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1 Famille libre, famille liée.

Définition 1. Libre-Lié

Soit E un R-espace vectoriel et −→u ,−→v ,−→w ,−→u1,−→u2, ...,−→un des vecteurs de E .

Famille libre.

On dit que la famille (−→u ,−→v ,−→w ) est libre

Ssi ∀α,β,γ ∈R, [
α−→u +β−→v +γ−→v =−→

0 =⇒ α=β= γ= 0
]

Généralisation : On dit que la famille (−→u1,−→u2, ...,−→un ) est libre Ssi[
λ1

−→u1 +λ2
−→u2 + ...+λn

−→un =−→
0 =⇒ λ1 =λ2 = ... =λn = 0

]
Méthodologie : La famille (−→u ,−→v ,−→w ) est libre

Ssi l’équation α−→u +β−→v +γ−→w =−→
0 admet une unique solution α=β= γ= 0

Famille liée.

On dit que la famille (−→u ,−→v ,−→w ) est liée Ssi elle n’est pas libre,
Ssi il existe α,β,γ ∈R, non tous nul tel que : α−→u +β−→v +γ−→w =−→

0
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Théorème 2. Libre/Liée et CL

:::
Lié

::
et

::
CL

> La famille (−→u ,−→v ,−→w ) est liée

Ssi on peut compléter les "pointillés" .......−→u + .......−→v + .......−→w =−→
0

> La famille (−→u ,−→v ,−→w ) est liée

Ssi un des vecteurs −→u ,−→v ou −→w est CL des autres

::::
Libre

::
et

:::
CL Soit E un R-espace vectoriel et −→u1,−→u2, ...,−→un des vecteurs de E .

> Quand une famille est libre alors on peut identifier les scalaires, CàD

n∑
k=1

αk
−→uk =

n∑
k=1

βk
−→uk

la famille (−→u1,−→u2, ...,−→un) est libre

 =⇒ ∀k ∈ {1,2, ...,n}, αk =βk

> Quand une famille est liée, c’est faux

1

(
1
0

)
+1

(
0
1

)
+0

(
1
1

)
= 0

(
1
0

)
+0

(
0
1

)
+1

(
1
1

)

Démonstration :

On suppose que
n∑

k=1
αk

−→uk =
n∑

k=1
βk

−→uk et que la famille (−→u1,−→u2, ...,−→un ) est libre

On va montrer que : ∀k ∈ {1,2, ..,n}, αk =βk

On a
∑n

k=1αk
−→uk =∑n

k=1βk
−→uk

=⇒ ∑n
k=1(αk −βk )−→uk =−→

0

Ainsi
n∑

k=1
(αk −βk )−→uk =−→

0 ET la famille est libre

donc on a ∀k ∈ {1,2, ..,n}, αk −βk = 0 ⇐⇒ αk =βk .
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2 Théorèmes qui concluent : libre ou liée

2.1 Sans rien faire.

Théorème 3.
Une famille qui contient le vecteur nul est forcément liée.

Démonstration : On considère la famille (−→u1,−→u2, ...,−→un ,
−→
0 ).

on a
......−→u1 + ......−→u2 +·· ·+ ......−−−→un−1 + ......−→un + ......

−→
0 =−→

0

Donc la famille est liée.

Définition 4. Non-colinéaire
Soit E un R-espace vectoriel et −→u ,−→v deux vecteurs de E .

> On dit que −→u est proportionnel à −→v
Ssi il existe λ ∈R tel que −→u =λ−→v

> On dit que −→u et −→v sont colinéaires (notée //) à

Ssi −→u est proportionnel à −→v OU −→v est proportionnel à −→u
Théorème.

Deux vecteurs non nuls et non colinéaires sont libres.

Définition 5. Famille en escalier
Soit −→u ,−→v ,−→w , .... des vecteurs dans Rn ou Mn,1(R).

On dit que la famille −→u ,−→v ,−→w , ... est en escalier Ssi chaque vecteur est 6= −→
0 et chaque vecteur plus "court"

que le précédent.

Théorème.
Une famille en escalier est libre.

Exemples : les familles suivantes sont en escalier

 1
2
3

 ,

 0
4
5

 ,

 0
0
−1





1
2
1
3

 ,


0
0
2
−2

 ,


0
0
0
2







1
2
1
3

 ,


2
−2
0
0

 ,


2
0
0
0




2.2 Avec le Déterminant.

Théorème 6.

det
(

f ami l le
) 6= 0 ⇐⇒ la famille est libre

det
(

f ami l le
)= 0 ⇐⇒ la famille est liée

2.3 Avec le degré 2 à 2 6=.

Théorème 7. Polynôme de degré 2 à 2 différents
Soit (P0,P1, ...,Pn) une famille de polynôme avec des degrés 2 à 2 différents,

Alors la famille (P0,P1, ...,Pn) est libre.

Situation classique : Si ∀k ∈ {0,1,2, ..,n}, degPk = k

alors la famille est libre.

Généralisation : Si les ordres de grandeurs sont 2 à 2 6=,....
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3 Famille génératrice.

Définition 8. Famille génératrice
Soit E un R-espace vectoriel et F un sous-espace vectoriel de E .

Soit (−→u1,−→u2, ...,−→un) une famille de vecteur de E .

On dit que la famille (−→e1,−→e2, ...,−→en) est une famille génératrice de F Ssi

F = vect (−→e1,−→e2, ...,−→en)

Théorème 9. Opérations complémentaires sur les vect(....)

Soit E un R-espace vectoriel et −→u ,−→v ,−→w ,
−→
A des vecteurs de E.

