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1 Morphisme.

1.1 Définition et Shortcut : hA.

Définition 1. Définition et vocabulaire
Soit E et F deux R-espace vectoriel. Soit φ une fonction de E à valeurs dans F .

On dit que φ est un morphisme ou fonction linéaire ou application linéaire

Ssi la fonction est définie sur E , CàD D = E et

> φ associe les nulles, CàD φ(
−→
0E ) =−→

0F .
et
> φ distribue les CL, CàD

∀−→u , −→v , λ, µ, φ(λ−→u +µ−→v ) =λφ(−→u )+µφ(−→v ).

Notation et Vocabulaire.

> L (E ,F ), c’est l’ensemble des applications linéaires de E à valeurs dans F .

les éléments de L (E ,F ) sont appelés les morphismes de E dans F .

> L (E), c’est l’ensemble des applications linéaires de E à valeurs dans E .

les éléments de L (E) sont appelés les endomorphismes de E .

> I som(E ,F ), c’est l’ensemble des applications linéaires bijectives de E sur F .

les éléments de I som(E ,F ) sont appelés les isomorphismes de E sur F .

> GL(E) ou Aut (E), c’est l’ensemble des endomorphismes bijectives de E (sur E).

les éléments de GL(E) ou Aut (E) sont appelés les automorphismes de E .

Exemples de fonction linéaire

> La multiplication par un objet fixe est linéaire.

> J’applique en ä= f i xe est linéaire.

> La dérivation est linéaire.

> La trace, la transposition sont linéaires.

Théorème 2. Les morphisme de Rp à valeurs dans Rn .
Soit A une matrice de taille n ×p.

La fonction, hA associée à la matrice A et noté hA , est la fonction définie par

hA :Rp −→Rn ;
−→
U 7−→ A

−→
U

De plus cette fonction est un morphisme de Rp à valeurs dans Rn .

Réciproquement : Si/lorsque ϕ est un morphisme de Rp à valeurs dans Rn

alors il existe une unique matrice A tel que ϕ= hA



Chapitre 19-3 : Espace Vectoriel : Morphisme (Season three). 2 / 10

1.2 Opérations sur les morphismes.

Théorème 3. Opérations sur les morphismes

> Une CL de fonctions linéaires est encore linéaire

Soit E et F deux R-espace vectoriel.

Soit f , g ∈L (E ,F ), CàD des morphismes de E à valeurs dans F et λ,µ ∈R
Alors λ f +µg ∈L (E ,F ), CàD

f est linéaire
g est linéaire

}
=⇒ λ f +µg est linéaire

Interprétation :
(
L (E ,F ),+, .

)
est un R-espace vectoriel.

> Le produit de deux morphismes n’a pas de sens (en général) et n’est pas linéaire.

> Une composée de fonctions linéaires est encore linéaire

Soit E , F et G trois R-espace vectoriel.

Soit f ∈L (E ,F ) et g ∈L (F,G)

Alors la composée [g ◦ f ] se calcule et [g ◦ f ] ∈L (E ,G),

f est linéaire
g est linéaire

}
=⇒ [g ◦ f ] est linéaire

> Pour des fonctions linéaires, la composée se distribue, CàD

( f1 + f2)◦ g = ( f1 ◦ g )+ ( f2 ◦ g )

f ◦ (g1 + g2) = ( f ◦ g1)+ ( f ◦ g2)

2 Injectivité-Surjectivité et linéarité.

2.1 Noyau et injectivité.

Définition 4. Définition du noyau

Soit E , F deux R-espaces vectoriels et h ∈L (E ,F ), CàD une fonction linéaire de E à valeurs dans F .

Le noyau h, noté ker(h), est l’ensemble

ker(h) =
{−→u ∈ E tel que h(−→u ) =−→

0
}

Remarque Kulturel : ker de l’allemand der Kern, le noyau

Théorème 5. Propriétés des noyaux

Soit E , F deux R-espaces vectoriels et h ∈L (E ,F )

> Ssev. ker(h) est un ssev du Dépar t = E .

> Définition. −→u ∈ ker(h) ⇐⇒ h(−→u ) =−→
0

⇐⇒ on résout l’équation h
(−→
U

)
=−→

0

⇐⇒ On en déduit une famille géné de ker(h)

> Noyau et injectivité. la fonction h est injective ⇐⇒ ker(h) = {
−→
0 }

⇐⇒ dim(kerh) = 0
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2.2 Image et surjectivité.

