fy, fi,.... fn) n'est pas une famille de vecteur colonne, ni une famille de polynéme

C'est une famille de fonction donc on va suivre la définition.

On suppose que : Vx€eR, ag+ aj sin(x) + ap sin(2x) +--- + ap sin(nx) =0

On va montrer que ag=ay;=---=ap=0

On peut conclure avec les ordres de grandeur quand x — oo ou bien avec les polynémes.
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Solution de I'exercice 10 (Enoncé)

On commence par déterminer une famille génératrice de H qui on I'espére sera une base

U=(x1,,Xp)€H < x1+2x2+ - +nxp=0

X1 -2
X2 1
— = X2 ) +X3 + + Xn
Xn 0 )
— :
G —
Cs
Comme les scalaires sont indépendants, on a H = vect(Cy,---,Cy.
De plus la famille (Cp,---,Cy, est en escalier donc libre
Conclusion : (Cy,--+,Cy, est libre et génératrice de H

20/23

Cn

donc c'est une base et dim(H) = cardinal(Base) =n—1.
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Solution de I'exercice 11 (Enoncé)

1. On sait que les matrices E; j forment une base de .4, (R),
Ainsi dim(,,(R)) = cardinal(Base) = n°.

2
2. La famille [In,A,AZ,...,A" ) est de cardinal n2+1.

De plus on sait que card(Libre) < card(Base) = n’

2
Conclusion : La famille (In,A,AZ,...,A” ) est forcément liée!!!

Ainsi il existe une CL nulle, CaD il existe un polynédme qui annule la matrice.
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Solution de I’exercice 12 (Enoncé) C’est une généralisation des polyndmes de I'exo 4

1. Ona
Lo=%<I(X-1)---(X-n)et L} =(X-0XF<q(X-2)---(X—n).

Il est clair que : Vi€ {0,1,2,...,.n}, deg(L;) = n.

2.
=0sik#i
De plus k€1{0,1,2,...,n}, L;(k) =
#0sik=i
3. On utilise Libre + cardinal=dimension
Libre 7
Soit I'équation vectorielle agLo+ay L1 +ax Ly +...+an L, =0
On va montrer que ag=ag=---=ap =0

On applique I'égalité en x =k ainsi 0+0+...+ ap Li(k)+..+0=0

comme Ly(k) #0, on a ak=0.
Conclusion : La famille = (Lg,L1,Ly,...,Ly) est libre de R;[X] et de cardinal = n+1=dim([®R,[X]),
donc c'est une base de R, [X].

4. Tout d'abord on justifie que la CL existe.

P =(Ly,L1,Lo,... L) est une base de Ry [X]
= il existe a,b,c tel que
1eRy[X] aoLoX)+ a1 Li(X) + -+ anLp(X) =1

Puis on calcule les scalaires.
J'applique I'égalité en x =k, ainsi 0+0+..+aj L (k) +...+0=1

donc ay = 1
LT
(X
Conclusion : 1= Z k( ).
Eo L)

Généralisation : En suivant la méme démarche, on a
Li(X)

n
Si PeR,IX], P= ) P(k :
I nlX] kZ::O ()Lk(k)

Remarque : Ly (k) = (k—-0)(k—1)--- (1)T<kL(-1)(-2)--- (—(n - k)), donc
Le(b) = (D" ki (n - k!
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Solution de I'exercice 13 (Enoncé)
1. On sait que dim[R,[X)=n+17?
2. Soit P un polynéme de degré n.
Il est clair que : VkeZ, deg(P(X+k))=deg(P)
C'est tellement évident que c’est faux en fait faux quand n=0, par contre deg(P(X +k)) < deg(P) est toujours juste.
3. La famille [P(X), P(X+1), P(X+2),---,P(X+n),P(X+n+1)] est de cardinal n+2.
De plus on sait que card(Libre) < card(Base) =n+1

Conclusion : La famille (P(X), P(X+1),P(X+2),---, P(X+n),P(X+n+1)) est forcément liée!!!

n+1
n
Kulture : On peut méme démontrer que Z (k)P(X+K) =0.
k=0
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