
MPSI DM 15 Dimension

Exercices classiques

Exercice 1. [Correction] Soit J la matrice J =

 0 1 0
0 0 1
1 0 0


On note B =

(−→
I ,
−→
J ,
−→
K
)
la base canoniqueM3,1(R).

Soit f l’endomorphisme de R3 définie par : ∀−→U ∈M3,1(R), tel que f(−→U ) = J
−→
U

Pour tout vecteur −→t = (x, y, z) ∈ R3, on note −→T =

 x
y
z

 la matrice des coordonnées du vecteur −→t .

Partie I Soit −→a =
( 1

√
3

;
1

√
3

;
1

√
3

)
et Q l’ensemble des vecteurs de R3 qui sont orthogonaux à −→a .

1. Montrer que Q est un plan vectoriel (CàD ssev et dim=2) et que Q est stable par f .
2. On pose

−→
b =

(
1,−1/2 ,−1/2

)
et −→c = −→a ∧

−→
b .

(a) Vérifier que
(−→
b ,−→c

)
est une base de Q.

(b) Décomposer f
(−→
b
)
et f (−→c ) sur le vecteurs

−→
b ,−→c .

Trouver un réel θ tel que : f
(−→
b
)

= cos θ
−→
b + sin θ−→c et f (−→c ) = − sin θ

−→
b + cos θ−→c

(c) Interpréter géométriquement la restriction de f au plan Q.

Partie II On définit ainsi les matrices colonnes à coefficients complexes −→X1 =
√

3−→A, −→X2 = −→B + i
−→
C et −→X3 = −→B − i−→C

De plus on désigne par P =
(−→
X1 |
−→
X2 |
−→
X3

)
la matrice carré d’ordre 3, qui regroupe les vecteurs −→X1,

−→
X2,
−→
X3

1. Calculer P en fonction de j et j2. Rappel : j est le célèbre complexe..
2. Soit P la matrice dont les coefficient sont les conjugués de ceux de P .

Calculer PP en fonction de la matrice I. Que peut-on déduire de ce calcul ?
3. Pour i ∈ {1, 2, 3}, calculer J −→Xi en fonction de −→Xi.

Exercice 2. [Correction] Soit n ∈ N∗. On se place dans R2 [X] et on note B = (1, X,X2) sa base classique.
On considère les applications suivantes

f : R2 [X]→ R2 [X] ; P 7−→ 1
2

[
P

(
X

2

)
+ P

(
X + 1

2

)]
φ : R2 [X]→ R ; P 7−→ P (1)

On convient que f0 = id et que fn = f ◦ ... ◦ f
1. Justifier que φ est un morphisme de R2(R) à valeurs dans R.

En ce que φ est le morphisme nul ? En déduire que Im(φ) = R et une base de son noyau.
2. Vérifier que f est un endomorphisme de R2[X].
3. Soit les polynômes P0 = 1, P1 = −2X + 1, P2 = 6X2 − 6X + 1.

(a) Justifier que : C = (P0, P1, P2) est une base de R2[X].
(b) Calculer f(P0), f(P1), f(P3) en fonction de P0, P1 et P2 Le résultat est simple ! ! ! !

4. Soit le polynôme P = a+ bX + cX2 avec (a, b, c) ∈ R.

(a) Déterminer les coordonnées de P dans la base C

(b) En utilisant la question Q3b., calculer [φ ◦ fn](P ) en fonction de a, b, c.

(c) En déduire que lim
n→∞

[φ ◦ fn](P ) =
∫ 1

0
P (t)dt

1



Exercice plus difficile

Exercice 3. [Correction] Soit k ∈ N, On définit les polynômes Nk par

N0 = 1 et Nk = 1
k!

k−1∏
p=0

(X − p) = 1
k!X (X − 1) · · ·

(
X − (k − 1)

)
On introduit la fonction ∆ par ∀P ∈ Rn[X], ∆(P ) = P (X + 1)− P (X).
On note classiquement ∆i = ∆ ◦∆ ◦ .... ◦∆

1. Autour des (Nk).

(a) Montrer que
(
N0, N1, · · · , Nn

)
est une base de Rn [X].

