

Semaine du 24 au 28 mars Programme de colle n°22 2024-2025 MPSI 1

M5: THEOREME DU MOMENT CINETIQUE

Grandeurs physiques

Théorème du moment cinétique appliqué à un point matériel

M6: FORCES CENTRALES CONSERVATIVES

Lois de conservation

- présentation des forces centrales conservatives
- conservation du moment cinétique : démonstration, planéité du mouvement (1^{ère} conséquence), constante et loi des aires (2^{ème} conséquence)
- conservation de l'énergie mécanique : démonstration, notion d'énergie potentielle effective, profil d'énergie potentielle effective : Epeff (r), état lié ou état de diffusion

Cas des forces centrales newtoniennes

- définition et exemples (expression des forces newtoniennes et de leur énergie potentielle)
- discussion du mouvement radial à l'aide du profil d'énergie potentielle effective : Epeff (r)
- étude des trajectoires circulaires : uniformité du mouvement, relation entre vitesse et rayon, énergie mécanique, période de révolution
- étude des trajectoires elliptiques : énergie mécanique (par détermination de r_{min} et r_{max}), vitesse, période de révolution (par généralisation de l'expression pour la trajectoire circulaire)

A venir : satellites géostationnaires

Johannes Kepler (physicien allemand 1571-1630)

Semaine du 24 au 28 mars Programme de colle n°22

2024-2025 MPSI 1

EXTRAIT DU PROGRAMME de MPSI

Notions et contenus	Capacités exigibles
2.6. Mouvements dans un champ de force cer	ntrale conservatif
Point matériel soumis à un champ de force centrale.	Établir la conservation du moment cinétique à partir du théorème du moment cinétique. Établir les conséquences de la conservation du
	moment cinétique : mouvement plan, loi des aires.
Point matériel soumis à un champ de force centrale conservatif	
Conservation de l'énergie mécanique. Énergie potentielle effective. État lié et état de diffusion.	Exprimer l'énergie mécanique d'un système conservatif ponctuel à partir de l'équation du mouvement.
	Exprimer la conservation de l'énergie mécanique et construire une énergie potentielle effective. Décrire qualitativement le mouvement radial à l'aide de l'énergie potentielle effective. Relier le caractère borné du mouvement radial à la valeur de l'énergie mécanique.
	Capacité numérique : à l'aide d'un langage de programmation, obtenir des trajectoires d'un point matériel soumis à un champ de force centrale conservatif.
Cas particulier du champ newtonien Lois de Kepler.	Énoncer les lois de Kepler pour les planètes et les transposer au cas des satellites terrestres.
Cas particulier du mouvement circulaire : satellite, planète.	Établir que le mouvement est uniforme et déterminer sa période. Établir la troisième loi de Kepler dans le cas particulier de la trajectoire circulaire. Exploiter sans démonstration sa généralisation au cas d'une trajectoire elliptique.
Energie mécanique dans le cas du mouvement circulaire et dans le cas du mouvement elliptique.	Exprimer l'énergie mécanique pour le mouvement circulaire. Exprimer l'énergie mécanique pour le mouvement elliptique en fonction du demi-grand axe.
Satellites terrestres Satellites géostationnaire, de localisation et de navigation, météorologique.	Différencier les orbites des satellites terrestres en fonction de leurs missions. Déterminer l'altitude d'un satellite géostationnaire et justifier sa localisation dans le plan équatorial.