
Exercice 8: influence du pH _ CORR

La dissolution de l'acétate d'argent conduit à la libération de l'ion acétate CH_3COO^- , qui est une base faible dans l'eau. Selon les conditions de pH, cet ion peut se retrouver protonné sous forme CH_3COOH . Pour aider au raisonnement, on trace le diagramme de prédominance de ce couple :

Dans un tampon pH = 10.0

Le diagramme montre que l'espèce CH_3COO^- est largement prédominante. On peut négliger CH_3COOH et raisonner sur l'équation de dissolution simple :

RD:
$$CH_3COOAg \rightleftharpoons Ag^+ + CH_3COO^-$$

équilibre excès s s (concentrations)

Donc
$$K_s = 10^{-2.7} = [Ag^+][CH_3COO^-] = s^2$$
, d'où :
$$s = \sqrt{K_s} = 0.045 \text{ mol} \cdot L^{-1}$$

Dans un tampon pH = 3.0

À ce pH, c'est [CH₃COO⁻] qui est négligeable devant [CH₃COOH]. La réaction précédente ne modélise

donc pas correctement la dissolution, puisque les ions acétate sont quasi-totalement convertis en acide acétique par les ions H_3O^+ présents dans la solution (apportés par le tampon).

Il faut donc additioner la dissolution du sel et la protonnation de l'acétate pour trouver la réaction de dissolution :

$$\begin{array}{ll} {\rm CH_3COOAg = CH_3COO^- + Ag^+} & {K^{\circ}}_1 = K_S \\ {\rm CH_3COO^- + H_3O^+ = CH_3COOH + H_2O} & {K^{\circ}}_2 = \frac{1}{K_a} \\ \hline {\rm CH_3COOAg + H_3O^+ = CH_3COOH + Ag^+ + H_2O} & {K^{\circ}} = K^{\circ}_1 K^{\circ}_2 = \frac{K_S}{K_a} \\ \hline \end{array}$$

On fait alors le bilan de cette nouvelle réaction de dissolution comme précédemment. N.B. La concentration en H_3O^+ est maintenue constante par le tampon. On la note $h=10^{-3.0}$ mol· L^{-1} .

RD:
$$CH_3COOAg + H_3O^+ \rightleftarrows CH_3COOH + Ag^+ + H_2O$$

équilibre excès h s (concentrations)

Donc
$$K^{\circ} = \frac{K_s}{K_a} = \frac{s^2}{h}$$
, d'où:

$$s = \sqrt{\frac{K_s}{K_a}h} = 0.35 \text{ mol} \cdot \text{L}^{-1}$$