(b) Calculer ∆(N0), ∆(N1) et ∆(N3)
(c) Montrer que ∀ k ∈ N∗, ∆(Nk) = Nk−1

(d) En discutant selon la valeur de i, Calculer ∆i (Nk) puis [∆i (Nk)](0).

2. Étude de ∆
(a) Montrer que ∆ est un endomorphisme de Rn [X] .
(b) Démontrer (Admettre) que les polynômes 1-périodique sont constants.

En déduire que : ker ∆ = R0 [X].
(c) Montrer que : Im(∆) ⊂ Rn−1[X] puis que : Im∆ = Rn−1[X]

3. Soit P ∈ Rn [X] fixé.
(a) Justifier qu’il existe des réels a0, ..., an tels que P = a0 N0 + · · ·+ anNn.

Cette décomposition est-elle unique ?
(b) Calculer les ai en fonction des [∆i(P )](0).
(c) On considère la fonction T définie par ∀P ∈ Rn[X], T (P ) = P (X + 1).

> Relier ∆ et T .

> En déduire que : ∆i(P ) = (−1)i
i∑

α=0

(
i

α

)
(−1)α P (X + α)

Moralité : on sait calculer les scalaires a0, a1, ..., an en fonction de [∆i(P )](0)]
et donc en fonction de P (0),P (1),...(n)

Vraiment difficile sans l’indication

Exercice 4. [Correction] Soit P un polynôme de degré n.

Démontrer que la famille
(
P (X), P (X + 1), P (X + 2)..., P (X + n)

)
est libre

Indication : On suppose que :
n∑
k=0

λk P (X + k) = 0

On remarque que la famille (P, P ′, P ′′, ....) est une base de Rn[X]

On en déduit ∀A(X) ∈ Rn[X],
n∑
k=0

λk A(X + k) = 0.

Puis on conclut



Un exercice sympa

Cet exercice propose une nouvelle démonstration du théorème des EDL2.
Il est original (pour la sup) et il permet de démontrer quelque chose.

Exercice 5. [Correction] Soit a : R −→ R et b : R −→ R deux fonctions C∞ fixés.
On considère l’équation différentielle E.

∀ x ∈ R, y′′ (x) + a (x) y′ (x) + b (x) y (x) = 0

Le but de cet exercice est de décrire les solution de E.

On suppose qu’il existe deux fonctions f, g telles que f est solution de l’équation différentielle et f (0) = 1 et f ′ (0) = r
g est solution de l’équation différentielle et g (0) = 1 et g′ (0) = r′

avec r 6= r′

.

Soit y une solution l’équation différentielle E
1. Montrer que S l’ensemble des solutions de l’équation différentielle E est un ssev
2. On définit sur R la matrice W (x) et le réèl ω (x)

W (x) def=
(

f (x) g (x)
f ′ (x) g′ (x)

)
et ω (x) = det

[
W (x)

]
note Kulturelle : W c’est le Wronskien

(a) Vérifier que ω est solution d’une EDL1.
En déduire une expression de ω(x) pour x ∈ R.

(b) Justifier que : ∀x, la famille
((

f(x)
f ′(x)

)
,

(
g(x)
g′(x)

))
est une base de R2.

3. Étude des coordonnées

(a) Montrer que : ∀ x, il existe λx et µx tel que
(

y (x)
y′ (x)

)
= λx

(
f (x)
f ′ (x)

)
+ µx

(
g (x)
g′ (x)

)
(b) Justifier que les fonction λ : x 7−→ λ (x) def= λx et µ : x 7−→ µ (x) def= µx sont dérivables.
(c) Montrer que ∀ x, λ′ (x) = 0 et µ′ (x) = 0

4. Conclusion

(a) Déduire des calculs précédent que y = CL (f, g) .
(b) Montrer que (f, g) est une base de S et ainsi dim S =cardinal ( base ) = 2

Si on applique ce résultat avec des fonctions constantes a et b et les fonction f(t) = ert et g(t) = er
′t avec r, r′ les

solution de l’équation caractéristique X2 + aX + b = 0
On obtient une nouvelle démonstration du théorème sur les EDL2



Solution de l’exercice 1 (Énoncé)
Partie I

Soit −→a =
(

1√
3
,

1√
3
,

1√
3

)
et Q l’ensemble des vecteurs de R3 qui sont orthogonaux à −→a .