:
>
::
Le

:::
CL

::::::::::
n’augmente

::::
pas

::
le

::::
vect.

H = vect
(−→u ,−→v ,−→w ,

−→
A

)
−→
A =C L(−→u ,−→v ,−→w )

}
=⇒ H = vect (−→u ,−→v ,−→w )

:
>
::
Le

:::::::
vect(...)

::::
n’est

::::
pas

::::::
modifié

::::
par

::::
pivot

On modifie −→u ,−→v ,−→w avec le pivot
−→
A ,

par exemple
−→
u′ =−→u +2

−→
A de même

−→
v ′ = ... et

−→
w ′ = .....

On a alors vect
(−→u ,−→v ,−→w ,

−→
A

)
= vect

(−→
u′,

−→
v ′ ,

−→
w ′,

−→
A

)

4 Base, Coordonnées, Vecteur des coordonnées.

Définition 10. Base

Soit E un R-espace vectoriel et (−→e1, ...,−→en) une famille génératrice de E

On dit que la famille (−→e1, ...,−→en) est une base de E

Ssi la famille est libre et génératrice de E .

Les bases et dimensions classiques qu’il faut connaitre.

Il faut connaitre

> (
−→
i ,

−→
j ,

−→
k ) est la base classique de R3

Ici on a
−→
i = (1,0,0),,

−→
j = (0,1,0) et

−→
k = (0,0,1).

> (
−→
E1,

−→
E2,

−→
E3) est la base classique de M3,1(R)

On a
−→
E1 =

(
1
0
0

)
,
−→
E2 =

(
0
1
0

)
et
−→
E3 =

(
0
0
1

)
.

> (E11,E21,E12,E22) est la base de M2(R)
On a E11 =

(
1 0
0 0

)
, E21 =

(
0 0
1 0

)
, ....

Ainsi dim(M2(R)) = car di nal e(B ase) = 4

> (X 0, X 1, ..., X n) est la base classique de Rn[X ].

(X 0, X 1, ..., X 641, ..., X 2020, ....) est la base classique de R[X ].

Ainsi dim(Rn [X ]) = car di nal e(B ase) = n +1

Ainsi dim(R[X ]) = car di nal e(B ase) =∞
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Théorème 11. Coordonnées et matrice des coordonnées

−→u ∈ E

B = (−→e1,−→e2, ...,−→en) est une base de E

 =⇒ il existe u1, ...,un

tels que −→u = u1
−→e1 +·· ·+un

−→en

et de plus les scalaires sont uniques.

Vocabulaire : Les scalaires u1, ...,un sont les coordonnées du vecteur −→u dans la base B.

Matrice colonne des coordonnées

La matrice colonne des coordonnées
−→
U =M atB

(−→u )=


u1

u2
...
un


← −→e1

← −→e2

...
← −→en

Démonstration : On va faire Les scalaires sont uniques puis ils existent

::
Les

::::::
scalaires

:::
sont

::::::
uniques

:
?

On suppose que −→u = u1
−→e1 +·· ·+un

−→en et −→u = u′
1
−→e1 +·· ·+u′

n
−→en

On va montrer que u1 = u′
1, u2 = u′

2,....

On sait que −→u = u1
−→e1 +·· ·+un

−→en = u′
1
−→e1 +·· ·+u′

n
−→en

la famille (−→e1,−→e2, ...,−→en ) est libre

 =⇒ u1 = u′
1, u2 = u′

2, ....

::
Les

::::::
scalaires

::::::
existent

:
?

Comme (−→e1,−→e2, ...,−→en ) est une base, la famille est donc génératrice de E , CàD E = vect (−→e1,−→e2, ...,−→en ), ainsi on a

−→
( u) ∈ E

E = vect (−→e1,−→e2, ...,−→en )

 =⇒ il existe u1, ...,un
tels que −→u = u1

−→e1 +·· ·+un
−→en

Théorème 12. Formulaire sur les matrices de coordonnées
Soit E un R-espace vectoriel et B une base de E .

Soit −→u1,−→u2, ...,−→un ,−→v des vecteurs de E et
−→
U1,

−→
U2, ...,

−→
Un ,

−→
V leur matrice colonne.

On a

> La matrice de 2−→u −3−→v , c’est 2
−→
U −3

−→
V .

> (−→u1,−→u2, ...,−→un) est libre (resp. base) Ssi (
−→
U1,

−→
U2, ...,

−→
Un) est libre (resp. base)

Démonstration : On a 2−→u −3−→v = 2(u1
−→e1 +·· ·+un

−→en )−3(v1
−→e1 +·· ·+ vn

−→en ) = [...]−→e1 +·· ·+ [...]−→en .

Donc on a la matrice de 2−→u −3−→v , c’est bien 2
−→
U −3

−→
V .

Comme le coordonnées des vecteurs sont uniques, on a −→u =−→
0 ⇐⇒ −→

U =−→
0

Ainsi λ1
−→u1 +·· ·+λn

−→un
−→u

=−→
0 ⇐⇒ λ1

−→
U1 +·· ·+λn

−→
Un

−→
U

=−→
0 . On en déduit le deuxième point avec =⇒ et ⇐= .
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5 L’algorithme de Gauss et rang d’une famille.

Définition 13. Les transformations de Gauss
Soit E un R-espace vectoriel et (−→e1, ...,−→en) une famille de E .

Transformation n°1 : Dilatation par des scalaires αi 6= 0

(−→e1,−→e2...,−→en)  (α1
−→e1,α2

−→e2...,αn
−→en)

Transformation n°2 : On échange de deux vecteurs

(...,−→ei , ...,−→e j , ...)  (...,−→e j , ...,−→ei , ...)

