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1 Morphisme.

1.1 Définition et Shortcut: /1 4.
Définition 1. Définition et vocabulaire
Soit E et F deux R-espace vectoriel. Soit ¢p une fonction de E a valeurs dans F.

On dit que ¢ est un morphisme ou fonction linéaire ou application linéaire
Ssi la fonction est définie sur E, cap 2 = E et

> ¢ associe les nulles, CaD ¢(0_é) = 0_1;
et
> ¢ distribue les CL, CaD
VU, T, M0 GAU+uT)=Ap(U) +udp(v).

Notation et Vocabulaire.

> Z(E, F), c'est 'ensemble des applications linéaires de E a valeurs dans F.
les éléments de £ (E, F) sont appelés les morphismes de E dans F.

> Z(E), c'est'ensemble des applications linéaires de E a valeurs dans E.
les éléments de .Z(E) sont appelés les endomorphismes de E.

> Isom(E, F), c’est'ensemble des applications linéaires bijectives de E sur F.
les éléments de Isom(E, F) sont appelés les isomorphismes de E sur F.

> GL(E) ou Aut(E), c’'est'ensemble des endomorphismes bijectives de E (sur E).
les éléments de GL(E) ou Aut(E) sont appelés les automorphismes de E.

Exemples de fonction linéaire

> La multiplication par un objet fixe est linéaire.
>J’applique en O = fixe est linéaire.
> La dérivation est linéaire.
> La trace, la transposition sont linéaires.

Théoréme 2. Les morphisme de R” a valeurs dans R".

Soit A une matrice de taille n x p.

La fonction, h4 associée a la matrice A et noté h 4, est la fonction définie par
hp:RP —R"; U— AU
De plus cette fonction est un morphisme de R” a valeurs dans R".

Réciproquement : Si/lorsque ¢ est un morphisme de R” a valeurs dans R"
alors il existe une unique matrice A tel que ¢ = hy
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1.2 Opérations sur les morphismes.

Théoréme 3. Opérations sur les morphismes
> Une CL de fonctions linéaires est encore linéaire
Soit E et F deux R-espace vectoriel.
Soit f,g € Z(E,F), CaD des morphismes de E a valeurs dans Fet A,z € R
Alors Af + uge Z(E,F), CaD

f estlinéaire

¢ est linéaire } = Af +ug estlinéaire

Interprétation : (.,2” (E,F),+, ) est un R-espace vectoriel.
> Le produit de deux morphismes r'a pas de sens (en général) et n’est pas linéaire.

> Une composée de fonctions linéaires est encore linéaire

Soit E, F et G trois R-espace vectoriel.
Soit f e Z(E,F)etge Z(F,G)

Alors la composée [go f] se calcule et [go fl € Z(E,G),

[ est linéaire

g est linéaire } = [go [l est linéaire

> Pour des fonctions linéaires, la composée se distribue, CaD
(fi+tfrlog=(ficg) +(f208)
fol(gi+8)=(fog1)+(fogo)

2 Injectivité-Surjectivité et linéarité.
2.1 Noyau et injectivité.

Définition 4. Définition du noyau
Soit E, F deux R-espaces vectoriels et i € -Z(E, F), CaD une fonction linéaire de E a valeurs dans F.

Le noyau h, noté ker(h), est'ensemble
ker(h) = {TZ € E tel que h(u) = 6}

Remarque Kulturel : ker de 'allemand der Kern, le noyau

Théoréme 5. Propriétés des noyaux
Soit E, F deux R-espaces vectoriels et h € £ (E, F)

> Ssev. ker(h) est un ssev du Zgpars = E.
> Définition. 7 € ker(h) < h(#)=0
< onrésout’équation h (_U)) =0
<= On en déduit une famille géné de ker(h)

> Noyau et injectivité. la fonction / est injective <= ker(h) = {0}
< dim(kerh) =0
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2.2 Image et surjectivité.

Définition 6. Rappel : Limage d’une fonction
Soit E, F deux R-espaces vectoriels et & € Z(E, F), CaD une fonction linéaire de E 4 valeurs dans F.

Limage de h, noté Im(h), est 'ensemble des vecteurs de o7 = F
de la forme h(a) avec a un vecteur de ¥ = E

Théoréme 7. Propriétés de Im(h)
Soit E, F deux R-espaces vectoriels et h € Z(E, F)
Ona
> Ssev. Im(h) est un ssev du .7, pge = F.
> Définition. U € Im(h) < Ilexiste'd € Z telque h(d)=u

Application : Db eIm(h) Ssi I'équation h(X)= b admet des solutions

Application: f est surjective <= Im(f)=F

<= dim (Imh) = Top < oo

2.3 Théoréme du rang.
Théoréme 8. théoréme du rang

Soit E, F deux R-espaces vectoriels et f € Z(E, F),
Ona: dimker(f)+dimIm(f)=dimPspar; = dim(E).