Définition 6. Rappel : L’image d’une fonction

Soit E , F deux R-espaces vectoriels et h ∈L (E ,F ), CàD une fonction linéaire de E à valeurs dans F .

L’image de h, noté Im(h), est l’ensemble des vecteurs de A = F

de la forme h(a) avec a un vecteur de D = E

Théorème 7. Propriétés de Im(h)

Soit E , F deux R-espaces vectoriels et h ∈L (E ,F )

On a

> Ssev. Im(h) est un ssev du Ar r i vée = F .

> Définition. −→u ∈ Im(h) ⇐⇒ Il existe −→a ∈D tel que h(−→a ) =−→u
::::::::::
Application :

−→
b ∈ Im(h) Ssi l’équation h(

−→
X ) =−→

b admet des solutions

Application : f est surjective ⇐⇒ Im( f ) = F

⇐⇒ dim(Imh) = Top <∞

2.3 Théorème du rang.

Théorème 8. théorème du rang

Soit E , F deux R-espaces vectoriels et f ∈L (E ,F ),

On a : dimker ( f )+dimIm( f ) = dimDépar t = dim(E).

3 À quoi ça sert?

3.1 Résoudre les équations

Retour sur quelques Équation/Situation "classique/théorique/pratique"

> Lorsque h réalise une bijection de E sur E ′

Alors Pour tout b ∈ E ′, l’équation h(X ) = b admet une unique solution

> Résoudre le système d’équation.{
x + y + z = 1

2x +3y +4z = 5
⇐⇒ On trigonalise

pratique

⇐⇒ A
−→
U =−→

b
Théorie

Théorème 9. Résoudre les équations h
(−→

X
)
=−→

b

Soit E , F deux R-espaces vectoriels et ϕ : E −→ F un morphisme.

Soit
−→
b ∈ F un vecteur (fixé)

Les solutions de l’équation ϕ
(−→

X
)
=−→

b sont la somme, la superposition de

> Une sol particulière,
−→
X0

> Les solution
−→
h de l’équation homogène ϕ

(−→
X

)
=−→

0 , CàD les vecteurs du noyau,

Ainsi on a : h
(−→

X
)
=−→

b ⇐⇒ −→
X =−→

X0 +
−→
h avec

−→
h ∈ kerϕ

Exemple : On dit qu’une équation différentielle est une EDL si/lorsque ce théorème s’applique

• Résoudre l’EDL2 : y ′′+2y ′−3y = x2 +1 Ici ϕ : C (R,R) −→C (R,R)

y 7−→ϕ(y) = y ′′+2y ′−3y

et b :R−→R

x 7−→ b(x) = x2 +1
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3.2 Transporter des bases

Théorème 10. Base/Bijectivité

Soit E , F deux R-espaces vectoriels et h : E −→ F un morphisme.
Soit (−→e1,−→e2, ...,−→en) est une base de Dépar t = E et h un morphisme.

h est injective ⇐⇒ (
h(−→e1),h(−→e2), ...,h(−→en)

)
est une famille libre���XXX(base) de F

h est surjectif ⇐⇒ (
h(−→e1),h(−→e2), ...,h(−→en)

)
est une famille géné���XXX(base) de F

Conclusion : h est bijectif ⇐⇒ (
h(−→e1),h(−→e2), ...,h(−→en)

)
est une famille base de F

Exemple : Les polynômes interpolateurs de Lagrange.

4 Bijection réciproque.

Soit (−→e1,−→e2, ...,−→en) est une base du Dépar t

Soit E , F deux R-espace vectoriel et f ∈L (E ,F ), CàD une fonction linéaire de E à valeurs F .

On connait les résultats suivants

>
:::::::::

Définition
:::

de
::::::::
bijective.

f est bijective ⇐⇒


f est injective

f est surjective

>
:::::::

inj-surj
::
et

::::::::
linéarité.

f est injective ⇐⇒ ker( f ) = {
−→
0 }.

f est surjective ⇐⇒ Ar r i vée = Im( f ) = vect ( l’image d’une base ).

Et en plus, il y a le théorème du rang.

Théorème 11. linéaire bijective

La bijection réciproque d’une fonction linéaire est encore linéaire.

Soit E , F deux R-espace vectoriel.
Soit f ∈ I som(E ,F ), CàD une fonction linéaire bijective de E sur F .

Alors la bijection réciproque f −1 est une fonction linéaire, CàD

f est linéaire

f est bijective

 =⇒ f −1 est linéaire
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5 Endomorphisme.