Transformation n°3 : On choisit un pivot et avec ce pivot,

Avec ce pivot, on modifie les autres vecteurs.

Théorème 14. L’algorithme de Gauss
Par une succession de transformation de Gauss,

on peut transformer une famille en une famille en escalier

avec souvent à la fin des vecteurs nuls

À l’issue de l’algorithme de Gauss, on peut conclure

> On peut savoir si la famille est libre ou liée.

> On n’a pas changé le vect.

> On obtient une base du vect compléter par des vecteurs nuls.

Démonstration : Pour chaque transformation de Gauss, on a (−→e1,−→e2...,−→en ) (
−→
e′1,

−→
e′2...,

−→
e′n )

On démontre pour chaque transformation avec =⇒ et ⇐= ou ⊂ et ⊃ que

> (−→e1,−→e2...,−→en ) est libre ⇐⇒ (
−→
e′1,

−→
e′2...,

−→
e′n ) est libre.

> vect (−→e1,−→e2...,−→en ) = vect (
−→
e′1,

−→
e′2...,

−→
e′n )

A la fin, on a une base du vect car on n’a pas changé le vect donc la famille est génératrice et comme elle est en escalier elle est libre.

Exemple  1
2
3


−→u

 4
5
6


−→v

 5
6
7


−→w

C2−4C1�C2
C3−5C1�C3   

 1
2
3


 0

−3
−6


 0

−4
−8

 C3−4/3 C2�C2
   

 1
2
3


−→
u′

 0
−3
−6


−→
v ′

 0

0
0


−→
w ′

Suite à l’algorithme de Gauss, on peut conclure

> Comme à la fin
−→
w ′ =−→

0 , la famille initiale (−→u ,−→v ,−→w ) est liée.

En effet, on a 1....

 1
2
3

+ −4.....

 4
5
6

+ 3.....

 5
6
7

=
 0

0
0


> On n’a pas changé le vect, donc vect (−→u ,−→v ,−→w ) = vect (

−→
u′,

−→
v ′ ,

−→
w ′) = vect (

−→
u′,

−→
v ′ ,−→0 )

Et surtout (
−→
u′,

−→
v ′ ,��SS

−→
0 ) =

 1
2
3

 ,

 0
−3
−6

 est une base de H = vect (−→u ,−→v ,−→w )

Conclusion : H est dirigé par 2 vecteurs non // donc H est un plan vectoriel.
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Définition 15. Rang d’une famille de vecteur

Le rang de la famille −→u ,−→v ,−→w , ... est, noté r g
(−→u ,−→v ,−→w , ...

)
,

égale au nombre de vecteur non-nul qu’il reste à l’issu d’un algorithme de Gauss.

Théorème.
r g

(−→u ,−→v ,−→w , ...
)= dimension du ssev vect

(−→u ,−→v ,−→w , ...
)

6 Dimension d’un espace vectoriel.

6.1 Toutes les Bases ont le même cardinal.

Théorème 16. Trop nombreux =⇒ lié

> 2 vecteurs sur une même droite vectorielle sont proportionnelles donc liés.

> 3 vecteurs dans un même plan vectoriel sont liés (faites un dessin, c’est évident).

Dans un espace engendré par n vecteurs,

une famille de n +1 vecteurs est liée.

Démonstration : Le résultat se démontre par récurrence sur n le nombre de vecteur.

Il est clair que si 2 vecteurs sont dans vect (−→a ) alors ils sont colinéaires et donc liés ; ainsi l’initialisation est faite.

On fait l’hérédité. On suppose que (−→y1, ...,−−−→yn+2) sont dans vect (−→e1, ...,−−−→en+1).

Ai nsi −→yi = ai 1
−→e1 + ...+ai ,n+1

−−−→en+1

Si −→y1 =−→
0 , la famille est liée et c’est fini.

Si −→y1 6= −→
0 alors une des coordonnées est 6= 0 par exemple a1p 6= 0. Suivant l’idée de Gauss, on modifie −→y2, ...,−−−→yn+2 et on considère

∀ i ∈ {2,3, ..., (n +2)},
−→
y ′i =−→yi −

ai a

a1p

−→y1 = ...−→e1 + ...+0−→ep + ...−−−→en+1

A cause de l’hypothèse de récurrence, on sait que la famille (
−→
y ′i )2ÉiÉn+2 est liée ainsi il y a une CL = −→

0 qui permet de construire pour les

(−→y1, ...,−−−→yn+2) une CL =−→
0 . la famille est donc liée.

Théorème 17. Cardinal des Bases
Soit E un R-espace vectoriel.

On suppose que B = (−→e1, ...,−→en) et C = (
−→
e ′1, ...,

−→
e ′p ) sont deux bases de E .

Alors car d(B) = n = p = car d(C )

Démonstration : On démontre avec un RA que n É p.
On suppose que n > p.

> On sait que C est une base de E , donc elle engendre (dirige) E .

> Comme n > p, on a une famille B = (−→e1, ...,−→en ) qui contient "trop" de vecteurs dans un espace vectoriel engendré par p vecteurs
donc elle est liée.

> Or B est une base donc elle est libre.
Conclusion : La famille B est est libre et liée. OUPS

On démontre de même que p É n.
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6.2 Dimension d’un espace vectoriel.

Définition 18. Dimension d’un ev, d’un ssev
On vient de justifier que toute les bases d’un espace vectoriel E ont le même cardinal.

