

Semaine du 10 au 14 novembre Programme de colle n°7

2025-2026 MPSI 1

M2: LOIS DE NEWTON

Système étudié

- point matériel, ensemble de points matériels, solide
- caractéristiques (masse, centre de masse, quantité de mouvement)

Forces


- forces usuelles (force d'interaction newtonienne, poids, poussée d'Archimède, force de frottement fluide, réaction du support, tension d'un ressort, tension d'un fil)

Lois de Newton

- principe d'inertie, existence des référentiels galiléens, descriptions succinctes des référentiels héliocentrique, géocentrique et terrestre
- principe des actions réciproques
- loi de la quantité de mouvement dans le cas d'un point matériel
- théorème de la quantité de mouvement dans le cas d'un système de points et d'un solide indéformable

Exemples d'application

- mouvement d'un projectile dans un champ de pesanteur uniforme sans et avec frottements (linéaires ou quadratiques)
- mouvement d'une masse accrochée à un ressort vertical
- mouvement d'un pendule simple

Galileo Galilei (physicien italien 1564-1642)

Semaine du 10 au 14 novembre Programme de colle n°7

2025-2026 MPSI 1

EXTRAIT DU PROGRAMME de MPSI

Notions et contenus	Capacités exigibles
2.2. Lois de Newton	
Quantité de mouvement Masse d'un système. Conservation de la masse pour système fermé.	Exploiter la conservation de la masse pour un système fermé.
Quantité de mouvement d'un point et d'un système de points. Lien avec la vitesse du centre de masse d'un système fermé.	Établir l'expression de la quantité de mouvement pour un système de deux points sous la forme : p=mv(G).
Première loi de Newton : principe d'inertie. Référentiels galiléens.	Décrire le mouvement relatif de deux référentiels galiléens.
Notion de force. Troisième loi de Newton.	Établir un bilan des forces sur un système ou sur plusieurs systèmes en interaction et en rendre compte sur un schéma.
Deuxième loi de Newton.	Déterminer les équations du mouvement d'un point matériel ou du centre de masse d'un système fermé dans un référentiel galiléen.
	Mettre en œuvre un protocole expérimental permettant d'étudier une loi de force par exemple à l'aide d'un microcontrôleur.
Force de gravitation. Modèle du champ de pesanteur uniforme au voisinage de la surface d'une planète. Mouvement dans le champ de pesanteur uniforme.	Etudier le mouvement d'un système modélisé par un point matériel dans un champ de pesanteur uniforme en l'absence de frottement.
Modèles d'une force de frottement fluide. Influence de la résistance de l'air sur un mouvement de chute.	Exploiter, sans la résoudre analytiquement, une équation différentielle : analyse en ordres de grandeur, détermination de la vitesse limite, utilisation des résultats obtenus par simulation numérique. Écrire une équation adimensionnée.
	Mettre en œuvre un protocole expérimental de mesure de frottements fluides.
Tension d'un fil. Pendule simple.	Établir l'équation du mouvement du pendule simple. Justifier l'analogie avec l'oscillateur harmonique dans le cadre de l'approximation linéaire.