
Sur l’algorithme RSA

Le RSA a été inventé par Rivest, Shamir et Adleman en 1978. C’est l’exemple
le plus courant de cryptographie asymétrique, toujours considéré comme sûr,
avec la technologie actuelle, pour des clés su�sament grosses (1024, 2048 voire
4096 bits). D’ailleurs le RSA128 (algorithme avec des clés de 128 bits), proposé
en 1978 par Rivest, Shamir et Adleman, n’a été “cassé” qu’en 1996, en faisant
travailler en parallèle de nombreux ordinateurs sur internet.

Mais le concept de chi↵rement asymétrique avec une clef publique était
légèrement antérieur (1976). L’idée générale était de trouver deux fonctions f
et g sur les entiers, telles que f �g = Id, et telle que l’on ne puisse pas trouver f ,
la fonction de décryptage, à partir de g, la fonction de cryptage. L’on peut alors
rendre publique la fonction g (ou clef), qui permettra aux autres de crypter
le message à envoyer, tout en étant les seuls à connâıtre f , donc à pouvoir
décrypter. On trouvera un exposé complet sur RSA dans [3].

1 Préliminaires d’arithmétique

Définition On appelle indicatrice d’Euler la fonction qui à un entier n fait
correspondre le nombre d’entiers a premiers à n vérifiant 1  a  n. On note
cette fonction '.

Si p est un nombre premier, alors tout entier compris entre 1 et p � 1 est
premier à p, aussi ' (p) = p � 1. On peut également calculer assez facilement
' (pn), toujours pour p premier et n � 2 entier : les nombres premiers à pn sont
exactement les nombres non multiples de p. Or entre 1 et pn, il y a exactement
pn�1 multiples de p. Donc ' (pn) = pn � pn�1 = pn�1 (p� 1).

Enfin, on va calculer la valeur de ' en un produit de deux nombres premiers
distincts. Ceci nous servira en e↵et dans l’algorithme RSA.

Lemme 1.1 Soient p et q deux nombres premiers distincts. Alors ' (pq) =
(p� 1) . (q � 1)

Démonstration Pour calculer ' (pq), il nous su�t de calculer le nombre d’en-
tiers compris entre 1 et pq qui ne sont pas premiers à pq. Ce sont bien sûr les
multiples respectifs de p et de q.

Or il y a exactement q multiples de p dans l’intervalle [[1 ; pq]], ainsi que
p multiples de q. Attention : nous avons ainsi compté deux fois l’entier pq. Le
nombre d’entiers non premiers à pq dans l’intervalle [[1 ; pq]] est donc q + p� 1.

D’où ' (pq) = pq � (p + q � 1) = (p� 1) . (q � 1)

⇤

1

Théorème 1.2 (Petit théorème de Fermat) Soit p un nombre premier. Si a est
un entier non divisible par p, alors on a ap�1 ⌘ 1[p].

Pour tout entier a on a donc ap ⌘ a[p].

Démonstration Ce théorème se déduit immédiatement du théorème 1.3, ce-
pendant nous allons en donner une autre preuve, élémentaire et originale, dûe
à Philippe Biane (CNRS, ENS).

Considérons l’ensemble des mots de p lettres sur un alphabet de a caractères.
Il y en a exactement ap.

Sous l’action du groupe des permutations circulaires, les orbites obtenues
sont réduites à un élément pour ce qui est des mots constants (qui sont au
nombre de a), et de cardinal p pour les autres (il faut appliquer p permutations
circulaires successives sur les lettres d’un mot pour revenir au mot de départ.)

Toutes ces orbites définissent une partition de l’ensemble des mots. Le car-
dinal de l’ensemble est donc la somme des cardinaux de toutes ces orbites. Ce
qui donne, si n désigne le nombre d’orbites non réduites à un point :

ap = a + np

et donc p divise ap � a, ce qui veut dire que l’on a bien ap ⌘ a[p].
L’autre partie du théorème s’en déduit aussitôt : si l’on suppose de plus que

p ne divise pas a, comme on sait que p divise ap � a = a
�
ap�1 � 1

�
, le lemme

de Gauss nous assure qu’alors p divise l’autre facteur, c’est-à-dire ap�1 � 1, et
donc ap�1 ⌘ 1[p]

⇤
N.B. La primalité de p semble ne pas intervenir dans cette preuve. En fait, c’est
elle qui assure que les orbites non réduites à un seul élément sont de cardinal
exactement p, c’est-à-dire que les p mots obtenus à partir d’un mot donné par
cette opération de permutation circulaire sont tous distincts. Si p n’est pas
premier, par exemple pour p = 4, notre mot non constant peut se décomposer
en plusieurs blocs identiques. Ainsi le mot ABAB nous donnera une orbite à 2
éléments, qui sont ABAB et BABA. En revanche, pour p premier, on ne peut
pas décomposer un mot en succession de blocks identiques. Un tel bloc aurait
un cardinal qui diviserait p, donc égal à 1 ou p. Le cas où c’est 1 correspond
aux mots constants.