3 Aquoicasert?

3.1 Résoudre les équations

Retour sur quelques Equation/Situation "classique/théorique/pratique"
> Lorsque h réalise une bijection de E sur E’

Alors Pour tout b € E', 'équation h(X) = b admet une unique solution
> Résoudre le systeme d’équation.

X+ y+ z=1 . . - -

<= Ontrigonalise < AU=10>

2x+3y+4z=5 1 L
pratique Théorie

Théoréme 9. Résoudre les équations / (}) =D
Soit E, F deux R-espaces vectoriels et ¢ : E— F un morphisme.
Soit b € F un vecteur (fixé)

Les solutions de I'équation ¢ (X ) = b sont la somme, la superposition de

.
> Une sol particuliere, Xq

> Les solution 7z de I'équation homogene ¢ (}) =0, CaD les vecteurs du noyau,

Ainsiona:h(?)zz — X=Xo+h avec?z'ekeup

Exemple : On dit qu'une équation différentielle est une EDL si/lorsque ce théoreme s'applique
e Résoudre 'EDL2: y" +2)' -3y=x*+11Ici ¢:F RR) — € R,R) eth:R—R

y—oy)=y"+2y' -3y x— b(x) = x*+1

3/10
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3.2 Transporter des bases

Théoreme 10. Base/Bijectivité

Soit E, F deux R-espaces vectoriels et i : E— F un morphisme.
Soit (], 3,..., ;) est une base de Dspary = E et h un morphisme.

h est injective <= (h(e1), h(e3),..., h(ey)) est une famille libre Thasel de F

h est surjectif < (h(e1), h(ez),..., h(ey)) est une famille géné Thasel de F

Conclusion : & est bijectif <> (h(e1), h(e2), ..., h(ey)) est une famille base de F

Exemple : Les polyndomes interpolateurs de Lagrange.

4 Bijection réciproque.
Soit (e1, €3, ..., en) est une base du Zpar:
Soit E, F deux R-espace vectoriel et f € Z(E, F), CaD une fonction linéaire de E a valeurs F.

On connait les résultats suivants

> Définition de bijective.
[ estinjective
f estbijective <
f est surjective

f estinjective < ker(f) = {0}
[ est surjective < ;ripee = Im(f) = vect( l'image d'une base).

Et en plus, il y a le théoréme du rang.

Théoreme 11. linéaire bijective

La bijection réciproque d’une fonction linéaire est encore linéaire.

Soit E, F deux R-espace vectoriel.
Soit f € Isom(E, F), CaD une fonction linéaire bijective de E sur F.

Alors la bijection réciproque f~! est une fonction linéaire, CaD

f estlinéaire
= ! estlinéaire
f est bijective
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5 Endomorphisme.

5.1 Définition et structure algébrique.

Définition 12. Endomorphisme, Automorphisme
Soit E un R-espace vectoriel. Soit f une fonction.

> On dit que f est un endomorphisme de E Ssi la fonction f est une application linéaire de E a valeurs

dans E.
Z(E), c'est 'ensemble des endomorphismes de E.

> On dit que ¢ est un automorphisme de E Ssila fonction f est un endomorphisme bijectif de E.

Aut(E) ou GL(E), c’est'ensemble des automorphismes de E.

Théoréme 13. Opérations classiques dans .7 (E)
Soit E un R-espace vectoriel. Soit f, g, h des endomorphismes de E.
Ona

>CL. A f+ ug estencore un endomorphisme de E
Ainsi .Z (E) est stable par CL

> Composée. fogetgo f secalculent et sont des endomorphismes
De plus la composée se distribue (comme un produit)

(fi+tfa)og=(ficg +(fa08)
et

fo(g1+8)=(fog)+(fog)
Sauf exception, fog # go f.

Théoreéme 14. injectif, surjectif, bijectif
E un R-espace vectoriel et h € Z(E), un endomorphisme de E

On suppose que dim(E) = n < oo, alors on a

h estinjectif <= h est surjectif < h est bijectif

Attention 1’hypothése dim(E) =n<oo est indispensable.

> Comme .Z (E) est stable par CL, ((Z(E), +,.) est un R-espace vectoriel.

> Comme (entre autre) la composition o se distribue, (£ (E), +,0) est un anneau non-commutatif.

Théoréme 15. Le groupe GL(E)
Soit E un R-espace vectoriel et Aut(E), 'ensemble des automorphismes de E

Alors (Aut(E),o) est un groupe.
Ce qui explique I'autre notation, CaD Aut(E) = GL(E).

