

Semaine du 28 avril au 02 mai Programme de colle n°25

2024-2025 MPSI 1

T1: SYSTEMES THERMODYNAMIQUES A L'EQUILIBRE

Système thermodynamique

- définition et classification (isolé/fermé/ouvert),
- description (échelles microscopique / macroscopique / mésoscopique, paramètres d'états intensifs / extensifs, équation d'état)
- états de la matière : 3 états, notions de phase condensée et de fluide,
- description macroscopique : équilibre thermodynamique, équilibre mécanique/thermique interne/externe, conséquences pratiques
- description microscopique : distance moyenne, libre parcours moyen

Description d'un système thermodynamique gazeux

- modèle du gaz parfait : hypothèses (particules ponctuelles/absence d'interaction), température cinétique, pression, équation d'état du GP, loi de Boyle-Mariotte pour T = cte
- modèle des gaz réels : mise en évidence de l'écart aux GP dans le diagramme d'Amagat ou de Clapeyron pour les isothermes, exemple du modèle de Van der Waals (équation d'état non exigible)

Description d'un système thermodynamique liquide et solide

- modèle des phases condensées incompressibles et indilatables
- exemple d'un modèle des phases condensées peu compressible et peu dilatable

Description d'un système thermodynamique diphasé

- diagramme de Clapeyron (P,v) et diagramme de phases (P,T)
- notion de vapeur saturante, titre vapeur, théorème des moments

Energie interne

- définitions et propriétés (extensivité, fonction d'état)
- cas d'un gaz parfait monoatomique : U(T), 1 loi de Joule, expressions de U, C_v et ΔU
- cas d'une phase condensée incompressible et indilatable : U(T), expression de ΔU (pour C = cte)

Robert Boyle (physicien irlandais 1627-1691)

Semaine du 28 avril au 02 mai Programme de colle n°25

2024-2025 MPSI 1

EXTRAIT DU PROGRAMME de MPSI

Notions et contenus	Capacités exigibles
3.1. Descriptions microscopique et macroscopique d'un système à l'équilibre	
Échelles microscopique, mésoscopique, et	Définir l'échelle mésoscopique et en expliquer la
macroscopique. Libre parcours moyen.	nécessité.
	Citer quelques ordres de grandeur de libres parcours
· <u>··</u> ······	moyens.
État microscopique et état macroscopique.	Préciser les paramètres nécessaires à la description
	d'un état microscopique et d'un état macroscopique
	sur un exemple.
Distribution des vitesses moléculaires d'un gaz	
(homogénéité et isotropie).	
Vitesse quadratique moyenne.	Calculer l'ordre de grandeur d'une vitesse
Température cinétique. Exemple du gaz parfait	quadratique moyenne dans un gaz parfait.
monoatomique : Ec=3/2kT.	11 15 13 1
Système thermodynamique.	Identifier un système ouvert, un système fermé, un
	système isolé.
État d'équilibre d'un système soumis aux seules	Calculer une pression à partir d'une condition
forces de pression.	d'équilibre mécanique.
Pression, température, volume, équation d'état.	Déduire une température d'une condition d'équilibre
Grandeur extensive, grandeur intensive.	thermique.
Exemples du gaz parfait et d'une phase	Citer quelques ordres de grandeur de volumes
condensée indilatable et incompressible.	molaires ou massiques dans les conditions usuelles
	de pression et de température.
	Citer et utiliser l'équation d'état des gaz parfaits.
Énergie interne d'un système. Capacité	Exprimer l'énergie interne d'un gaz parfait
thermique à volume constant dans le cas du gaz	monoatomique à partir de l'interprétation
parfait.	microscopique de la température.
	Exploiter la propriété U _m =U _m (T) pour un gaz parfait.
Énergie interne et capacité thermique à volume	Exploiter la propriété U _m =U _m (T) pour une phase
constant d'une phase condensée considérée	condensée incompressible et indilatable.
incompressible et indilatable.	
Approximation des phases condensées peu	Interpréter graphiquement la différence de
compressibles et peu dilatables.	compressibilité entre un liquide et un gaz à partir
	d'isothermes expérimentales.
Du gaz réel au gaz parfait.	Comparer le comportement d'un gaz réel au modèle
3 1	du gaz parfait sur des réseaux d'isothermes
	expérimentales en coordonnées de Clapeyron ou
	d'Amagat.
Corne pur diphosé on équilibre Diagrams - 4-	Angheor un diagrammo de phase conéciment-l
Corps pur diphasé en équilibre. Diagramme de phases (P,T).	Analyser un diagramme de phase expérimental (P,T).
Cas de l'équilibre liquide-vapeur : diagramme de	Proposer un jeu de variables d'état suffisant pour
Clapeyron (P,v), titre en vapeur.	caractériser l'état d'équilibre d'un corps pur diphasé
onsposition (1, 1), the on tupedi.	soumis aux seules forces de pression.
	Positionner les phases dans les diagrammes (P,T) et
	(P,v).
	Déterminer la composition d'un mélange diphasé en
	un point d'un diagramme (P,v).