Théorème 1.3 Soit n 2 N un entier fixé, soit a un entier premier à n. Alors
a'(n) ⌘ 1[n].

Démonstration 1 Ce résultat est essentiellement un résultat sur le groupe
multiplicatif (Z/nZ)⇤ : si a est premier à n, la classe de a modulo n est dans
(Z/nZ)⇤ et son ordre divise l’ordre du groupe (théorème de Lagrange), c’est-
à-dire ' (n). Donc la classe de a'(n) est la classe de 1. Pour un exposé plus
complet, voir par exemple [2].

Démonstration 2 (Inspirée de [1]) Soient r1, . . . , r'(n) une énumération des
entiers compris entre 1 et n, premiers à n. nous allons montrer que la multipli-
cation par a (modulo n), est une bijection de cet ensemble.

2

– Pour tout i, on a ari encore premier à n (sinon, il y aurait un diviseur pre-
mier commun, qui diviserait soit ri, soit a, contredisant ainsi l’hypothèse,
à savoir que a et ri sont premiers à n).

– Pour i et j distincts, ari et arj ne sont pas congrus modulo n. Dans le cas
contraire, on aurait un entier k tel que ari�arj = kn. De cette égalité, on
tire que n divise le produit a (ri � rj). Mais comme n et a sont premiers
entre eux, le lemme de Gauss nous assure alors que n divise ri � rj . Ceci
est impossible puisque ri et rj sont tous deux compris entre 1 et n, leur
di↵érence étant donc elle-même plus petite que n.

– Donc les entiers ar1[n], . . . , ar'(n)[n] sont distincts deux à deux, premiers
à n, et bien sûr au nombre de ' (n). A permutation près, ce sont donc les
mêmes que r1, . . . , r'(n).

En particulier, le produit des ri est le même que celui de leurs images (par la
bijection définie par la multiplication par a). C’est-à-dire que :

'(n)

⇧
i=1

(ari[n]) ⌘
'(n)

⇧
i=1

ri

ce qui signifie également que :

a'(n)
'(n)

⇧
i=1

ri ⌘
'(n)

⇧
i=1

ri[n]

Autrement dit, n divise la di↵érence :

a'(n)
'(n)

⇧
i=1

ri �
'(n)

⇧
i=1

ri =
'(n)

⇧
i=1

ri
�
a'(n) � 1

�

Or le produit
'(n)

⇧
i=1

ri est lui aussi premier à n (même argument que pour les
produits ari, à répéter ' (n)� 1 fois). Le lemme de Gauss nous permet alors de
conclure que n divise a'(n) � 1, c’est-à-dire le résultat attendu :

a'(n) ⌘ 1[n] ⇤

2 L’algorithme RSA

2.1 Description du protocole

Le but du jeu est bien sûr de pouvoir transmettre un message codé, que
seul le récepteur “o�ciel” puisse décrypter, c’est-à-dire qui ne puisse pas être
décrypté par un tiers qui intercepterait ledit message. Nous appellerons Alice
la destinatrice du message, et Bernard l’émetteur.

1. Alice génère deux gros nombres premiers p et q, ainsi qu’un gros nombre
d premier avec le produit w = (p� 1) (q � 1).

2. Alice calcule n = pq et e tel que de ⌘ 1[w].
3. Alice di↵use n et e, garde d et oublie w.
4. Bernard crypte un message M par M 7! Me[n] et envoie le résultat à Alice.
5. Alice décode alors le message crypté par C 7! Cd[n]

3

Exemple : Voyons ce qui se passe si l’on prend pour les deux nombres p et q
les valeurs 11 et 17. On a alors n = 187 et w = (11� 1) (17� 1) = 160. Comme
161 = 7⇥ 23, on peut prendre e = 7 et d = 23.

Alice va rendre public le couple (187, 7).
Bernard veut transmettre à Alice un message codé plus petit que n = 187,

mettons la date à laquelle ils vont faire une surprise à Cédric (par exemple, le
10), message qui ne doit pas être intercepté par ledit Cédric, bien sûr.

Bernard va donc calculer 107 = 187⇥53475+175, et envoyer le résultat 175
à Alice.