Par définition, c’est la dimension de E .

dim(E)
de f= Cardinal d’une base

Attention : dim(E) =C ar di nal de n′i mpor te l aquel le
::::::::::::::::::::

des bases de E .

Cette définition s’utilise dans les 2 sens, CàD
> Si on a trouvé une base de E alors on peut conclure que dim(E) = ...

> Si on sait que dim(E) = n,

alors les bases de E sont de cardinal exactement n (pas plus, pas moins).

Les dimensions classiques qu’il faut connaitre.

> Comme (
−→
i ,

−→
j ) est une base de R2, on a dim(R2) = 2.

> Comme (
−→
i ,

−→
j ,

−→
k ) est une base de R3, on a dim(R2) = 3.

> Comme (−→e1, ...,−→en) est une base de Rn , on a dim(Rn) = n.

> Comme (
(
Mi , j

)
1Éi , jÉn) est une base de Mn(R), on a dim(Mn(R)) = n2.

> Comme (X 0, X , ..., X n) est une base de Rn[X ], on a dim(Rn[X ]) = n +1.

> Comme (X 0, X , ..., X n , ...) est une base de R[X ], on a dim(R[X ]) =∞.
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7 Théorèmes de la Base incomplète et Base extraite.

Théorème 19. Fabriquer des Bases
Soit E un R-espace vectoriel.
Soit (−→e1, ...,−→en) une famille génératrice de E et (−→y1, ...,−→yr ) est une famille libre.

Le théorème de la base incomplète.
Toute famille libre d’un espace vectoriel E se complète en une base.

Plus précisément on peut compléter la famille (−→y1 , ...,−→yr ) avec des vecteurs choisis parmi les (ei )

et ainsi d’obtenir une base E .

CàD

Le théorème de la base extraite.
De toute famille génératrice, on peut extraire une base.

Démonstration :
Démonstration du théorème de la base incomplète.

On considère toutes les familles libres fabriquées à partir de (−→y1, ...,−→yr ) et aumentées avec des vecteurs choisis dans (−→e1, ...,−→en ).
elles sont toutes de cardinal É n + r .

Cet ensemble n’est pas vide car la famille (−→y1, ...,−→yr ) étant libre, elle est dans l’ensemble. Ainsi cet ensemble est non vide et constitué
d’un nombre fini de famille. Donc il y en a une qui a un cardinal maximal.

On va montrer que la famille libres de cardinal maximal, noté B, est une base.

La famille B est libre par construction.

On va montrer qu’elle est génératrice, CàD que E = vect (B).

> L’inclusion est ⊃ est facile, avec la grande propriété des vect

> Pour l’inclusion est ⊂. On utilise E = vect (−→e1, ...,−→en ), la grande propriété des vect et aussi le fait que B est la famille cardinal
maximal (ainsi B∪ek est forcément liée et B est libre donc ek =C L sur les vecteurs de B ).

Démonstration du théorème de la base extraite.

On applique le théorème avec à la place de (−→y1, ...,−→yr ), une famille vide

Théorème 20. Formulaire sur les dimensions.

car d(Li br e ) É car d(B ase ) É car d(Génér atr i ce )

=

dim(E)

Et aussi : car d(B ase ) <
Str i ct

car d(Génératrice et Liée )

Démonstration : Une famille libre se complète en une base et en la complétant son cardinal augmente

donc car d(Li br e ) É car d(B ase ).

De même le théorème de la bas extraite permet de conclure que : car d(B ase ) É car d(Géné)
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8 Avec les Dimension (Thm niveau 2).

8.1 Libre + cardinal.

Théorème 21.
Soit E un R-espace vectoriel avec dim(E) = n.

Soit B une famille de vecteur de E .
On a B est une famille libre de E

car d(B) = dim(E) = n <∞

 =⇒ B est une base de E

Attention : Le théorème est faux si car d(B) = dim(E) =∞.

Il y aussi mais c’est moins utile
B est une famille génératrice

car d(B) = n <∞

 =⇒ B est une base de E

Démonstration : Une famille libre se complète en une base et en la complétant son cardinal augmente

donc car d(Li br e ) É car d(B ase ).

De même le théorème de la bas extraite permet de conclure que : car d(B ase ) É car d(Géné)

Démonstration : Deux considérations préalable.

> Une famille libre se complète en une base et en la complétant son cardinal augmente et donc car d(Li br e ) É car d(B ase ).

> De plus si la famille libre n’est pas une base alors l’inégalité est stricte .

On fait un RA : Si car d(Li br e ) = n et la famille libre n’est pas une base alors avec le théorème de la base incomplète, on obtient une base avec
un cardinal > n = dimE Absude! !

8.2 Inclusion et dimension.

Théorème 22.

Soit E un R-espace vectoriel et F,G deux sous espaces vectoriels de E .

Alors F ⊂G =⇒ dim(F ) É dim(G).

Application : comme dim(R3) = 3, les ssev de R3 sont de dimension 0, 1, 2 ou 3.

Démonstration : Une base BF de F est une famille libre de E et

ainsi dimF = car d(BF ) = car d(Li br eE ) É car d(baseE ) = dimE

Théorème 23.

Soit E un R-espace vectoriel et F,G deux sous espaces vectoriels.

Attention : dimF = dimG��XX=⇒ F =G , par contre

F ⊂G

dim(F ) = dim(G) <∞

 =⇒ F =G

Attention : Le théorème est faux si dim(F ) = dim(G) =∞.

Applications :
Si F est un ssev de R3 de dimension 3 alors F =R3.

Si F est un ssev de dimension 0 alors F = {
−→
0 }.

Démonstration : Comme F ⊂G , une base BF de F est une famille libre de G .

