Dichotomie

Le mot dichotomie veut dire “couper en deux”. C’est une méthode trés courante pour faire des

algorithmes plus efficaces : on coupe le probléme en deux, et soit on traite les parties

indépendamment (tri fusion, tri rapide ...), soit on arrive a ne traiter qu’une seule des deux parties

(recherches, exponentiation rapide...).

Recherche dichotomique

On a vu comment on peut trier une liste. Comment utiliser ce tri pour chercher un élément plus

vite ?

Idée : on regarde au milieu de la liste.
« Similieu < x, alors x est dans la deuxiéme moitié
+ Sinon, dans la premiere moitié

-1 0 1 2 3 4 5 10 123 124
-1 0 1 2 3 4 5 10 123 124
-1 0 1 2 3 4 5 10 123 124
-1 0 1 2 3 4 5 10 123 124
def recherche dicho(L, x):
"""Si L est une liste triée dans l'ordre croissant, renvoie 1'indice de x dans L,

ou bien None si x n'est pas dans L."""
i = 0 #borne inf inclue
j = len(L) #borne sup exclue

while (j - 1) > 0:
milieu = (i + j) // 2
if L[milieu] > x:
i =milieu + 1
elif L[milieu] < x:
j = milieu
else: #cas ou L[milieu] == x
return milieu
return None

Combien de tour de boucle au maximum pour une liste de taille 8 ? De taille 16 ? Et pour 2" en

général ?
En fait, la complexité est logarithmique, soit en O(log(n)).

Recherche du 0 d’une fonction

Supposons qu’on ai une fonction f croissante et qu’on cherche ou elle s’annule sur un intervalle

[a,b], avec f(a) < Oet f(b) > 0.

On peut appliquer le méme principe !

Voir I'animation geogebra sur https://tpprepa.github.io/dichotomie.html .

https://tpprepa.github.io/dichotomie.html

def recherche zero(f, a, b, eps):
"""Si f(a) < 0 et f(b) > 0, renvoie un zero de f sur [a, b] a eps pres."""
while b - a > eps:
milieu = a +b / 2
if f(milieu) < 0:
a = milieu
else:

milieu
return (a + b) / 2

On veut trouver le nombre de tours de boucles avant que le programme s’arréte.
Le programme s’arréte quand :

b—a<
_— eps
gn =P

h—
Soit : n > log2(a)
eps

b—a
eps
chaque tour de boucle fait un nombre constant d’opérations.)

On a donc, en ordre de grandeur de complexité, O(log()) tours de boucles (et opération, car

Les concepteurs de sujet aiment bien tout ce qui touche aux applications physique, donc c’est
vraiment le genre d’algorithme qui tombe !

Exponentiation rapide
On peut appliquer ce méme principe de “couper en deux” sur des problémes ou c’est moins évident.

Ici, en prenant x un flottant (= un nombre a virgule) et n un entier positif, on veut calculer 2™ de
maniere efficace.

méthode naive : on peut faire

n fois
pour un total de n — 1 multiplications.
Mais on peut faire mieux !

ex

« considérons x*.

Onaz*zr*zxx = (T *1)°
Si on nomme y = x * z, il nous faut une multiplication pour calculer y, puis une multiplication
pour calculer y * y.

On a économisé une multiplication !

« Et si n est impair ? par exemple z°
Dans ce cas, on découpe comme suit : 25 = z * z*, et on calcule 2* comme précédemment.

def exp rapide(x, n):
"""Calcule x*n en 0(log(n)), avec x un flottant et n un entier positif"""

reste = 1
while n ! = 0:
ifn%2==0:
n/ =2
X *= X
else:
reste *= x
X -=1
return reste
X n reste
7 1
5 6 5
25 3 5
25 2 125
625 1 125
625 0 125%635

Tri fusion

On va réutiliser I'idée de couper en deux, mais cette fois pour trier une liste. Le tri fusion (ou
“partition-fusion”) est en 3 étapes :

1. Couper la liste a trier en deux part égales
2. Trier chaque partie séparément
3. Fusionner les deux parties triées

On va s’intéresser a ces étapes une par une.

1. Couper la liste en deux
def partition(L):

"""Prend une liste en argument, et renvoie deux nouvelles listes contenant chacune
la moitié des éléments (avec un de plus dans la deuxieme si nécessaire)"""

n = len(L)

milieu = n//2

L[0:milieu]
Limilieu:n]

moitie 1
moitie 2

return (moitie 1, moitie 2)

2. Trier chaque partie séparément

On va trier les parties en utilisant ... Le tri fusion lui-méme !

3. Fusionner deux listes triées

Montrer animation.

Idée On aimerait placer tous les éléments contenus dans les deux listes moitie 1 etmoitie 2 dans
une nouvelle liste resultat.

On va prendre les éléments un par un !

def fusion(Ll, L2):

"""fusionne deux listes triées en ordre croissant en une seule liste triée
également."""

resultat = []

il=20

i2 =0

#0n transfere les éléments tant qu'on a terminé aucune des deux listes

while il < len(L1l) and i2 < len(L2):

if L1[1i1] < L2[i2]):
resultat.append(L1[il])

il += 1

else:
resultat.append(L2[i2])
i2 += 1

#Une fois qu'une liste est terminée, on peut transférer tout ce qu'il reste dans
1'autre !

restel

reste2

L1[il:]
L2[i2:]

resultat = resultat + restel + reste2
#Une seule des deux boucles "for" sera non-vide (grace a la condition du "while")

return resultat

En combinant les trois
def tri fusion(L):
if len(L) < = 1:
return L[:]
milieu = len(L)//2
#partition

moitie 1, moitie 2 = partition(L)

#tri récursif
moitie 1 = tri fusion(moitie 1)
moitie 2 = tri fusion(moitie 2)

#fusion
return fusion(moitie 1, moitie 2)

	Dichotomie
	Recherche dichotomique
	Recherche du 0 d'une fonction
	Exponentiation rapide
	Tri fusion
	1. Couper la liste en deux
	2. Trier chaque partie séparément
	3. Fusionner deux listes triées
	En combinant les trois