1. Q est un plan vectoriel ?

On a −→u ∈ Q ⇐⇒ −→u ·−→a = 0 ⇐⇒ 1√
3
x+ 1√

3
y+ 1√

3
z = 0 ⇐⇒ −→

U =

(
x
y
z

)
= y

( −1
1
0

)
+z

( −1
0
1

)

Donc Q = vect

(( −1
1
0

)
,

( −1
0
1

))
ainsi Q est un plan vectoriel

Q est stable par f ?
On suppose que −→u = (x, y, z) ∈ Q

On doit montrer que f(−→u ) = J
−→
U ∈ Q

À faire.

2. On pose
−→
b =

(
1, −1

2 ,
−1
2

)
et −→c = −→a ∧

−→
b .

(a) On trouve que −→c = −→a ∧
−→
b = (0, −

√
3

2 ,

√
3

2 )(−→
b ,−→c

)
est une base de Q ?

la famille est libre (car 6= 0 et non//), dans Q, cardinal=2 et dim(Q) = 2
Donc c’est une base de Q

(b) Décomposer f
(−→
b
)
et f (−→c ) sur le vecteurs

−→
b ,−→c .

On a

f
(−→
b
)

= J
−→
b =

(
−1/2

−1/2

1

)
=
−1
2....

( 1
−1/2

−1/2

)
+
√

3
2....

( 0
−
√

3/2
√

3/2

)

et f (−→c ) =

(
−
√

3/2
√

3/2

0

)
=
−
√

3
2....

( 1
−1/2

−1/2

)
+

1
2....

( 0
−
√

3/2
√

3/2

)

Donc θ = 2π
3 convient car cos

(2π
3

)
= −1

2 et sin
(2π

3

)
=
√

3
2

(c) Interpréter géométriquement la restriction de f au plan Q.

On fait un dessin et on constate que f est la rotation d’angle θ = 2π
3

Partie II
1. Calculer P en fonction de j et j2.

On a −→X1 =

( 1
1
1

)
, −→X2 = −→B + i

−→
C =

( 1
−1/2

−1/2

)
+ i

( 0
−
√

3/2
√

3/2

)
=

( 1
j2

j

)
et −→X3 = −→B − i−→C =

( 1
j
j2

)

Ainsi P =

( 1 1 1
1 j2 j
1 j j2

)
2. Calculer PP en fonction de la matrice I. Que peut-on déduire de ce calcul ?

On trouve PP = 3 I3 Donc P est inversible et P−1 = 1
3P

3. Pour i ∈ {1, 2, 3}, calculer J −→Xi en fonction de −→Xi.
On a J −→X1 = −→X1 et

J
−→
X2 =

 j2

j
1

 = j2

 1
j2

j

 = j2−→X2

et de même J−→X3 = j
−→
X3.



Solution de l’exercice 2 (Énoncé)
1.

:
φ
:::
est

:::
une

:::::
forme

::::::
linéaire

::
?

On doit montrer que φ est linéaire et à valeur dans R. Facile.
:::::::::
Déterminer

:::
son

:::::
image

::
et

:::
une

::::
base

:::
de

:::
son

::::::
noyau.

:
?

> Im(φ) est une ssev de A = R. Or dim(R) = 1

Donc dim
(
Im(φ)

)
= 0 ou 1.

