Sur l'algorithme RSA

Le RSA a été inventé par Rivest, Shamir et Adleman en 1978. C’est I'exemple
le plus courant de cryptographie asymétrique, toujours considéré comme sur,
avec la technologie actuelle, pour des clés suffisament grosses (1024, 2048 voire
4096 bits). Dailleurs le RSA128 (algorithme avec des clés de 128 bits), proposé
en 1978 par Rivest, Shamir et Adleman, n’a été “cassé” qu’'en 1996, en faisant
travailler en paralléle de nombreux ordinateurs sur internet.

Mais le concept de chiffrement asymétrique avec une clef publique était
légerement antérieur (1976). L’idée générale était de trouver deux fonctions f
et g sur les entiers, telles que fog = Id, et telle que 'on ne puisse pas trouver f,
la fonction de décryptage, & partir de g, la fonction de cryptage. L’on peut alors
rendre publique la fonction g (ou clef), qui permettra aux autres de crypter

le message & envoyer, tout en étant les seuls & connaitre f, donc & pouvoir
décrypter. On trouvera un exposé complet sur RSA dans [3].

1 Préliminaires d’arithmétique

Définition On appelle indicatrice d’Euler la fonction qui & un entier n fait
correspondre le nombre d’entiers a premiers & n vérifiant 1 < a < n. On note
cette fonction ¢.

Si p est un nombre premier, alors tout entier compris entre 1 et p — 1 est
premier & p, aussi ¢ (p) = p — 1. On peut également calculer assez facilement
© (p™), toujours pour p premier et n > 2 entier : les nombres premiers & p™ sont
exactement les nombres non multiples de p. Or entre 1 et p™, il y a exactement
p" ! multiples de p. Donc ¢ (p") = p" — p" L =p"~L(p—1).

Enfin, on va calculer la valeur de ¢ en un produit de deux nombres premiers
distincts. Ceci nous servira en effet dans I’algorithme RSA.

Lemme 1.1 Soient p et q deux nombres premiers distincts. Alors ¢ (pq) =
(p—1).(¢-1)

Démonstration Pour calculer ¢ (pg), il nous suffit de calculer le nombre d’en-
tiers compris entre 1 et pg qui ne sont pas premiers a pg. Ce sont bien sur les
multiples respectifs de p et de g.

Or il y a exactement ¢ multiples de p dans I'intervalle [1; pq], ainsi que
p multiples de g. Attention : nous avons ainsi compté deux fois 'entier pq. Le
nombre d’entiers non premiers & pg dans lintervalle [1; pg] est donc g+ p— 1.

D’olt o) =pg—(p+qg-1)=@p-1).(¢g-1)

Théoréme 1.2 (Petit théoréme de Fermat) Soit p un nombre premier. Si a est
un entier non divisible par p, alors on a a?~' = 1[p].
Pour tout entier a on a donc a? = a[p)].

Démonstration Ce théoréme se déduit immédiatement du théoreme 1.3, ce-
pendant nous allons en donner une autre preuve, élémentaire et originale, die
a Philippe Biane (CNRS, ENS).

Considérons ’ensemble des mots de p lettres sur un alphabet de a caracteres.
Il y en a exactement a”.

Sous l'action du groupe des permutations circulaires, les orbites obtenues
sont réduites & un élément pour ce qui est des mots constants (qui sont au
nombre de a), et de cardinal p pour les autres (il faut appliquer p permutations
circulaires successives sur les lettres d'un mot pour revenir au mot de départ.)

Toutes ces orbites définissent une partition de ’ensemble des mots. Le car-
dinal de I'ensemble est donc la somme des cardinaux de toutes ces orbites. Ce
qui donne, si n désigne le nombre d’orbites non réduites & un point :

aP =a+np

et donc p divise a? — a, ce qui veut dire que I'on a bien a? = a[p].

L’autre partie du théoréme s’en déduit aussitot : si 'on suppose de plus que
p ne divise pas a, comme on sait que p divise a? —a = a (a”’1 — 1), le lemme
de Gauss nous assure qu’alors p divise autre facteur, c’est-a-dire a?~' — 1, et
donc aP~! = 1[p|

O

N.B. La primalité de p semble ne pas intervenir dans cette preuve. En fait, c’est
elle qui assure que les orbites non réduites & un seul élément sont de cardinal
exactement p, c’est-a-dire que les p mots obtenus a partir d’'un mot donné par
cette opération de permutation circulaire sont tous distincts. Si p n’est pas
premier, par exemple pour p = 4, notre mot non constant peut se décomposer
en plusieurs blocs identiques. Ainsi le mot ABAB nous donnera une orbite a 2
éléments, qui sont ABAB et BABA. En revanche, pour p premier, on ne peut
pas décomposer un mot en succession de blocks identiques. Un tel bloc aurait
un cardinal qui diviserait p, donc égal a 1 ou p. Le cas ou c’est 1 correspond
aux mots constants.