Alice va calculer le reste de la division euclidienne de 17523 par 187 :
– Elle calcule d’abord 1752 = 30625 = 163⇥187+144, donc 1752 ⌘ 144[187].
– Ensuite, 1442 = 20736 = 110⇥ 187 + 166, donc 1754 ⌘ 166[187].
– Puis, 1662 = 27556 = 147⇥ 187 + 67 donc 1758 ⌘ 67[187].
– Et 672 = 4489 = 24⇥ 187 + 1 donc 17516 ⌘ 1[187].
– Enfin, 17523 = 17516 ⇥ 1754 ⇥ 1752 ⇥ 175 donc

17523 ⌘ 1⇥ 166⇥ 144⇥ 175[187]

Or 166⇥ 144⇥ 175 = 4183200 = 22370⇥ 187 + 10.
Alice retrouve donc bien le message envoyé, à savoir 10.

2.2 Preuve de l’algorithme

Dans la suite, nous allons utiliser constamment la propriété des congruences
suivante :

Pour tout quadriplet d’entiers (a, b, c, r), si a ⌘ b[c], alors ar ⌘ br[c]. Cette
propriété se démontre aisément si l’on remarque que a� b divise ar � br...

Le but du protocole est bien sûr qu’Alice retrouve le message d’origine. Les
transformations successives appliquées au message d’origine sont :

M 7! Me[n] 7! (Me[n])d [n]

– Si le message M est premier à n :
On a (Me[n])d [n] ⌘ Mde[n], et par hypothèse de ⌘ 1[w], c’est-à-dire que
de = 1 + kw, avec k un entier.
Mais alors on peut appliquer le théorème 1.3 : M est premier à n donc
M'(n) ⌘ 1[n]. Et d’après le lemme 1.1, comme on a n = pq, on sait que
' (n) = (p� 1) (q � 1) = w. On a donc :

Mw ⌘ 1[n], donc Mde = Mkw+1 ⌘ M.1k[n] ⌘ M[n]

et donc on revient bien ainsi au message originel.
– Sinon, M non premier à n = pq, c’est-à-dire que M est multiple de p ou

de q. Considérons le cas où M est de la forme p↵m, avec m entier non
multiple de p..
Comme M < n, on peut a�rmer que m est premier à n (sinon, M serait
à la fois multiple de p et de q, donc plus grand que n !). Et on a :

Mde = (p↵m)de[n] ⌘ p↵de ⇤mde[n] ⌘ p↵de ⇤m[n]

d’après ce qui précède, appliqué à m.

4

Or p↵de ⌘ p↵[p] (c’est évident !) et p↵de ⌘ p↵[q] : par le théorème 1.3, on
a pq�1 ⌘ 1[q] et comme de = kw + 1, on obtient pde ⌘ p.1k(p�1)[q] ⌘ p[q].
En élevant la relation à la puissance ↵, il vient bien p↵de ⌘ p↵[q].
Mais alors la di↵érence p↵de � p↵ est à la fois multiple de p et de q, donc
multiple de pq en utilisant le lemme de Gauss. On obtient bien p↵de ⌘ p↵[n]
et donc :

Mde ⌘ p↵m[n] ⌘ M[n]

et Alice retrouve bien le message originel.
– Les nombres p et q jouant des rôles identiques, le cas où M est multiple

de q est identique.

N.B. Au vu de ce qui précède, on serait tenté d’énoncer un corollaire au
théorème 1.3 du type : “Pour tout entier a, on a a'(n)+1 ⌘ a[n]”. C’est mal-
heureusement faux lorsque n est multiple d’un carré : ' (4) = 2 et 22 n’est pas
congru à 2 modulo 4. Une formulation juste, mais un peu lourde, serait :

“Si n est un entier non multiple d’un carré, alors pour tout entier a, on a
a'(n)+1 ⌘ a[n].”

2.3 Force de l’algorithme

Malgré une apparente simplicité, le système RSA reste l’un des plus sûr.
Jusqu’à très récemment, la plupart des gens s’accordaient sur l’idée que décoder
une message sans connâıtre la clef était équivalent à factoriser l’entier n (i.e.
trouver p et q). Un papier récent infirme cette conjecture.

D’autre part, il est très di�cile dans la pratique de factoriser n : même s’il
existe des méthodes beaucoup plus e�caces que le procédé naturel (tester tous
les nombres impairs jusqu’à

p
n), le temps de calcul nécessaire reste incompa-

rablement plus long que celui dont ont besoin Alice et Bernard.
Enfin, signalons que l’algorithme, bien qu’assez sûr, est assez lent. Dans la

pratique, il sers le plus souvent à transmettre une clef servant à déchi↵rer un
message codé selon une autre méthode plus rapide, typiquement une méthode
de chi↵rement dit symétrique, par exemple IDEA : on code et on décode un
message de la même façon, il est donc nécessaire de transmettre le message
codé et la clef pour le décoder. C’est ce que fait par exemple PGP (pour Pretty
Good Privacy), logiciel de mise en oeuvre de cryptographie publique (RSA) et
symétrique (IDEA à une époque).