Comme φ n’est pas la fonction nulle, donc Im(φ) n’est pas réduit au vecteur nul

Conclusion : dim
(
Im(φ)

)
= 1 et ∈ (f) = R = A

.
> Avec le théorème du rang, on a dim

(
ker(φ)

)
= n

De plus la famille
(

(X − 1), (X − 1)2, ..., (X − 1)n
)
est une famille libre (les degrés sont 2 à 2 6=),

dans ker(phi) et de cardinal n
donc c’est une base de ker(φ)

2. On doit montrer que φ est linéaire et à valeur dans R2[X]. Facile.
3. Soit les polynômes P0 = 1, P1 = −2X + 1, P2 = 6X2 − 6X + 1.

(a) famille libre (les degrés sont 2 à 2 6=),
dans R2[X] et de cardinal 3

donc c’est une base de R2[X].
(b) On a

P0
f7−→ f(P0) = · · · = 1 = P0

P1
f7−→ f(P0) = · · · = −X + 1

2 = 1
2 P1

P2
f7−→ f(P0) = · · · = 6

4X
2 − 6

1X + 1
4 = 1

4 P2

4. Soit le polynôme P = a+ bX + cX2 avec (a, b, c) ∈ R.
(a) On a

P = a+ bX + cX2 =
c
6....
[
6X2 − 6X + 1

]
+

1
2 (−c−b)
....

[
− 2X + 1

]
+ a+ 1

2 b+
1
3 c....
[
1
]

=
c
6.... P2 +

1
2 (−c−b)
.... P1 + a+ 1

2 b+
1
3 c.... P0

(b) À cause Q3b, on a

P0
f7−→ f(P0) = P0

f7−→ · · · f7−→ fn(P0) = P0

P1
f7−→ f(P0) = 1

2 P1
f7−→ · · · f7−→ fn(P1) =

(1
2

)n
P1

P2
f7−→ f(P0) = 1

4 P2
f7−→ · · · f7−→ fn(P1) =

(1
4

)n
P2

Grâce à la linéarité de f , on a

fn(P ) = c

6 f
n(P2) + 1

2(−c− b) fn(P1) + a+ 1
2 b+ 1

3c f
n(P0)

= c

6
1
4nP2 + 1

2(−c− b) 1
2nP1 +

(
a+ 1

2 b+ 1
3c
)
P0

Grâce à la linéarité de φ, on a [φ ◦ fn](P ) = c

6
1
4n φ(P2) + 1

2(−c− b) 1
2n φ(P1) +

(
a+ 1

2 b+ 1
3c
)
φ(P0)

Conclusion : [φ ◦ fn](P ) =
c
6

4n +
1
2 (c+ b)

2n +
(
a+ 1

2 b+ 1
3c
)

(c) On a maintenant

lim
n→∞

[φ ◦ fn](P ) = lim
n→∞

c/6
4n +

1
2 (c+ b)

2n +
(
a+ 1

2 b+ 1
3c
)

= a+ 1
2 b+ 1

3c

et∫ 1

0
P (t)dt =

∫ 1

0
(a+ bt+ ct2) dt =

[
Primitive

]1

0
= a+ 1

2 b+ 1
3c

Donc c’est bien égale.



Solution de l’exercice 3 (Énoncé) Soit k ∈ N, On définit N0 = 1̂ et Nk = X (X − 1) · · · (X − (k − 1))
k!

1. (a) Montrer que
(
N0, N1, · · · , Nn

)
est une base de Rn [X].

Il est clair que Nk = X (X − 1) · · · (X − (k − 1))
k! = k facteurs

k! = 1
k!X

k + ...

(N0, · · · , Nn) est libre (car les deg sont 2 à 2 6=) et dans Rn [X]

card (N0, · · · , Nn) = n+ 1
dim (Rn [X]) = n+ 1

⇒ c’est une base de Rn [X] .

(b) Calculer ∆(N0), ∆(N1) et ∆(N3)
On a : ∆(N3) = N3(X + 1)−N3(X)

= (X + 1)(X)(X − 1)
6 − X(X − 1)(X − 2)

6
On voit une factorisation ! ! ! !

= (X)(X − 1)
6 [(X + 1)− (X − 2)] = X(X − 1)

2 = N2

(c) Montrer que ∀ k ∈ N∗, ∆(Nk) = Nk−1

On a ∆ (Nk) = Nk (X + 1)−Nk (X)

= (X + 1) (X) · · · ((X + 1)− (k − 1))
k! − X (X − 1) · · · (X − (k − 1))

k!