Théoréme 1.3 Soit n € N un entier fizé, soit a un entier premier a n. Alors
a?™ = 1[n].

Démonstration 1 Ce résultat est essentiellement un résultat sur le groupe
multiplicatif (Z/nZ)" : si a est premier & n, la classe de a modulo n est dans
(Z/nZ)" et son ordre divise I'ordre du groupe (théoréme de Lagrange), c’est-
A-dire ¢ (n). Donc la classe de a®™ est la classe de 1. Pour un exposé plus
complet, voir par exemple [2].

Démonstration 2 (Inspirée de [1]) Soient r1,...,7y(,) une énumération des
entiers compris entre 1 et n, premiers & n. nous allons montrer que la multipli-
cation par a (modulo n), est une bijection de cet ensemble.

— Pour tout 4, on a ar; encore premier & n (sinon, il y aurait un diviseur pre-
mier commun, qui diviserait soit r;, soit a, contredisant ainsi ’hypothese,
a savoir que a et r; sont premiers a n).

— Pour i et j distincts, ar; et ar; ne sont pas congrus modulo n. Dans le cas
contraire, on aurait un entier k tel que ar; —ar; = kn. De cette égalité, on
tire que n divise le produit a (r; — ;). Mais comme n et a sont premiers
entre eux, le lemme de Gauss nous assure alors que n divise r; — ;. Ceci
est impossible puisque 7; et r; sont tous deux compris entre 1 et n, leur
différence étant donc elle-méme plus petite que n.

— Donc les entiers ary[n], ..., aryy)[n] sont distincts deux & deux, premiers
a n, et bien str au nombre de ¢ (n). A permutation prés, ce sont donc les
memes que 7', ..., Ty(n)-

En particulier, le produit des r; est le méme que celui de leurs images (par la
bijection définie par la multiplication par a). C’est-a-dire que :
o(n) #(n)

I (arin]) = 11 #;
i=1 i=1
ce qui signifie également que :

o) e
a#(”) IJI ri= 11 rin]

Autrement dit, n divise la différence :

#(n) w(n) o(n)
a?® I 7y — 11 v = i (a"’("> - 1)
i=1 i=1 i=1

#(n)
Or le produit 11 7; est lui aussi premier & n (méme argument que pour les
=

produits ar;, & répéter ¢ (n) — 1 fois). Le lemme de Gauss nous permet alors de
conclure que n divise a®™ — 1, c’est-a-dire le résultat attendu :

a?™ = 1[n] O

2 L’algorithme RSA

2.1 Description du protocole

Le but du jeu est bien sr de pouvoir transmettre un message codé, que
seul le récepteur “officiel” puisse décrypter, c’est-a-dire qui ne puisse pas étre
décrypté par un tiers qui intercepterait ledit message. Nous appellerons Alice
la destinatrice du message, et Bernard ’émetteur.

1. Alice génere deux gros nombres premiers p et ¢, ainsi qu'un gros nombre

d premier avec le produit w = (p — 1) (¢ — 1).

. Alice calcule n = pg et e tel que de = 1[w].
. Alice diffuse n et e, garde d et oublie w.

. Bernard crypte un message M par M — M¢[n] et envoie le résultat a Alice.

[SIESNEIC)

. Alice décode alors le message crypté par C — C9[n]

EXEMPLE : Voyons ce qui se passe si I'on prend pour les deux nombres p et ¢
les valeurs 11 et 17. On a alors n = 187 et w = (11 — 1) (17 — 1) = 160. Comme
161 = 7 x 23, on peut prendre e = 7 et d = 23.

Alice va rendre public le couple (187, 7).

Bernard veut transmettre a Alice un message codé plus petit que n = 187,
mettons la date & laquelle ils vont faire une surprise & Cédric (par exemple, le
10), message qui ne doit pas étre intercepté par ledit Cédric, bien siir.

Bernard va donc calculer 107 = 187 x 53475+ 175, et envoyer le résultat 175
a Alice.