5.1 Définition et structure algébrique.

Définition 12. Endomorphisme, Automorphisme

Soit E un R-espace vectoriel. Soit f une fonction.

> On dit que f est un endomorphisme de E Ssi la fonction f est une application linéaire de E à valeurs
dans E .

L (E), c’est l’ensemble des endomorphismes de E .

> On dit que φ est un automorphisme de E Ssi la fonction f est un endomorphisme bijectif de E .

Aut (E) ou GL(E), c’est l’ensemble des automorphismes de E .

Théorème 13. Opérations classiques dans L (E)

Soit E un R-espace vectoriel. Soit f , g ,h des endomorphismes de E .
On a

> CL. λ f +µg est encore un endomorphisme de E
Ainsi L (E) est stable par CL

> Composée. f ◦ g et g ◦ f se calculent et sont des endomorphismes
De plus la composée se distribue (comme un produit)

( f1 + f2)◦ g = ( f1 ◦ g )+ ( f2 ◦ g )
et
f ◦ (g1 + g2) = ( f ◦ g1)+ ( f ◦ g2)

Sauf exception, f ◦ g 6= g ◦ f .

Théorème 14. injectif, surjectif, bijectif

E un R-espace vectoriel et h ∈L (E), un endomorphisme de E

On suppose que dim(E) = n <∞, alors on a

h est injectif ⇐⇒ h est surjectif ⇐⇒ h est bijectif

Attention l’hypothèse dim(E) = n <∞ est indispensable.

:::::::
Structure

:::::::
algébrique.

> Comme L (E) est stable par CL, (L (E),+, .) est un R-espace vectoriel.

> Comme (entre autre) la composition ◦ se distribue, (L (E),+,◦) est un anneau non-commutatif.

Théorème 15. Le groupe GL(E)

Soit E un R-espace vectoriel et Aut (E), l’ensemble des automorphismes de E

Alors (Aut (E),◦) est un groupe.
Ce qui explique l’autre notation, CàD Aut (E) =GL(E).

En fait (Aut (E),◦) est le groupe des inversibles de l’anneau (L (E),+,◦).
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5.2 Calculs avec les endomorphismes.

Soit E un R-espace vectoriel. Soit f , g ,h des endomorphismes de E .

>
::
La

::::::::
fonction

:::::::::::::::::::
i dE : E −→ E ;−→u 7−→−→u .

la célèbre fonction i dE est un endomorphisme bijectif de E ,

c’est donc un automorphisme de E

>
:::::::::
Composée

::::::
itérée.

Comme f est un endomorphisme,

on peut le composer avec lui même ainsi

f ◦ f et f ◦ f ◦ f se calculent et sont des endomorphismes

Notation classique : On note souvent f 2 à la place de f ◦ f et f 3 à la place de f ◦ f ◦ f ,

Convention : f 0 = i dE

>
:::::::::
Polynôme

::::::::::::::::
d’endomorphisme.

Comme on peut faire des CL avec des endomorphismes

et que i dE , f , f 2 = f ◦ f , f 3 = f ◦ f ◦ f ,... sont des endomorphismes
Alors le ”polynôme” 2 f 2 +3 f −4i dE = 2[ f ◦ f ]+3 f −4i dE

se calcule et est un endomorphisme.

Avec des endomorphismes, la composée se distribue comme un produit,

les opérations classiques sur les polynômes sont valides. Ainsi

(2 f 2 +3 f −4i dE )◦ ( f 2 − f +2i dE ) = [4] f 4 + [3−2] f 3 + [4−3−4] f 2 + [6+4] f − [8] i dE

>
:::::::
Binôme.

Comme la composée avec des endomorphismes se comporte comme un produit non commutatif

donc en plus des opérations classiques on a

Comme f ◦ i dE = i dE ◦ f , on a

(i dE + f )n =
n∑

k=0

(
n

k

)
f k = i dE

k=0

+ n f

k=1

+
(

n

2

)
f ◦ f

k=2

+·· ·

Plus généralement, Lorsque f ◦ g = g ◦ f , on a ( f + g )n =
n∑

k=0

(
n

k

)
f k .g n−k

>
:::::::::
Nilpotent.

On dit que f est un endomorphisme nilpotent d’ordre 3 Ssi f 3 = f ◦ f ◦ f = 0.
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6 Exercices.