De plus car d(BF ) = dimF = dimG , ainsi

BF est une famille libre de G

car d(BF ) = dimG <∞

 =⇒ BF est une base de G

Conclusion : F = vect (BF ) =G .
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9 Exemples de calculs de dimension.

Théorème 24. EDL1

Soit E l’ensemble des solutions de l’équation différentielle linéaire homogène d’ordre 1.

y ′+τ y = 0 avec τ ∈R.

Alors E est un sous-espace vectoriel de F (R,R) de dimension 1.

Démonstration :
On sait que y est une solution de (E) ⇐⇒ y ′+τy = 0

⇐⇒ ∃λ, ∀ t ∈R, y(t ) =λexp(−t/τ )

⇐⇒ [y] =λ[exp(−t/τ )]

Comme les scalaires sont qcq et indépendants

Ainsi E = vect
[
exp

(−t/τ
)]

Conclusion : E est un vect (...) donc c’est ssev. De plus il est engendré par un vecteur non nul, donc dim(E) = 1.

Théorème 25. EDL2
Soit E l’ensemble des solutions de l’équation différentielle linéaire homogène d’ordre 2 à coeffi-
cients constants.

ay ′′+by ′+ c y = 0 avec (a,b,c) ∈R∗×R×R.

Alors E est un sous-espace vectoriel de F (R,R) de dimension 2.

Démonstration : Je fais la démonstrations dans la situation où le discriminant de l’équation caractéristique est 6= 0.

On sait que y est une solution de (E) ⇐⇒ ay ′′+by ′+ c y = 0 = 0

⇐⇒ ∃λ,µ, ∀x ∈R, y(x) =λexp(r x)+µ exp(r ′x)

⇐⇒ [y] =λ [exp(r x)]+µ [exp(r ′x)]

Comme les scalaires sont qcq et indépendants

Ainsi E = vect
(
[exp(r x)], [exp(r ′x)]

)
Conclusion : E est un vect (...) donc c’est ssev. De plus il est engendré par 2 vecteurs non nuls et non //, donc dim(E) = 2.

Théorème 26. Suite d’ordre 2 classique
Soit E l’ensemble des suites vérifiant une relation de récurrence linéaire homogène d’ordre
2 à coefficients constants.

∀n ∈N, a un+2 +b un+1 + c un = 0 avec (a,b,c) ∈R∗×R×R.

Alors E est un sous-espace vectoriel de RN de dimension 2.

Démonstration : Je fais la démonstrations dans la situation où le discriminant de l’équation caractéristique vaut 0.

On sait que (un )n∈N est une solution de (E) ⇐⇒ ∀n ∈N, a un+2 +b un+1 + c un = 0

⇐⇒ ∃λ,µ, ∀n ∈N, un =λr n +µnr n

⇐⇒ (un )n∈N =λ (r n )+µ (nr n )

Comme les scalaires sont qcq et indépendants

Ainsi E = vect
(
(r n ), (nr n )

)
Conclusion : E est un vect (...) donc c’est ssev. De plus il est engendré par 2 vecteurs non nuls et non //, donc dim(E) = 2.
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10 Exercices

Petite Dimension

Exercice 1. [Correction]
1. Discuter selon les paramètres u, v ∈R, si la famille

−→a = (u,2,0),
−→
b = (v,0,−1), −→c = (0,2u, v)

est libre ou liée et quand elle est liée, expliciter une CL nulle.
2. Déterminer, dans les différentes situations, dim

[
vect (−→a ,

−→
b ,−→c )

]
.

Exercice 2. [Correction] Soit A =
(

1 3
2 4

)
.

1. Montrer que la famille
(
I2, A, A2) liée.

Déterminer dim vect
(
I2, A, A2).

2. Soit n ∈N. Déterminer dim vect
(
I2, A, A2, ..., An)

.

Exercice 3. [Correction] On considère les polynômes

P1 = (X −2)(X −3) P2 = (X −1)(X −3) P3 = (X −1)(X −2)

1. Montrer la famille B = (P1,P2,P3) est libre puis que c’est une base de R2[X ].
2. Expliciter les coordonnées de [X 0] dans la base B.

Exercice 4.

1. Montrer que la famille ( [1] , [cos(x)] , [cos(2x)] ) est libre.
2. Montrer que la famille

(
[1] , [cos(x)] ,

[
cos2(x)

] )
est libre.

3. Montrer que la famille
(

[1] , [cos(x)] , [cos(2x)] ,
[
cos2(x)

] )
est liée.

Exercice 5. la famille
(
[1], i d ,−−→cos,

−−−−→
arctan

)
est-elle libre ou liée ?

Exercice 6.

1. Soit H = {
M ∈M2(R), tel que tr (M) = 0

}
.

Montrer que H est un ssev et déterminer une base de H .
2. Soit G = {

M ∈M3(R), tel que M T = M
}
.

Montrer que G est un ssev et déterminer une base de H .

Exercice 7. [Correction]
1. Soit H = {

P ∈R3[X ], tel que 3P = (X +1)P ′}.
Montrer que H est un ssev et déterminer une base de H .

2. Soit G = {
P ∈R4[X ], tel que P (1) = P (2) = 0

}
.

Montrer que G est un ssev et déterminer une base de H .

Exercice 8. [Correction] Soit A la matrice
(

3 1
−7 1

)
.