En fait (Aut(E), o) est le groupe des inversibles de 'anneau (.Z(E), +, 0).

5/10
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5.2 Calculs avec les endomorphismes.

Soit E un R-espace vectoriel. Soit f, g, h des endomorphismes de E.

> Lafonction idg:E— E; U — 1.
la célébre fonction idg est un endomorphisme bijectif de E,
c’est donc un automorphisme de E

> Composée itérée.
Comme f est un endomorphisme,

on peut le composer avec lui méme ainsi

fofetfofof secalculentetsontdes endomorphismes

Notation classique : On note souvent f2 ala place de fo f et f*> alaplacede fo fof,
Convention : f° = idg

> Polynome d’endomorphisme.
Comme on peut faire des CL avec des endomorphismes
etque idg, f, f2=fof, f>=fofof,. sontdes endomorphismes
Alors le "polynome” 2 f% +3f —4idg = 2[f o f1+3f —4idg
se calcule et est un endomorphisme.
Avec des endomorphismes, la composée se distribue comme un produit,
les opérations classiques sur les polyndmes sont valides. Ainsi

Qf2+3f—4idp)o(f?—f+2idp) =41 fA+[3-21 f3+[4-3-4]f2+[6+4] f — (8] idE
> Binome.
Comme la composée avec des endomorphismes se comporte comme un produit non commutatif

donc en plus des opérations classiques on a
Comme foidg=idgo f,ona

k=0

(idE+f)n:i(l’Z)fk:&+|Z+ (n)fof+--~

n
Plus généralement, Lorsque fog=gof,ona(f+g)" = (Z)fk.g"_k
k=0

> Nilpotent.
On dit que f est un endomorphisme nilpotent d’ordre 3 Ssi f> = fo fo f =0.
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6 Exercices.

Exercice 1. Pour les fonctions f suivantes :

[ — (x+2y,2x-y) iy — y-x,x+y+z,x-y)
f:x)— (x+2y,2x—y+1) f:y2— (x+y,2x+y+2,2)
f:)— (x+2y,2x-y,3x+Y) f:xy2— (x+y,-2x+Y)

1. Préciser 9 et <.

Quand c'est possible, déterminer une matrice A tel que f(Ti) = Aﬁ.
Les fonction f sont-elle des morphismes?
2. Quand f est un morphisme. On admet que f est bijective Ssi A est inversible.
Déterminer parmi les morphismes ceux qui sont bijectif.

3. Quand f est un morphisme non bijectif, déterminer ker(f) et Im(f).

Exercice 2. On considére
H={u =(x1,X2,..,x,) €ER" tel que x1 +2x2+ -+ nx, =0}

1. Approche classique.
Montrer que H est un ssev, déterminer une base et la dimension de H.
2. Approche avec les morphismes.

(a) Déterminer une matrice A tel que

TeH & x;+2%+ - +nx,=0 < AU =0

Trouver un morphisme f tel que H =ker(f).
(b) Déterminer Im(f). En déduire la dimension de H.

Exercice 3. [Correction] Reprendre les questions de I'exercice précédent avec

_ 424+ =0
H:{u = (X1, X2, ..., Xn) ER" tel que { fLrak 1 Xn }

X1+ Xx2+--+x,=0

Exercice 4. La fonction associée a la matrice A.

Soit A€ > (R) une matrice 2 x 2. On considére la fonction h, définie par
VX edr1®, ha(X)=aX

1. Montrer que hAe,,%(IRZ).

2. On suppose que la matrice A est inversible.
Montrer que : hu est bijective et déterminer h;l. .

Exercice 5. On considére la fonction f définie par
VYMe tr®), fM)=M+M"

Rappel : Déterminer un ssev H signifie trouver une base de H et la dimension de H.
1. Montrer que f €. .Z (4> ([R)).

2. Déterminer ker(f). En déduire la dimension de Im(f).

3. Déterminer I'image d'une base 2 par f, en déduire I'image de Im(f) puis la dimension ker(f).

7110
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Exercice 6. [Correction] Soit A€ .4, (R) une matrice non nulle.

On considére la fonction f définie par VMedy®, FOM)=M+ tr(M)A

1. Montrer que f €. Z (Mo ([R)).
2. On va déterminer Ker(f)
(a) Montrer que : ker(f) c vect(A)
(b) Etudier si vect(A) cker(f) et conclure que
Lorsque tr(A) =—1 alors ker(f) = vect(A)
Lorsque tr(A) # —1 alors ker(f) ={0}.