3 Mise en oeuvre pratique de RSA

Même si le protocole de RSA est assez simple, sa mise en oeuvre pose toute-
fois quelques problèmes pour Alice, notamment la construction de deux “gros”
nombres premiers (p et q), ainsi que la détermination du couple (d, e). Enfin, les
deux protagonistes se trouvent confrontés au problème d’élever de façon e�cace
un “gros” nombre à une “grosse” puissance, modulo n.

Nous ne parlerons pas ici du problème de la génération de “gros” nombres
premiers, problème assez complexe qui mériterait que l’on y consacre un texte
conséquent (à suivre ?).

5

3.1 Inversion modulo w

En réalité, Alice peut choisir sa première clef d de façon arbitraire. d doit
simplement être premier à w. Mais une telle condition est assez facile à satisfaire,
et encore plus à vérifier : il lui su�t de prendre un nombre au hasard, d’utiliser
l’algorithme d’Euclide pour savoir s’il est premier à w, et de recommencer si tel
n’est pas le cas. Statistiquement, Alice doit ainsi trouver assez rapidement un
nombre d premier à w.

Elle doit ensuite trouver un inverse de d modulo w, c’est à dire un entier e
tel que :

de ⌘ 1[w], c’est-à-dire de = 1 + kw (k entier).

Mais on reconnâıt dans la relation précédente ni plus ni moins qu’une rela-
tion de Bezout entre d et w. La méthode la plus classique pour ceci est ce que
l’on appelle algorithme d’Euclide étendu, ou algorithme de Bezout. Il s’agit de
“remonter” dans l’algorithme d’Euclide appliqué à w et d pour trouver cette
relation :

Supposons que l’algorithme de Bezout mène à la suite de divisions eucli-
diennes successives :

w = q1d + r1

d = q2r1 + r2
...
rn�2 = qnrn�1 + rn

où rn, dernier reste non nul, est ici égal à 1 puisque w et d sont premiers entre
eux.

Alors on va partir de la dernière équation pour écrire :

1 = rn�2 � qnrn�1

dans laquelle on peut remplacer rn�1 par l’expression rn�3 � qn�1rn�2 (on
utilise ici l’avant dernière division euclidienne). On a ainsi obtenu une relation de
Bezout entre rn�2 et rn�3. Il su�t alors de continuer le procédé en remplaçant
rn�2 à l’aide de l’antépénultième division euclidienne.

On obtient ainsi de proche en proche des relations de Bezout pour les couples
d’entiers (rn�1, rn), puis (rn�2, rn�1), . . . et à la fin (w, d).

Tel quel, l’exposé de ce procédé nous explique comment déterminer un in-
verse de d modulo w, mais on voudrait de plus, pour des raisons pratiques, qu’il
soit le plus petit possible. En e↵et, Alice doit pouvoir élever de gros nombres à
la puissance e.

Si l’entier obtenu est supérieur à w, il su�t de prendre son reste modulo w
(et bien sûr, le produit de reste inchangé modulo w, donc toujours congru à 1).

En réalité, cet algorithme nous permet de trouver un inverse e de d modulo
w qui vérifie |e| < w. C’est presque la condition la plus forte que l’on puisse
imposer à e : en e↵et il existe un unique inverse de d (modulo w) dans chaque
intervalle de longueur w : si de ⌘ 1[w] et de0 ⌘ 1[w], alors d (e� e0) est multiple
de w. Comme d est premier à w, la di↵érence (e� e0) est multiple de w d’après
le lemme de Gauss. Mais si e et e0 sont dans un même intervalle de longueur
w, on obtient |e� e0| < w, et donc e = e0. En conclusion, si l’invers construit e

6

vérifie |e| < w, il ne reste que deux valeurs possibles de e (une positive, l’autre
négative). Et il su�t de rajouter w si la valeur obtenue est négative.

Pour montrer que le coe�cient de Bezout e obtenu par l’algorithme vérifie
|e| < w, il nous faut conduire une récurrence un peu soigneuse.