On note H l’ensemble des matrices qui commutent avec A.
1. Traduire M ∈ H . Calculer AM et M A.
2. Montrer que H est un ssev de M2(R) et déterminer une base de H .
3. Montrer que (I2, A) est une autre base de H .
4. En déduire que A2 et A−1 sont des CL sur (I2, A).
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Grande Dimension

Exercice 9. [Correction]
1. On considère les fonctions ∀x ∈R, fk (x) = ekx avec k ∈ {0,1,2, ...,n}

Montrer que la famille B = ( f0, f1, f2, ..., fn) est une famille libre.

2. On considère les polynômes Pi = X i (X −1)n−i avec i ∈ {0,1,2, ...,n}

Montrer que la famille B = (P0,P1,P2, ...,Pn) est une base de Rn[X ].

3. Montrer que la famille
(
[1], [sin(X )], [sin2(X )], ..., [sinn(X )]

)
est libre.

Exercice 10. [Correction] Déterminer une base et la dimension de

H = {−→u = (x1, · · · , xn) ∈Rn tel que x1 +2 x2 +·· ·+n xn = 0
}

Exercice 11. [Correction]
1. Quels est la dimension de Mn(R) ?

2. Soit A ∈Mn(R) une matrice carrée.
Pourquoi la famille

(
In , A, A2, ..., An2

)
est-elle liée. Que peut-on conclure ?

Exercice 12. [Correction] On considère les polynômes

Li =
n+1∏
k=1
k 6=i

(X −k) avec i ∈ {0,1,2, ...,n}

1. Explicité L0 et L1.
2. Soit i ∈ {0,1,2, ...,n}.

Déterminer le degré de Li .
Peut-on en déduire que la famille B = (L0,L1,L2, ...,Ln) est une base de Rn[X ].

3. Montrer B = (L0,L1,L2, ...,Ln) est une base de Rn[X ].
4. Expliciter les coordonnées de [1] dans la base B. Généraliser pour P qcq dans Rn[X ].

Exercice 13. [Correction] Soit n ∈N∗

1. Quels est la dimension de Rn[X ] ?

2. Soit P un polynôme de degré n.
Soit k ∈Z. Déterminer le degré de P (X +k)

Justifier que la famille
[

P (X ), P (X +1), P (X +2), · · · , P (X +n),P (X +n +1)
]
est liée.

Exercice 14. On considère

Cn = {1,cos(X ),cos(2X ), ...,cos(nX )} et Fn = vect (Cn)

Cn = {
1,cos(X ),cos2(X ), ...,cosn(X )

}
et Fn = vect (Cn)

1. Base et dimension de Fn .
Montrer que Cn est une base de Fn . Que peut-on conclure ?

2. Base et dimension de Fn .

(a) Discuter selon p, q Ê 0 la valeur de Ip,q =
∫ 2π

0
cos pt cos qt d t

(b) Montrer que Cn est une base de Fn . Que peut-on conclure ?
3. Montrer que Fn ⊂Fn puis que Fn =Fn
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Correction.
Solution de l’exercice 1 (Énoncé)

1. On a det (−→a ,
−→
b ,−→c ) = .... = 2u2 −2 v2

> Lorsque det (...) = 0 ⇐⇒ u = v ou u =−v la famille est liée.
> Lorsque det (...) 6= 0 ⇐⇒ u 6= v ou u 6= −v la famille est libre.

2. On note H = vect (−→a ,
−→
b ,−→c ).

>
::::::
Lorsque

:::::::::::::::::::::::::
det (...) 6= 0 ⇐⇒ u 6= v ou u 6= −v .

La famille (−→a ,
−→
b ,−→c ) est libre et génératrice de H donc c’est une base de H

Ainsi dim(H) = car di nal (B ase) = 3.

>
::::::
Lorsque

:::::::::::::::::::::::::
det (...) = 0 ⇐⇒ u = v ou u =−v

La famille (−→a ,
−→
b ,−→c ) est liée et génératrice de H donc dim(H) É 3−1 = 2.

De plus, (−→a ,
−→
b ) est une famille de H libre car 6= 0 et non// Donc dim(H) Ê 2

Conclusion : dim(H) = 2 et la famille (−→a ,
−→
b ) est une base de H .

Solution de l’exercice 2 (Énoncé)

1. On a facilement A2 =
(

a2 +bc ac + cd
ba +db bc +d2

)
On complète

A2 =
(

a2 +bc ac + cd
ba +db bc +d2

)
= . . . . . .

(
a c
b d

)
+ . . . . . .

(
1 0
0 1

)
= (a +d)

(
a c
b d

)
+ (bc −ad)

(
1 0
0 1

)
Ainsi la famille est liée.

2. On note H = vect
(
I2, A, A2

)
. On a

> H est dirigée par une famille liée de 3 vecteurs
Donc dim(H) É 3−1 = 2

> Comme (I2, A) est une famille de H libre car 6= 0 et non//

Donc dim(H) Ê 2

Conclusion : dim(H) = 2 et la famille (I2, A) est une base de H .
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Solution de l’exercice 3 (Énoncé)

1. Les polynômes sont tous de degré 2.
2. On utilise : libre et dimension=cardinal.

::::
Libre

::
?

On étudie l’équation vectorielle a P1 + b P2 + c P3 = 0

On va montrer que a = b = c = 0.

On a que :∀x ∈R, a P1(x)+ b P2(x)+ c P3(x) = 0

On applique en x = 1, x = 2, x = 3 et on conclut.

::::::::
Conclusion

B = (P1,P2,P3) est une famille libre de H

car di nal (B) = 3

dim(R2[X ]) = 3 <∞


=⇒ B est une base de R2[X ]

3.
::::
Tout

::::::
d’abord

:::
on

:::::
justifie

::::
que

::
la

::
CL

::::::
existe.