Alice va calculer le reste de la division euclidienne de 1752 par 187 :

— Elle calcule d’abord 175% = 30625 = 163 x 187+144, donc 175% = 144[187].

Ensuite, 1442 = 20736 = 110 x 187 + 166, donc 175* = 166[187].

— Puis, 1662 = 27556 = 147 x 187 + 67 donc 175° = 67[187].

— Et 67% = 4489 = 24 x 187 + 1 donc 1756 = 1[187].

— Enfin, 1752 = 1756 x 175% x 175% x 175 donc

1752 =1 x 166 x 144 x 175[187]

Or 166 x 144 x 175 = 4183200 = 22370 x 187 + 10.
Alice retrouve donc bien le message envoyé, a savoir 10.

2.2 Preuve de ’algorithme

Dans la suite, nous allons utiliser constamment la propriété des congruences
suivante :
Pour tout quadriplet d’entiers (a,b,c,r), si a = blc|, alors a” = b"[¢]. Cette

propriété se démontre aisément si ’'on remarque que a — b divise a” —b"...

Le but du protocole est bien str qu’Alice retrouve le message d’origine. Les
transformations successives appliquées au message d’origine sont :

M — M[n] — (M¢[n])* [n]

Si le message M est premier a n :
On a (M¢[n))% [n] = M%[n], et par hypothese de = 1[w], ¢’est-a-dire que
de =1+ kw, avec k un entier.
Mais alors on peut appliquer le théoréeme 1.3 : M est premier a n donc
M#(™) = 1[n]. Et d’apres le lemme 1.1, comme on a n = pg, on sait que
p(n)=((p-1)(¢—1) =w. On a donc :

M¥ = 1[n], donc M% = MF+1 = M.1%[n] = M[n]
et donc on revient bien ainsi au message originel.
Sinon, M non premier & n = pq, c’est-a-dire que M est multiple de p ou
de g. Considérons le cas ou M est de la forme p®m, avec m entier non
multiple de p..
Comme M < n, on peut affirmer que m est premier & n (sinon, M serait
a la fois multiple de p et de ¢, donc plus grand que n!). Et on a :

Mde = (p“m)de [n] = pade % mde [n] = pade % ,m[n]

d’apres ce qui précede, appliqué a m.

Or p®® = p*[p] (c’est évident!) et p*® = p[q] : par le théoreme 1.3, on
a p?~! = 1[q] et comme de = kw + 1, on obtient p?® = p.1¥@-Y[q] = p[q].
En élevant la relation & la puissance a, il vient bien p®® = p®[q].

Mais alors la différence p®@ — p® est a la fois multiple de p et de ¢, donc
multiple de pg en utilisant le lemme de Gauss. On obtient bien p®d¢ = p© [n]
et donc :

M = pm[n] = M[n]

et Alice retrouve bien le message originel.
— Les nombres p et ¢ jouant des roles identiques, le cas ot M est multiple
de ¢ est identique.

N.B. Au vu de ce qui précede, on serait tenté d’énoncer un corollaire au
théoreme 1.3 du type : “Pour tout entier a, on a a?(M+! = a[n]”. C’est mal-
heureusement faux lorsque n est multiple d'un carré : ¢ (4) =2 et 22 n'est pas
congru a 2 modulo 4. Une formulation juste, mais un peu lourde, serait :

“Si n est un entier non multiple d’un carré, alors pour tout entier a, on a
a?M+ = qfp].”

2.3 Force de l’algorithme

Malgré une apparente simplicité, le systeme RSA reste I'un des plus str.
Jusqu’a tres récemment, la plupart des gens s’accordaient sur I'idée que décoder
une message sans connaitre la clef était équivalent a factoriser 'entier n (i.e.
trouver p et ¢). Un papier récent infirme cette conjecture.

D’autre part, il est tres difficile dans la pratique de factoriser n : méme s'il
existe des méthodes beaucoup plus efficaces que le procédé naturel (tester tous
les nombres impairs jusqu’a v/n), le temps de calcul nécessaire reste incompa-
rablement plus long que celui dont ont besoin Alice et Bernard.

Enfin, signalons que Ialgorithme, bien qu’assez sur, est assez lent. Dans la
pratique, il sers le plus souvent a transmettre une clef servant & déchiffrer un
message codé selon une autre méthode plus rapide, typiquement une méthode
de chiffrement dit symétrique, par exemple IDEA : on code et on décode un
message de la méme fagon, il est donc nécessaire de transmettre le message
codé et la clef pour le décoder. Cest ce que fait par exemple PGP (pour Pretty
Good Privacy), logiciel de mise en oeuvre de cryptographie publique (RSA) et
symétrique (IDEA & une époque).