= 1
k!X (X − 1) · · · (X − (k − 2))

[
(X + 1)− (X − (k − 1))

]
= 1
k!X (X − 1) · · · (X − (k − 2)) [k]

== 1
(k − 1)!X (X − 1) · · · (X − (k − 2)) = Nk−1

(d) En discutant selon la valeur de i, Calculer ∆i (Nk) puis [∆i (Nk)](0).

On a Nk
∆7−→ Nk−1

∆7−→ Nk−2
∆7−→ ...

∆7−→ Nk−i

ainsi ∆i (Nk) = Nk−i.
Mais attention Lorsque i = k, on a Nk−k = N0 = 1 et lorsque i > k, on Deltai (Nk) = 0.

Conclusion : > Pour i ∈ {0, 1, ..., k − 1}, ∆i (Nk) = Nk−i

> Pour i = k, ∆k (Nk) = N0 = X0 = 1

> Pour i > k, ∆i (Nk) = O

On évalue en 0 et on a

∆i (Nk) [0] =

 = 0 si i < k car 0 est racine de Nk−i car k − i > 1
= 1 si i = k car N0 = 1
= 0 si i > k car ∆i (Nk) = 0

2. Étude de ∆
(a) Montrer que ∆ est un endomorphisme de Rn [X] .

On fait linéaire (facile à faire)

à valeurs dans Rn[X] ?

Pour tout P ∈ Rn[X], on peut écrire P = aXn + · · · .
Ainsi on a ∆(P ) =P (X + 1)− P (X)

=
[
a (X + 1)n + · · ·

]
−
[
aXn + · · ·

]
=
[
aXn + · · ·

]
−
[
aXn + · · ·

]
= Xn [a− a] + · · ·

Conclusion : ∆(P ) est un polynôme de degré 6 (n− 1)
Ainsi ∆ est à valeur dans Rn[X] et même plus précisément dans Rn−1[X]

(b) Démontrer (Admettre) que les polynômes 1-périodique sont constants.
En déduire que : ker ∆ = R0 [X].



On a P ∈ ker(∆) ⇐⇒ P est un poly de degré 6 n et ∆(P ) = O

⇐⇒ P (X + 1)− P (X) = O

⇐⇒ P (X + 1) = P (X)
⇐⇒ P est un polynôme 1-périodique
⇐⇒ P est un polynôme constant
⇐⇒ P ∈ R0[X]

Conclusion : ker(∆) = R0 [X] et dim (ker(∆)) = 1
(c) Montrer que : Im(∆) ⊂ Rn−1[X] puis que : Im∆ = Rn−1[X]

On a déjà montré Im(∆) ⊂ Rn−1[X] à la question Q2a.
Avec la formule du rang, on a dim (Im(∆)) = n

Conclusion : Im(∆) ⊂ Rn−1[X] et dim (Im(∆)) = n = dimRn−1[X]
Ainsi on a bien Im(∆) = Rn−1[X]

3. Soit P ∈ Rn [X] fixé.
(a) Justifier qu’il existe des réels a0, ..., an tels que P = a0 N0 + · · ·+ anNn.

Cette décomposition est-elle unique ?
Comme P ∈ Rn [X] et que (N0, · · · , Nn) est une base deRn [X], on sait que P s’écrit de façon unique comme
CL sur les (N0, · · · , Nn)

i.e. il existe des réels a0, ..., an uniques tels que

P = a0 N0 + · · ·+ anNn.

(b) Calculer les ai en fonction des [∆i(P )](0).
On utilise la linéarité de ∆ et les calculs des premières questions

∆◦i (P ) = ∆◦i (a0 N0 + · · ·+ anNn)

= a0∆◦i (N0) + ...+ an ∆◦i (Nn)
= 0 + ..+ 0︸ ︷︷ ︸

Ici i>k

+ aiN0 + ai+1 N1 + ...+ anNn−i

On évalue en 0 et on a ∆◦i (P ) [0] = ai.