Exercice 1. Pour les fonctions f suivantes :

f : (x, y) 7−→ (x +2y , 2x − y)

f : (x, y) 7−→ (x +2y , 2x − y +1)

f : (x, y) 7−→ (x +2y , 2x − y , 3x + y)

f : (x, y, z) 7−→ (y −x , x + y + z , x − y)

f : (x, y, z) 7−→ (x + y , 2x + y + z , 2)

f : (x, y, z) 7−→ (x + y , −2x + y)

1. Préciser D et A .
Quand c’est possible, déterminer une matrice A tel que f (−→u ) = A

−→
U .

Les fonction f sont-elle des morphismes ?
2. Quand f est un morphisme. On admet que f est bijective Ssi A est inversible.

Déterminer parmi les morphismes ceux qui sont bijectif.
3. Quand f est un morphisme non bijectif, déterminer ker( f ) et Im( f ).

Exercice 2. On considère
H = {−→u = (x1, x2, ..., xn) ∈Rn tel que x1 +2 x2 +·· ·+n xn = 0}

1. Approche classique.
Montrer que H est un ssev, déterminer une base et la dimension de H .

2. Approche avec les morphismes.

(a) Déterminer une matrice A tel que
−→u ∈ H ⇐⇒ x1 +2 x2 +·· ·+n xn = 0 ⇐⇒ A

−→
U = 0

Trouver un morphisme f tel que H = ker( f ).
(b) Déterminer Im( f ). En déduire la dimension de H .

Exercice 3. [Correction] Reprendre les questions de l’exercice précédent avec

H =
{
−→u = (x1, x2, ..., xn) ∈Rn tel que

{
x1 +2 x2 +·· ·+n xn = 0

x1 + x2 +·· ·+ xn = 0

}

Exercice 4. La fonction associée à la matrice A.
Soit A ∈M2(R) une matrice 2×2. On considère la fonction hA définie par

∀−→
X ∈M2,1(R), hA

(−→
X

)
= A

−→
X

1. Montrer que hA ∈L (R2).
2. On suppose que la matrice A est inversible.

Montrer que : hA est bijective et déterminer h−1
A . .

Exercice 5. On considère la fonction f définie par
∀M ∈M2(R), f (M) = M +M T

Rappel : Déterminer un ssev H signifie trouver une base de H et la dimension de H .
1. Montrer que f ∈L (M2(R)).
2. Déterminer ker( f ). En déduire la dimension de Im( f ).
3. Déterminer l’image d’une base D par f , en déduire l’image de Im( f ) puis la dimension ker( f ).
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Exercice 6. [Correction] Soit A ∈Mn(R) une matrice non nulle.
On considère la fonction f définie par ∀M ∈Mn(R), f (M) = M + tr (M)A

1. Montrer que f ∈L (M2(R)).
2. On va déterminer K er ( f )

(a) Montrer que : ker( f ) ⊂ vect (A)

(b) Étudier si vect (A) ⊂ ker( f ) et conclure que
Lorsque tr (A) =−1 alors ker( f ) = vect (A)

Lorsque tr (A) 6= −1 alors ker( f ) = {0}.
3. On suppose que tr (A) 6= −1.

Montrer que ∀B ∈Mn(R), il existe C ∈Mn(R) tel que C + tr (C )A = B .

Exercice 7. On considère la fonction f définie par

∀P ∈R2[X ], f (P ) =
 P (1)

P (2)
P (−1)


1. Montrer que f ∈L (R2[X ],R3).
2. Montrer que : f est injective puis que f est bijective.
3. Déterminer l’image d’une base de D par f . En déduire que f est surjective puis que f est bijective.
4. En utilisant la bijectivité de f , montrer qu’il existe un unique polynôme de degré É 2 tel que

P (1) = 2, P (2) =−1, P (−1) = 1

Exercice 8. Soit n ∈N. On considère la fonction f définie par

∀P ∈Rn[X ], f (P ) = 2P ′′+3P ′−5P

1. Montrer que f ∈L (Rn[X ]).
2. Montrer, en utilisant le degré, que : ker ( f ) = {

−→
0 }. En déduire que : f est bijective.

3. Déterminer l’image d’une base de D par f . En déduire que f est surjective puis que f est bijective.
4. En utilisant la bijectivité de f , montrer qu’il existe un unique polynôme de degré É 3 tel que

2P ′′+3P ′−5P = 3 X 3 −1

Kulture : Cet exercice est la démonstration du principe du miroir.