3. On suppose que tr(A) #—1.
Montrer que V B € 4, (R), il existe C € .4, (R) tel que C+ tr(C)A=B.

Exercice 7. On considére la fonction f définie par

P(1)
VPeR(X], f(P)= ( P(2) )
P(-1)
Montrer que f e Z (R, [X],R).
Montrer que : f est injective puis que f est bijective.
Déterminer I'image d'une base de & par f. En déduire que f est surjective puis que f est bijective.

> wh e

En utilisant la bijectivité de f, montrer qu'il existe un unique polyndme de degré <2 tel que

p1)=2, P@2)=-1, P(-1=1

Exercice 8. Soit ne€N. On considére la fonction f définie par
VPeR,IX], f(P)=2P"+3P' -5P

Montrer que f e Z(R,[X]).
Montrer, en utilisant le degré, que : ker(f) = {3}. En déduire que : f est bijective.

Déterminer I'image d'une base de & par f. En déduire que f est surjective puis que f est bijective.

> wnh e

En utilisant la bijectivité de f, montrer qu'il existe un unique polynéme de degré <3 tel que
2P"+3P -5P=3X3-1

Kulture : Cet exercice est la démonstration du principe du miroir.

Exercice 9. Soit ne€N. On considére la fonction f définie par

VPeR,(X], f (P(X)) —P(X+1)-P(X)

1. Montrer que f €. ZR,[X]).

2. Déterminer I'image d'une base de & par f. En déduire que Im(f) =R,_1[X]

3. En utilisant Im(f) =R,—1[X], montrer qu’il existe un polynéme de degré <3 tel que
P(X+1)-P(X) = X*

Exercice 10. On considére la fonction f définie par
YPeR[X], f(P)=(P(0),P")

1. Montrer que f est linéaire.
2. Montrer que : f est injective.

3. Montrer que f est surjective.
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Correction.
Solution de I'exercice 3 (Enoncé)
1. Approche classique.
2. Approche avec les morphismes.
(a) On veut
T el e X1+2x2+--+nx;=0 C>A—U>: 0
X1+ X2+ +x,=0 0
. 2 3 - n .
La matrice A= . ) convient

On considére la fonction f définie par f(7) = AU
onalieH — AU=0 < f(Ud)=0 < T eker(f).
Donc H =ker(f).
(b) Etude de Im(f).

> La fonction [ est définie de 2 =R" a valeurs dans &/ = R2.

> Im(f) est un ssev de o =R?
Donc dim(Im(f)) <2.

> Le théoréeme du rang n'apporte aucune information tangible.
> On sait

Im(f) = vect( I'image d’'une base )
= vect(f(e1), f(e2),... f(en))

0rf@=( | ) f(?z):( : )

L S—

— —

C] C2

Les vecteurs a,a forment une famille libre de Im(f) car #0 et non //.
Ainsi dim(Im(f)) = cardinal(libre) =2

Conclusion : dim(Im(f)) =2.

Gréce au théoréme du rang, on a dim(H) = dim(ker(f)) = n—2

Solution de I'exercice 6 (Enoncé)

Soit A€ 4, (R) une matrice. On consideére la fonction f définie par
VMedy®), f(M)=M+tr(M)A

1. Comme M, A€ #,(R), il est clair que f est a valeurs dans 4y (R).

—

>0+—0 ?0na f(0)=0+1tr(0)A=0,
Donc f conserve le vecteur nul.

>CL—CL ?Ona

FAM+uMY=AM+uM)+ tr(AM+uM) A
Or on sait que : tr(/1M+pM’) =Atr(M) +ytr(M')

Finir les calculs.

2. On va déterminer Ker(f)

(a) On va démontrer ker(f)  Vect(A) avec la définition.
On suppose que M € ker(f)

On va montrer que : M € Vect(A)

Comme Meker(f), ona f(M)=M+ tr(M)A=0.
Ainsi M =—tr(M)Ae Vect(A) car —tr(M) €R est un scalaire.
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(b) On suppose que M € Vect(A).
On va calculer f(M)
Comme M€ Vect(A), on a M=AA, ainsi

fM)=AA+trAAA=A[1+1r(A]A

> Lorsque tr(A) =-1 alors f(M) =0 donc Vect(A) cker(f) et donc ker(f) = Vect(A).

> Lorsque tr(A) # -1 alors 1 =0 et donc ker(f) = {0}.

3. On suppose que fr(A) # -1.
On vient de voir que ker(f) = {0} la fonction f est injective.
Ainsi f est un endomorphisme, injectif de .4, (R) et dim(4y(R)) = n® < oo

Donc f est bijectif, c'est un automorphisme de .4, (R).
Ainsi VB e &/ = M, (R) I'équation f(M)= B admet une unique solution notée C
Conclusion : VB e 4, (R), il existe C € ., (R) tel que C+ tr(C)A=B.
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