

Semaine du 17 au 21 novembre Programme de colle n°8

2025-2026 MPSI 1

M2: DYNAMIQUE DANS UN REFERENTIEL GALILEEN

M3: APPROCHE ENERGETIQUE DU MOUVEMENT D'UN POINT MATERIEL

- Grandeurs énergétiques énergie cinétique, puissance d'une force, caractère moteur ou résistant, travail d'une force
- lien entre ces grandeurs : théorèmes de la puissance cinétique et de l'énergie cinétique

James Joule (physicien anglais 1818-1889)

Semaine du 17 au 21 novembre Programme de colle n°8

2025-2026 MPSI 1

EXTRAIT DU PROGRAMME de MPSI

Notions et contenus	Capacités exigibles
2.3. Approche énergétique du mouvement d'un point matériel	
Puissance, travail et énergie cinétique Puissance et travail d'une force dans un référentiel.	Reconnaître le caractère moteur ou résistant d'une force.
Théorèmes de l'énergie cinétique et de la puissance cinétique dans un référentiel galiléen, dans le cas d'un système modélisé par un point matériel.	Utiliser le théorème approprié en fonction du contexte.
Champ de force conservative et énergie potentielle Énergie potentielle. Lien entre un champ de force conservative et l'énergie potentielle. Gradient.	Établir et citer les expressions de l'énergie potentielle de pesanteur (champ uniforme), de l'énergie potentielle gravitationnelle (champ créé par un astre ponctuel), de l'énergie potentielle élastique. Déterminer l'expression d'une force à partir de l'énergie potentielle, l'expression du gradient étant fournie. Déduire qualitativement, en un point du graphe d'une fonction énergie potentielle, le sens et l'intensité de la force associée.
Energie mécanique Énergie mécanique. Théorème de l'énergie mécanique. Mouvement conservatif.	Distinguer force conservative et force non conservative. Reconnaître les cas de conservation de l'énergie mécanique. Utiliser les conditions initiales.
Mouvement conservatif à une dimension. Positions d'équilibre. Stabilité.	Identifier sur un graphe d'énergie potentielle une barrière et un puits de potentiel. Déduire d'un graphe d'énergie potentielle le comportement qualitatif : trajectoire bornée ou non, mouvement périodique, positions de vitesse nulle. Déduire d'un graphe d'énergie potentielle l'existence de positions d'équilibre. Analyser qualitativement la nature, stable ou instable, de ces positions.
Petits mouvements au voisinage d'une position d'équilibre stable, approximation locale par un puits de potentiel harmonique.	Établir l'équation différentielle du mouvement au voisinage d'une position d'équilibre. Capacité numérique : à l'aide d'un langage de programmation, résoudre numériquement une équation différentielle du deuxième ordre nonlinéaire et faire apparaître l'effet des termes nonlinéaires.