(c) On considère la fonction T définie par ∀P ∈ Rn[X], T (P ) = P (X + 1).

> Relier ∆ et T .
On a ∆ = T − Id

> En déduire que : ∆i(P ) = (−1)i
i∑

α=0

(
i

α

)
(−1)α P (X + α)

Comme T et id commutent, on a avec la formule du binôme

∆◦i = (T − id)◦i =
i∑

k=0

(
i

k

)
T ◦k ◦ (−id)◦(i−k) = (−1)i

i∑
k=0

(
i

k

)
(−1)k T ◦k

Ici T : R [X]→ R [X]
P 7−→ P (X + 1)

On a facilement T ◦k (P ) = .... = P (X + k) Ainsi

∆◦i (P ) = (−1)i
i∑

k=0

(
i

k

)
(−1)k T ◦k (P ) = (−1)i

i∑
k=0

(
i

k

)
(−1)k P (X + k)



Solution de l’exercice 4 (Énoncé)

On suppose que :
n∑
k=0

λk P (X + k) = 0

> Comme deg(P ) = n, on a deg(P ′) = n− 1, deg(P ′′) = n− 2,..., deg(P (n)) = 0
la famille (P, P ′, P ′′, ..., p(n)) a des degré 2 à 2 différents donc elle est libre et dans Rn[X]
De plus elle est de cardinal (n+ 1) et dim (Rn[X]) = n+ 1

Conclusion : C’est (P, P ′, P ′′, ..., p(n)) une base de Rn[X]

> Pour tout A(X) ∈ Rn[X]

Comme (P, P ′, P ′′, ..., p(n)) une base de Rn[X], il existe de scalaire tel que A(X) =
n∑
i=0

ai P
(i)(X)

On a donc

A(X) =
n∑
i=0

ai P
(i)(X)

A(X + 1) =
n∑
i=0

ai P
(i)(X + 1)

...

A(X + n) =
n∑
i=0

ai P
(i)(X + n)

Ainsi en sommant, on a
n∑
k=0

λk A(X + k) =
n∑
i=0

ai

(
n∑
k=0

λk P
(i)(X + k)

)

Or on sait que :
n∑
k=0

λk P (X + k) = 0 ainsi ∀ i ∈ N,
n∑
k=0

λk P
(i)(X + k) = 0

Conclusion : Pour tout A(X) ∈ Rn[X], on a
n∑
k=0

λk A(X + k) =
n∑
i=0

ai 0 = 0

> Final : On applique cette dernière égalité avec A égale les polynômes interpolateurs de Lagrange et X = 0
Donc ∀ k ∈ {0, 1, , ..., n}, λk = 0 Fini.



Solution de l’exercice 5 (Énoncé)
1. Facile −→0 et CL.
2. (a) Montrer que ω est solution d’une EDL1. En déduire une expression de ω(x) pour x ∈ R.

On a ω (x) = det
[
W (x)

]
= f(x) g′(x)− f ′(x) g(x), ainsi

∀x ∈ R, ω′(x) = f ′(x) g′(x) + f(x) g′′(x)− f ′′(x) g(x)− f ′(x) g′(x)
= f(x) g′′(x)− f ′′(x) g(x)

Or on sait que f, g sont solution de y′′ + a(x)y′ + b(x)y = 0

= f(x)
[
−a(x)g′ − b(x)g

]
−
[
−a(x)f ′ − b(x)f

]
g(x)

= −a(x)
[
f(x) g′(x)− f ′(x) g(x)

]
= −a(x)ω(x)

Donc ω est solution de l’EDL1 y′ + a(x) y = 0 et on sait d’après la théorie des EDL1
que ∀x ∈ R, ω(x) = K exp(−A(x)) avec A(x) une primitive de a(x)

Enfin pour ω(0) = r′ − r, donc K = (r′ − r) exp(A(0)) 6= 0

(b) Justifier que : ∀x, la famille
((

f(x)
f ′(x)

)
,

(
g(x)
g′(x)

))
est une base de R2.