3 Mise en oeuvre pratique de RSA

Meéme si le protocole de RSA est assez simple, sa mise en oeuvre pose toute-
fois quelques problémes pour Alice, notamment la construction de deux “gros”
nombres premiers (p et ¢), ainsi que la détermination du couple (d, €). Enfin, les
deux protagonistes se trouvent confrontés au probleme d’élever de fagon efficace
un “gros” nombre & une “grosse” puissance, modulo n.

Nous ne parlerons pas ici du probléeme de la génération de “gros” nombres
premiers, probleme assez complexe qui mériterait que 'on y consacre un texte
conséquent (& suivre ?).

o

3.1 Inversion modulo w

En réalité, Alice peut choisir sa premiére clef d de fagon arbitraire. d doit
simplement étre premier & w. Mais une telle condition est assez facile & satisfaire,
et encore plus a vérifier : il lui suffit de prendre un nombre au hasard, d’utiliser
I’algorithme d’Euclide pour savoir s’il est premier & w, et de recommencer si tel
n’est pas le cas. Statistiquement, Alice doit ainsi trouver assez rapidement un
nombre d premier & w.

Elle doit ensuite trouver un inverse de d modulo w, c¢’est & dire un entier e
tel que :

de = 1[w], c’est-a-dire de = 1 + kw (k entier).

Mais on reconnait dans la relation précédente ni plus ni moins qu’'une rela-
tion de Bezout entre d et w. La méthode la plus classique pour ceci est ce que
I'on appelle algorithme d’Euclide étendu, ou algorithme de Bezout. Il s’agit de
“remonter” dans 'algorithme d’Euclide appliqué & w et d pour trouver cette
relation :

Supposons que l'algorithme de Bezout meéne a la suite de divisions eucli-
diennes successives :

w =qd+nr
d =@r1+ 712
Tn—2 = (nTn-1+7Tn

ou 7y, dernier reste non nul, est ici égal a 1 puisque w et d sont premiers entre
eux.
Alors on va partir de la derniere équation pour écrire :

1=ry_2 = gnrn-1

dans laquelle on peut remplacer 7,1 par 'expression rp_3 — ¢n—17n—2 (o0
utilise ici I'avant derniere division euclidienne). On a ainsi obtenu une relation de
Bezout entre r,_2 et r,_3. Il suffit alors de continuer le procédé en remplagant
rn—2 & l'aide de 'antépénultieme division euclidienne.

On obtient ainsi de proche en proche des relations de Bezout pour les couples
d’entiers (ry—1,7), puis (rp—2,m—1),... et a la fin (w,d).

Tel quel, 'exposé de ce procédé nous explique comment déterminer un in-
verse de d modulo w, mais on voudrait de plus, pour des raisons pratiques, qu’il
soit le plus petit possible. En effet, Alice doit pouvoir élever de gros nombres a
la puissance e.

Si lentier obtenu est supérieur a w, il suffit de prendre son reste modulo w
(et bien sur, le produit de reste inchangé modulo w, donc toujours congru a 1).

En réalité, cet algorithme nous permet de trouver un inverse e de d modulo
w qui vérifie |e| < w. C’est presque la condition la plus forte que 1'on puisse
imposer a e : en effet il existe un unique inverse de d (modulo w) dans chaque
intervalle de longueur w : si de = 1[w] et de’ = 1[w], alors d (e — €’) est multiple
de w. Comme d est premier & w, la différence (e — €’) est multiple de w d’apres
le lemme de Gauss. Mais si e et €/ sont dans un méme intervalle de longueur
w, on obtient

e —¢'| <w, et donc e = ¢'. En conclusion, si 'invers construit e

vérifie |e| < w, il ne reste que deux valeurs possibles de e (une positive, 'autre
négative). Et il suffit de rajouter w si la valeur obtenue est négative.

Pour montrer que le coefficient de Bezout e obtenu par 'algorithme vérifie
le|] < w, il nous faut conduire une récurrence un peu soigneuse.

Apres i remplacements, on a une relation de la forme :

1 =wirn—i—2 + virn—i—1

Soit donc P (@) la propriété : |u;| < r—i—1 et |v;| < rp_i—a.