B = (P1,P2,P3) est une base de R2[X ]

1 ∈R2[X ]

 =⇒ il existe a,b,c tel que
a P1(X )+ b P2(X )+ c P3(X ) = X 0

:::
Puis

:::
on

::::::
calcule

::
les

::::::::
scalaires.

> J’applique l’égalité en x = 1, ainsi a(1−2)(1−3)+0+0 = 1

donc a = 1

2

> Pour calculer b et c avec x = 2 et x = 3.
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Solution de l’exercice 7 (Énoncé)
1. Classique

P ∈ H ⇐⇒ P ∈R3[X ] et 3P = (X +1)P ′

⇐⇒ P = a +bX + c X 2 +d X 3 et 3P = (X +1)P ′

⇐⇒ 3(a +bX + c X 2 +d X 3) = (X +1)(b +2c X +3d X 2)

⇐⇒ 3a +3bX +3c X 2 +3d X 3 = b +X [b +2c]+X 2 [2c +3d ]+X 3[3d ]

⇐⇒


3a = b

3b = b +2c

3c = 2c +3d

3d = 3d

⇐⇒


3a − b = 0

2b −2c = 0

c −3d = 0

0 = 0

⇐⇒ −−→
Sol =


a
b
c
d

= d


1
3
3
1


⇐⇒ P = d(1+3X +3X 2 +X 3)

⇐⇒ P ∈ vect (1+3X +3X 2 +X 3)

Conclusion : H = vect (1+3X +3X 2 +X 3) est la droite dirigée par (1+3X +3X 2 +X 3)

Remarque : 1+3X +3X 2 +X 3 = (1+X )3.

2. On a

P ∈G ⇐⇒ P ∈R4[X ] et P (1) = 0etP (2) = 0

⇐⇒ P = a +bX + c X 2 +d X 3 +e X 4 et P (1) = 0etP (2) = 0

⇐⇒
{

a + b + c + d + e = 0

a +2b +4c +8d +16e = 0

⇐⇒
{

a +b + c + d + e = 0

b +3c +7d +15e = 0

⇐⇒ −−→
Sol =


a
b
c
d
e

= c


2
−3
1
0
0

+d


6
−7
0
1
0

+e


14
−15

0
0
1


⇐⇒ P = c (2−3X +X 2)

A

+d (6−7X +X 3)

B

+e (14−15X +X 4)

D

⇐⇒ P ∈ vect (A,B ,C )

Conclusion : G est le ssev dirigé par (A,B ,C ). La famille est libre (car les degré sont 2 à 2 6= 0)
Ainsi (A,B ,C ) est une base de G et dim(G) = car d(B ase) = 3

Solution de l’exercice 8 (Énoncé)

1. Soit M =
(

a c
b d

)
∈M2(R). On a

AM =
(

3a +b 3c +d
−7a +b −7c +d

)
et M A =

(
3a −7b a +b
3c −7b c +d

)
2. On a

M ∈ H ⇐⇒ AM = M A

⇐⇒
(

3a +b 3c +d
−7a +b −7c +d

)
=

(
3a −7b a +b
3c −7b c +d

)
⇐⇒ On écrit le système et on résout et on conclut quec dim(H) = 2
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3. On utilise : libre et dimension=cardinal.

(I2, A) est une famille libre de H car 6= 0 et non//

car di nal = 2

dim(H) = 2 <∞


=⇒ (I2, A) est une base de H

4. On a A2.A = A3 = A.A2, donc A2 commute avec A, ainsi A2 ∈ H .
On a maintenant

(I2, A) est une base de H

A2 ∈ H

 =⇒ il existe a,b tel que
A2 = a I2 +b A

On fait de même avec A−1
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Solution de l’exercice 9 (Énoncé)

1. La famille ( f0 , f1 , ..., fn ) n’est pas une famille de vecteur colonne, ni une famille de polynôme

C’est une famille de fonction donc on va suivre la définition.

On suppose que : a0 f0 +a1 f1 +a2 f2 +·· ·+an fn = 0

ainsi on a que : ∀x ∈R, a0 +a1 ex +a2 e2x +·· ·+an enx

Gauche

= 0
Dr oi te

On va montrer que a0 = a1 = ·· · = an = 0

Voici 2 façons de conclure.
>

::::
Avec

:::
les

:::::
ordres

:::
de

:::::::
grandeur

:::::
quand

::::::
x →∞.

Quand x →∞ le plus "gros" à gauche, c’est : an enx ,
donc forcément an = 0.

On poursuit en regardant à nouveau le plus gros. Fini

>
::::
Avec

:::
les

:::::::::
polynômes.

On remarque que : a0 +a1 ex +a2 e2x +·· ·+an enx = P (ä)

avec ä= ex et P (ä) = a0 +a1ä+a2ä2 +·· ·+an ä2

On utilise maintenant le théorème fondamental des polynômes

P (ä) = 0

Quand x varie dans R,
alors ä= ex prend toutes les valeurs dans R∗+

Donc une infinité de valeurs


=⇒ P (X ) = 0

Comme le polynôme P est nul, tous ses coefficients sont nuls donc a0 = a1 = ·· · = an = 0 Fini.
2. La famille (P0 ,P1 , ...,Pn ) n’est pas une famille de vecteur colonne, mais c’est une famille de polynôme

Donc pour montrer libre, on va essayer avec les degrés.

> On essaye avec l’étude des degrés. On a facilement ∀ i ∈ {0,1, ...,n}, deg(Pi ) = n.
Donc les degrés ne permettent pas de conclure.