Exercice 9. Soit n ∈N. On considère la fonction f définie par

∀P ∈Rn[X ], f
(
P (X )

)
= P (X +1)−P (X )

1. Montrer que f ∈L (Rn[X ]).
2. Déterminer l’image d’une base de D par f . En déduire que Im( f ) =Rn−1[X ]

3. En utilisant Im( f ) =Rn−1[X ], montrer qu’il existe un polynôme de degré É 3 tel que
P (X +1)−P (X ) = X 2

Exercice 10. On considère la fonction f définie par

∀P ∈R[X ], f (P ) = (
P (0),P ′)

1. Montrer que f est linéaire.
2. Montrer que : f est injective.
3. Montrer que f est surjective.



Chapitre 19-3 : Espace Vectoriel : Morphisme (Season three). 9 / 10

Correction.
Solution de l’exercice 3 (Énoncé)

1. Approche classique.
2. Approche avec les morphismes.

(a) On veut
−→u ∈ H ⇐⇒

{
x1 +2 x2 +·· ·+n xn = 0

x1 + x2 +·· ·+ xn = 0
⇐⇒ A

−→
U =

(
0
0

)

La matrice A =
(

1 2 3 · · · n
1 1 1 · · · 1

)
convient

On considère la fonction f définie par f (−→u ) = A
−→
U

on a −→u ∈ H ⇐⇒ A
−→
U = 0 ⇐⇒ f (−→u ) = 0 ⇐⇒ −→u ∈ ker( f ).

Donc H = ker( f ).
(b) Étude de Im( f ).

> La fonction f est définie de D =Rn à valeurs dans A =R2.

> Im( f ) est un ssev de A =R2

Donc dim(Im( f )) É 2.

> Le théorème du rang n’apporte aucune information tangible.

> On sait
Im( f ) = vect ( l’image d’une base )

= vect ( f (−→e1), f (−→e2), ..., f (−→en ))

Or f (−→e1) =
(

1
1

)
−→
C1

, f (−→e2) =
(

2
1

)
−→
C2

, ....

Les vecteurs −→
C1,

−→
C2 forment une famille libre de Im( f ) car 6= 0 et non //.

Ainsi dim(Im( f )) Ê car di nal (l i br e) = 2

Conclusion : dim(Im( f )) = 2.

Grâce au théorème du rang, on a dim(H) = dim(ker( f )) = n −2

Solution de l’exercice 6 (Énoncé)
Soit A ∈Mn (R) une matrice. On considère la fonction f définie par

∀M ∈Mn (R), f (M) = M + tr (M)A

1. Comme M , A ∈Mn (R), il est clair que f est à valeurs dans Mn (R).

::::::
Linéaire

::
?

>
::::::

−→
0 7−→−→

0
::
? On a f (0) = 0+ tr (0) A = 0,

Donc f conserve le vecteur nul.

>
::::::::
C L 7−→C L

::
? On a

f (λM +µM ′) = (λM +µM ′)+ tr (λM +µM ′) A

Or on sait que : tr (λM +µM ′) =λ tr (M)+µ tr (M ′)
Finir les calculs.

2. On va déterminer K er ( f )

(a) On va démontrer ker( f ) ⊂V ect (A) avec la définition.
On suppose que M ∈ ker( f )

On va montrer que : M ∈V ect (A)

Comme M ∈ ker( f ), on a f (M) = M + tr (M)A = 0.
Ainsi M =−tr (M) A ∈V ect (A) car −tr (M) ∈R est un scalaire.
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(b) On suppose que M ∈V ect (A).
On va calculer f (M)

Comme M ∈V ect (A), on a M =λA, ainsi

f (M) = (λA)+ tr (λA)A =λ [1+ tr (A)] A

> Lorsque tr (A) =−1 alors f (M) = 0 donc V ect (A) ⊂ ker( f ) et donc ker( f ) =V ect (A).

> Lorsque tr (A) 6= −1 alors λ= 0 et donc ker( f ) = {0}.
3. On suppose que tr (A) 6= −1.

On vient de voir que ker ( f ) = {
−→
0 } la fonction f est injective.

Ainsi f est un endomorphisme, injectif de Mn (R) et dim(Mn (R)) = n2 <∞
Donc f est bijectif, c’est un automorphisme de Mn (R).

Ainsi ∀B ∈A =Mn (R) l’équation f (M) = B admet une unique solution notée C

Conclusion : ∀B ∈Mn (R), il existe C ∈Mn (R) tel que C + tr (C )A = B .
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