Après i remplacements, on a une relation de la forme :

1 = uirn�i�2 + virn�i�1

Soit donc P (i) la propriété : |ui| < rn�i�1 et |vi| < rn�i�2.
Alors P (0) est vraie, car au rang 0 la relation est 1 = rn�2 � qnrn�1, donc

u0 = 1 < rn�1 et v0 = �qn, donc |v0| < rn�2 (puisque qn est le quotient de la
division de rn�2 par rn�1).

Supposons P (i) vraie. Pour passer à l’étape i+1, on remplace l’entier rn�i�1

par sa valeur rn�i�3 � qn�i�1rn�i�2 dans l’équation 1 = uirn�i�2 + virn�i�1.
Ceci nous conduit à la relation :

1 = virn�i�3 + (ui � qn�i�1vi) rn�i�2

En identifiant les coe�cients, on obtient ui+1 = vi et vi+1 = ui � qn�i�1vi.
Mais alors, l’hypothèse de récurrence nous assure que |vi| < rn�i�2, et donc
|ui+1| < rn�i�2.

D’autre part cette hypothèse de récurrence nous donne :

|qn�i�1vi| < qn�i�1rn�i�2

Et comme enfin l’autre partie de l’hypothèse de récurrence est la relation
|ui| < rn�i�1, on obtient en sommant terme à terme :

|ui � qn�i�1vi|  |ui| + |qn�i�1vi| < qn�i�1rn�i�2 + rn�i�1

c’est-à-dire la majoration :

|vi+1| < rn�i�3

et l’on a bien établi P (i + 1). Par le principe de récurrence, on a bien pour tout i
la propriété : |ui| < rn�i�1 et |vi| < rn�i�2. A la dernière étape de l’algorithme,
ceci nous donne :

|e| < w et |k| < d

N.B. Dans la pratique, ce procédé est un peu long : faire d’abord l’algorithme
d’Euclide puis remonter pas à pas. Cela implique notamment de garder en
mémoire toutes les divisions euclidiennes. Il est plus rapide de mener tous ces
calculs en parallèle à chaque étape de l’algorithme d’Euclide, en utilisant les
relations de récurrences des suites (ui) et (vi) : à chaque étape, dans l’expres-
sion du couple (un�1, vn�1) recherché, on remplace les inconnues ui et vi par
leurs expressions en fonction de ui�1 et vi�1 qui sont les nouvelles variables. A
la fin du procédé, on connâıt ainsi l’expression des entiers un�1 et vn�1 comme
combinaisons linéaires de u0 et v0.Et la dernière division euclidienne nous donne
u0 et v0, ce qui permet de calculer e = vn�1.

3.2 Exponentiation rapide

On l’a déjà signalé plus haut, un des problème de la mise en oeuvre de
RSA est de pouvoir, pour Bernard, crypter M soit calculer Md[n] en un temps

7

raisonnable, et pour Alice, décrypter C soit calculer Ce[n] rapidement. Ces deux
problèmes sont bien sûr du même type.

Une méthode assez e�cace pour calculer ak[n], où a et k sont deux entiers
quelconques, consiste à décomposer l’entier k en base 2. Par exemple, pour
élever à la puissance 17, plutôt que de multiplier 16 fois par a et de prendre le
reste modulo n à chaque fois, on calcule a2 modulo n, que l’on élève au carré
(en deux étapes on a ainsi a4[n]), et de répéter le procédé. Pour cet exemple,
on a donc 4 étapes à e↵ectuer pour obtenir a16[n], plus une cinquième pour
arriver à a17[n]. Cette méthode est d’autant plus e�cace que l’on peut garder
en mémoire les résultats intermédiaires lors du calcul du plus grand exposant
binaire : pour trouver a20[n], on n’a là aussi besoin que de 5 étapes : lors du
calcul de a16[n] on a calculé a4[n]... (voir l’exemple donné au paragraphe 2.1)

De manière générale, si l’entier k se décompose sous la forme :

k = 2n1 + 2n2 + . . . + 2nr , où n1 > n2 > . . . > nr

le nombre d’étapes (multiplication puis reste modulo n) est de cette façon
n1 + r � 1 < 2n1, ce qui est très peu devant k. En e↵et, on sait que 2n1 < k,
donc n1 < log2 (k). Et pour de grandes valeurs de k, ce qui est le cas dans RSA
(le produit de est au moins w+1, donc au mois l’une de ces valeurs est grande),

le temps de calcul gagné est considérable, puisque le rapport
log2 (k)

k
tends vers

0.

Références

[1] H.M. Stark, An Introduction to number theory, Markham Publ. Co., 1970
[2] D. Perrin, Cours d’algèbre, Ecole Normale supérieure, 1990.
[3] B. Schneier, Cryptographie appliquée : protocoles, algorithmes et codes

sources en C, J. Wiley, 1997.

8