Alors P (0) est vraie, car au rang 0 la relation est 1 = r,_9 — ¢y7p—1, donc
up =1 < rp_1 et vg = —gn, donc |vg| < r—2 (puisque g, est le quotient de la
division de 7,_3 par rp_1).

Supposons P (7) vraie. Pour passer a I’étape i+ 1, on remplace Uentier ry,_;_;
par sa valeur r,_;_3 — ¢n—i—17n—i—2 dans I'équation 1 = w;rp,_;j—o + virp_i_1.
Ceci nous conduit & la relation :

1 =wvirp—i—3 + (Ui — Gni—1Vi) Tn—i—2

En identifiant les coefficients, on obtient wjt1 = v; et viy1 = Ui — Gn—i—10;.
Mais alors, 'hypotheése de récurrence nous assure que |v;| < 7,—;_2, et donc
[wit1] < Tp—i-a.

D’autre part cette hypothese de récurrence nous donne :

[@n—i—10i] < Gn-i—17n—i—2

Et comme enfin lautre partie de 'hypotheése de récurrence est la relation
|ui| < rp—i—1, on obtient en sommant terme & terme :

[ti — gn—i—1vi| < il + |gn—i-1vi] < gn-i—17n—i—2 +Tn-i-1
c’est-a-dire la majoration :
[vig1] < Tn-i-3

et I’on a bien établi P (i 4+ 1). Par le principe de récurrence, on a bien pour tout ¢
la propriété : |u;| < rp—i—1 et |v;| < rp—i—2. A la derniere étape de I’algorithme,
ceci nous donne :

le] <w et k| <d

N.B. Dans la pratique, ce procédé est un peu long : faire d’abord 'algorithme
d’Euclide puis remonter pas & pas. Cela implique notamment de garder en
mémoire toutes les divisions euclidiennes. Il est plus rapide de mener tous ces
calculs en parallele a chaque étape de l'algorithme d’Euclide, en utilisant les
relations de récurrences des suites (u;) et (v;) : & chaque étape, dans 'expres-
sion du couple (u,—1,v,—1) recherché, on remplace les inconnues u; et v; par
leurs expressions en fonction de u;—; et v;—; qui sont les nouvelles variables. A
la fin du procédé, on connait ainsi 'expression des entiers u,_; et v,—; comme
combinaisons linéaires de ug et vg.Et la derniere division euclidienne nous donne
ug et vy, ce qui permet de calculer e = v;,_1.

3.2 Exponentiation rapide

On 'a déja signalé plus haut, un des probleme de la mise en oeuvre de
RSA est de pouvoir, pour Bernard, crypter M soit calculer Md[n] en un temps

raisonnable, et pour Alice, décrypter C soit calculer C¢[n] rapidement. Ces deux
problémes sont bien sur du méme type.

Une méthode assez efficace pour calculer a*[n], ol a et k sont deux entiers
quelconques, consiste a décomposer U'entier k£ en base 2. Par exemple, pour
élever a la puissance 17, plutot que de multiplier 16 fois par a et de prendre le
reste modulo n & chaque fois, on calcule a? modulo n, que l'on éleve au carré
(en deux étapes on a ainsi a*[n]), et de répéter le procédé. Pour cet exemple,
on a donc 4 étapes & effectuer pour obtenir a'®[n], plus une cinquiéme pour
arriver a a17[n]4 Cette méthode est d’autant plus efficace que l'on peut garder
en mémoire les résultats intermédiaires lors du calcul du plus grand exposant
binaire : pour trouver a®[n], on n’a la aussi besoin que de 5 étapes : lors du
calcul de a'S[n] on a calculé a*[n]... (voir exemple donné au paragraphe 2.1)

De maniere générale, si 'entier k se décompose sous la forme :

k=2m 424 42" oung >ng>...>n,

le nombre d’étapes (multiplication puis reste modulo n) est de cette fagon
ny +r—1 < 2ny, ce qui est tres peu devant k. En effet, on sait que 2™ < k,
donc ny < log, (k). Et pour de grandes valeurs de k, ce qui est le cas dans RSA
(le produit de est au moins w + 1, donc au mois 'une de ces valeurs est grande),
le temps de calcul gagné est considérable, puisque le rapport % tends vers
0.

Références

[1] HM. Stark, An Introduction to number theory, Markham Publ. Co., 1970
[2] D. Perrin, Cours d’algébre, Ecole Normale supérieure, 1990.

[3] B. Schneier, Cryptographie appliquée : protocoles, algorithmes et codes
sources en C, J. Wiley, 1997.

