
Dichotomie
Le mot dichotomie veut dire “couper en deux”. C’est une méthode très courante pour faire des

algorithmes plus efficaces : on coupe le problème en deux, et soit on traite les parties

indépendamment (tri fusion, tri rapide …), soit on arrive à ne traiter qu’une seule des deux parties

(recherches, exponentiation rapide…).

Recherche dichotomique

On a vu comment on peut trier une liste. Comment utiliser ce tri pour chercher un élément plus

vite ?

Idée : on regarde au milieu de la liste.

• Si milieu < x, alors x est dans la deuxième moitié

• Sinon, dans la première moitié

−1 0 1 2 3 4 5 10 123 124

−1 0 1 2 3 4 5 10 123 124

−1 0 1 2 3 4 5 10 123 124

−1 0 1 2 3 4 5 10 123 124

def recherche_dicho(L, x):

 """Si L est une liste triée dans l'ordre croissant, renvoie l'indice de x dans L,

ou bien None si x n'est pas dans L."""

 i = 0 #borne inf inclue

 j = len(L) #borne sup exclue

 while (j - i) > 0:

 milieu = (i + j) // 2

 if L[milieu] > x:

 i = milieu + 1

 elif L[milieu] < x:

 j = milieu

 else: #cas ou L[milieu] == x

 return milieu

 return None

Combien de tour de boucle au maximum pour une liste de taille 8 ? De taille 16 ? Et pour 2𝑛 en

général ?

En fait, la complexité est logarithmique, soit en 𝑂(log(𝑛)).

Recherche du 0 d’une fonction

Supposons qu’on ai une fonction 𝑓 croissante et qu’on cherche où elle s’annule sur un intervalle

[𝑎, 𝑏], avec 𝑓(𝑎) < 0 et 𝑓(𝑏) > 0.

On peut appliquer le même principe !

Voir l’animation geogebra sur https://tpprepa.github.io/dichotomie.html .

https://tpprepa.github.io/dichotomie.html

def recherche_zero(f, a, b, eps):

 """Si f(a) < 0 et f(b) > 0, renvoie un zero de f sur [a, b] à eps près."""

 while b - a > eps:

 milieu = a + b / 2

 if f(milieu) < 0:

 a = milieu

 else:

 b = milieu

 return (a + b) / 2

On veut trouver le nombre de tours de boucles avant que le programme s’arrête.

Le programme s’arrête quand :

𝑏 − 𝑎
2𝑛 ≤ eps

Soit : 𝑛 ≥ log2(
𝑏 − 𝑎
eps

)

On a donc, en ordre de grandeur de complexité, 𝑂(log(𝑏−𝑎
eps)) tours de boucles (et opération, car

chaque tour de boucle fait un nombre constant d’opérations.)

Les concepteurs de sujet aiment bien tout ce qui touche aux applications physique, donc c’est

vraiment le genre d’algorithme qui tombe !

Exponentiation rapide

On peut appliquer ce même principe de “couper en deux” sur des problèmes où c’est moins évident.

Ici, en prenant x un flottant (= un nombre à virgule) et n un entier positif, on veut calculer 𝑥𝑛 de

manière efficace.

méthode naive : on peut faire

𝑥 ∗ 𝑥 ∗ 𝑥 ∗ … ∗ 𝑥 ∗ 𝑥⏟
𝑛 fois

pour un total de 𝑛 − 1 multiplications.

Mais on peut faire mieux !

ex

• considérons 𝑥4.

On a 𝑥 ∗ 𝑥 ∗ 𝑥 ∗ 𝑥 = (𝑥 ∗ 𝑥)2.

Si on nomme 𝑦 = 𝑥 ∗ 𝑥, il nous faut une multiplication pour calculer 𝑦, puis une multiplication

pour calculer 𝑦 ∗ 𝑦.

On a économisé une multiplication !

• Et si n est impair ? par exemple 𝑥5

Dans ce cas, on découpe comme suit : 𝑥5 = 𝑥 ∗ 𝑥4, et on calcule 𝑥4 comme précédemment.

def exp_rapide(x, n):

 """Calcule x^n en O(log(n)), avec x un flottant et n un entier positif"""

 reste = 1

 while n ! = 0:

 if n % 2 = = 0:

 n / = 2

 x *= x

 else:

 reste *= x

 x -= 1

 return reste

x n reste

5 7 1

5 6 5

25 3 5

25 2 125

625 1 125

625 0 125*635

Tri fusion

On va réutiliser l’idée de couper en deux, mais cette fois pour trier une liste. Le tri fusion (ou

“partition-fusion”) est en 3 étapes :

1. Couper la liste à trier en deux part égales

2. Trier chaque partie séparément

3. Fusionner les deux parties triées

On va s’intéresser à ces étapes une par une.

1. Couper la liste en deux

def partition(L):

 """Prend une liste en argument, et renvoie deux nouvelles listes contenant chacune

la moitié des éléments (avec un de plus dans la deuxième si nécessaire)"""

 n = len(L)

 milieu = n//2

 moitie_1 = L[0:milieu]

 moitie_2 = L[milieu:n]

 return (moitie_1, moitie_2)

2. Trier chaque partie séparément

On va trier les parties en utilisant … Le tri fusion lui-même !

3. Fusionner deux listes triées

Montrer animation.

Idée On aimerait placer tous les éléments contenus dans les deux listes moitie_1 et moitie_2 dans

une nouvelle liste resultat.

On va prendre les éléments un par un !

def fusion(L1, L2):

 """fusionne deux listes triées en ordre croissant en une seule liste triée

également."""

 resultat = []

 i1 = 0

 i2 = 0

 #On transfère les éléments tant qu'on a terminé aucune des deux listes

 while i1 < len(L1) and i2 < len(L2):

 if L1[i1] < L2[i2]):

 resultat.append(L1[i1])

 i1 += 1

 else:

 resultat.append(L2[i2])

 i2 += 1

 #Une fois qu'une liste est terminée, on peut transférer tout ce qu'il reste dans

l'autre !

 reste1 = L1[i1:]

 reste2 = L2[i2:]

 resultat = resultat + reste1 + reste2

 #Une seule des deux boucles "for" sera non-vide (grâce à la condition du "while")

 return resultat

En combinant les trois

def tri_fusion(L):

 if len(L) < = 1:

 return L[:]

 milieu = len(L)//2

 #partition

 moitie_1, moitie_2 = partition(L)

 #tri récursif

 moitie_1 = tri_fusion(moitie_1)

 moitie_2 = tri_fusion(moitie_2)

 #fusion

 return fusion(moitie_1, moitie_2)

	Dichotomie
	Recherche dichotomique
	Recherche du 0 d'une fonction
	Exponentiation rapide
	Tri fusion
	1. Couper la liste en deux
	2. Trier chaque partie séparément
	3. Fusionner deux listes triées
	En combinant les trois