Pour tout : ∀x, det
(
W (x)

)
= ω(x) = K exp(−A(x)) 6= 0,

donc la matrice W (x) est inversible ou bien la famille
(

f(x)
f ′(x)

)
,

(
g(x)
g′(x)

)
est libre.

3. Étude des coordonnées
(a) Montrer que : ∀ x, il existe λx et µx tel que ....

La famille
(

f(x)
f ′(x)

)
,

(
g(x)
g′(x)

)
est libre dans R2 et cardinal=2 et dimR2 = 2. Donc c’est une base.

De plus Pour tout x ∈ R, on a
(

y(x)
y′(x)

)
∈ R2,

donc il existe λx et µx tel que
(

y (x)
y′ (x)

)
= λx

(
f (x)
f ′ (x)

)
+ µx

(
g (x)
g′ (x)

)
(b) Justifier que les fonction λ : x 7−→ λ (x) def= λx et µ : x 7−→ µ (x) def= µx sont C∞.

On va expliciter λx ey µx. On a(
y(x)
y′(x)

)
= λx

(
f(x)
f ′(x)

)
+ µx

(
g(x)
g′(x)

)
⇐⇒

(
y(x)
y′(x)

)
=
(

f(x) g(x)
f ′(x) g′(x)

)
=W (x)

(
λx
µx

)

Comme det (W (x)) = ω(x) 6= 0, la matrice W (x) est inversible et W (x)−1 = 1
w(x)

(
g′(x) −g(x)
−f ′(x) f(x)

)
Conclusion :

(
λx
µx

)
= W (x)−1

(
y(x)
y′(x)

)
,

CàD λx, µx s’exprime à l’aide de fonction C∞ donc λx, µx sont C∞



(c) Montrer que ∀ x, λ′ (x) = 0 et µ′ (x) = 0

On dérive l’égalité
(

y(x)
y′(x)

)
= λx

(
f(x)
f ′(x)

)
+ µx

(
g(x)
g′(x)

)
Ainsi on a :

(
y′(x)
y′′(x)

)
= λ′x

(
f(x)
f ′(x)

)
+ λx

(
f ′(x)
f ′′(x)

)
+ µ′x

(
g(x)
g′(x)

)
+ µx

(
g′(x)
g′′(x)

)
> On utilise y′′ = −ay′ − by et f ′′ = −af ′ − bf et g′′ = −ag′ − bg, ainsi(

y′

−ay′ − by

)
= λ′x

(
f
f ′

)
+ λx

(
f ′

−af ′ − bf

)
+ µ′x

(
g
g′

)
+ µx

(
g′

−ag′ − bg

)
> Or on sait que : y = λxf + µxg et y′ = λxf

′ + µxg
′, donc il reste(

y′

O

)
= λ′x

(
f
f ′

)
+ λx

(
f ′

O

)
+ µ′x

(
g
g′

)
+ µx

(
g′

O

)
> Or on sait que : y′ = λxf

′ + µxg
′, donc il reste(

O
O

)
= λ′x

(
f
f ′

)
+ λx

(
O
O

)
+ µ′x

(
g
g′

)
+ µx

(
O
O

)

Conclusion : λ′x
(

f
f ′

)
+ µ′x

(
g
g′

)
=
(

O
O

)
et la famille

((
f
f ′

)
,

(
g
g′

))
est libre

Ainsi λ′x = µ′x = 0
4. Conclusion

(a) Déduire des calculs précédent que y = CL (f, g) .
Comme ∀x ∈ R, λ′(x) = 0 on a que : λ est une constante, CàD λx = λ.
De même µ est une constante, CàD µx = µ.

Conclusion : ∀x ∈ R, y(x) = λf(x) + µ g(x), CàD y = λf + µ g = CL (f, g) .
(b) Montrer que (f, g) est une base de S et ainsi dim S =cardinal ( base ) = 2

Conclusion : la famille (f, g) libre (car 6= 0 et non //) dans S et génératrice
Donc c’est une base de S et ainsi dim S =cardinal ( base ) = 2