> On essaye avec la def de libre. On suppose que : a0 P0 +a1 P1 +a2 P2 +·· ·+an Pn = 0

ainsi on a que : a0 X 0(X −1)n +a1 X 1(X −1)n−1 · · ·+an X n (X −1)0

Gauche

= 0
Dr oi te

On va montrer que a0 = a1 = ·· · = an = 0

On va utiliser l’ordres de grandeur quand x → 0.

Quand x → 0 l’ordre de grandeur de Pi (x) c’est xi donc le plus gros c’est P0, puis le suivant c’est P1,
puis P2, ... etc.
Quand x → 0 le plus "gros" à gauche, c’est : a0 x0,

donc forcément a0 = 0.
On poursuit en regardant à nouveau le plus gros. Fini

3. La famille ( f0 , f1 , ..., fn ) n’est pas une famille de vecteur colonne, ni une famille de polynôme

C’est une famille de fonction donc on va suivre la définition.

On suppose que : ∀x ∈R, a0 +a1 sin(x)+a2 sin(2x)+·· ·+an sin(nx) = 0

On va montrer que a0 = a1 = ·· · = an = 0

On peut conclure avec les ordres de grandeur quand x →∞ ou bien avec les polynômes.
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Solution de l’exercice 10 (Énoncé)
On commence par déterminer une famille génératrice de H qui on l’espère sera une base

−→u = (x1, · · · , xn ) ∈ H ⇐⇒ x1 +2 x2 +·· ·+n xn = 0

⇐⇒


x1
x2
...

xn

= x2


−2
1
...
0


−→
C2

+x3



...

...

...

...


−→
C3

+·· ·+xn



...

...

...

...


−→
Cn

Comme les scalaires sont indépendants, on a H = vect (
−→
C2, · · · ,

−→
Cn .

De plus la famille (
−→
C2, · · · ,

−→
Cn est en escalier donc libre

Conclusion : (
−→
C2, · · · ,

−→
Cn est libre et génératrice de H

donc c’est une base et dim(H) = car di nal (B ase) = n −1.
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Solution de l’exercice 11 (Énoncé)
1. On sait que les matrices Ei , j forment une base de Mn (R),

Ainsi dim(Mn (R)) = car di nal (B ase) = n2.

2. La famille
(
In , A, A2, ..., An2 )

est de cardinal n2 +1.

De plus on sait que car d(Li br e) É car d(B ase) = n2

Conclusion : La famille
(
In , A, A2, ..., An2 )

est forcément liée ! ! !

Ainsi il existe une CL nulle, CàD il existe un polynôme qui annule la matrice.
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Solution de l’exercice 12 (Énoncé) C’est une généralisation des polynômes de l’exo 4
1. On a

L0 =���XXX(X −0)(X −1) · · · (X −n) et L1 = (X −0)���XXX(X −1)(X −2) · · · (X −n).

2. Il est clair que : ∀ i ∈ {0,1,2, ...,n}, deg (Li ) = n.

De plus k ∈ {0,1,2, ...,n}, Li (k) =


= 0 si k 6= i

6= 0 si k = i
.

3. On utilise Libre + cardinal=dimension

::::
Libre

::
?

Soit l’équation vectorielle a0 L0 +a1 L1 +a2 L2 + ...+an Ln = 0

On va montrer que a0 = a0 = ·· · = an = 0

On applique l’égalité en x = k ainsi 0+0+ ...+ak Lk (k)+ ..+0 = 0

comme Lk (k) 6= 0, on a ak = 0.

Conclusion : La famille B = (L0,L1,L2, ...,Ln ) est libre de Rn [X ] et de car di nal = n +1 = dim(Rn [X ]),
donc c’est une base de Rn [X ].

4.
::::
Tout

::::::
d’abord

:::
on

:::::
justifie

::::
que

::
la

::
CL

::::::
existe.

B = (L0,L1,L2, ...,Ln ) est une base de Rn [X ]

1 ∈R2[X ]

 =⇒ il existe a,b,c tel que
a0 L0(X )+ a1 L1(X )+·· ·+ an Ln (X ) = 1

:::
Puis

:::
on

::::::
calcule

::
les

::::::::
scalaires.

J’applique l’égalité en x = k, ainsi 0+0+ ..+ak Lk (k)+ ...+0 = 1

donc ak = 1

Lk (k)

Conclusion : 1 =
n∑

k=0

Lk (X )

Lk (k)
.

Généralisation : En suivant la même démarche, on a

Si P ∈Rn [X ], P =
n∑

k=0
P (k)

Lk (X )

Lk (k)
.

Remarque : Lk (k) = (k −0)(k −1) · · · (1)���XXX(k −k) (−1)(−2) · · · (−(n −k)), donc

Lk (k) = (−1)n−1 k ! (n −k)!
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Solution de l’exercice 13 (Énoncé)
1. On sait que dim(Rn [X ]) = n +1 ?

2. Soit P un polynôme de degré n.
Il est clair que : ∀k ∈Z, deg (P (X +k)) = deg (P )

C’est tellement évident que c’est faux en fait faux quand n = 0, par contre deg (P (X +k)) É deg (P ) est toujours juste.

3. La famille [P (X ), P (X +1), P (X +2), · · · , P (X +n),P (X +n +1)] est de cardinal n +2.
De plus on sait que car d(Li br e) É car d(B ase) = n +1

Conclusion : La famille (P (X ), P (X +1), P (X +2), · · · , P (X +n),P (X +n +1)) est forcément liée ! ! !

Kulture : On peut même démontrer que
n+1∑
k=0

(
n

k

)
P (X +K ) = 0.
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