TD 12 bis Convexité

1 Exercices corrigés en classe

Exercice 1. Quelques inégalités de convexité. •••

1. Inégalité harmonico-arithmetico-géométrique : Soient x_1, x_2, \ldots, x_n des réels strictement positifs. Montrer que

 $\frac{n}{\frac{1}{x_1}+\cdots+\frac{1}{x_n}}\leqslant (x_1\cdots x_n)^{\frac{1}{n}}\leqslant \frac{x_1+\cdots+x_n}{n}.$

2. Montrer que $x \in \mathbb{R} \longrightarrow \ln(1 + e^x)$ est convexe sur \mathbb{R} , et en déduire pour tout $n \in \mathbb{N}^*$ et tout $(x_1, \ldots, x_n) \in (\mathbb{R}_+^*)^n$:

$$1 + \left(\prod_{k=1}^{n} x_k\right)^{\frac{1}{n}} \leqslant \left(\prod_{k=1}^{n} (1 + x_k)\right)^{\frac{1}{n}}.$$

En déduire que pour tout $n \in \mathbb{N}^*$ et tout $(a_1, \ldots, a_n, b_1, \ldots, b_n) \in (\mathbb{R}_+^*)^{2n}$,

$$\left(\prod_{k=1}^{n} a_{k}\right)^{\frac{1}{n}} + \left(\prod_{k=1}^{n} b_{k}\right)^{\frac{1}{n}} \leqslant \left(\prod_{k=1}^{n} (a_{k} + b_{k})\right)^{\frac{1}{n}}$$

Exercice 2. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction convexe majorée. Démontrer que f est constante.

Exercice 3. Comportement asymptotique des fonctions convexes. $\bullet \bullet \bigcirc$ Soit $f : \mathbb{R}_+ \longrightarrow \mathbb{R}$ une fonction convexe.

- **1.** Montrer que la fonction $x \mapsto \frac{f(x)}{x}$ possède une limite $a \in \overline{\mathbb{R}}$ en $+\infty$.
- **2.** Si $a \in \mathbb{R}$, démontrer que $x \mapsto f(x) ax$ possède une limite $b \in \overline{\mathbb{R}}$ en $+\infty$.
- **3.** Si $b \in \mathbb{R}$, étudier la position de la courbe et de son asymptote.

Exercice 4. Inégalités de Hölder et de Minkowski. Soit p > 1. Pour tout $X \in \mathbb{R}^n$, on appelle norme p de X le réel positif $\|X\|_p = \left(\sum_{k=1}^n |x_k|^p\right)^{\frac{1}{p}}$.

Soient p, q > 1 deux réels strictement positifs tels que $\frac{1}{p} + \frac{1}{q} = 1$.

- **1.** Démontrer que pour tous réels x et y, $xy \leqslant \frac{x^p}{p} + \frac{y^q}{q}$.
- **2.** (inégalité de Hölder) En déduire que pour tous $X,Y \in \mathbb{R}^n$ tels que $\|X\|_p = \|Y\|_q = 1$, $\left|\sum_{k=1}^n x_k y_k\right| \leqslant 1$, puis que pour tous X et Y dans \mathbb{R}^n ,

$$\left| \sum_{k=1}^n x_k y_k \right| \leqslant \|X\|_p \|Y\|_q.$$

3. (inégalité de Minkowski) Démontrer que pour tous $X, Y \in \mathbb{R}^n$: $\|X + Y\|_p \leq \|X\|_p + \|Y\|_p$

nlaillet.math@gmail.com

Stratégie:

- Il faut pouvoir reconnaître la convexité dans des inégalités : exercices 7, 8, 9.
- Il faut pouvoir relier convexité et comportement global : exercice 5, 6, 12,
- Faites un exercice un peu plus raffiné au moins : exercice 14 ou 15.

2 Exercices à faire en TD

Plus que jamais, les indications de fin de TD peuvent être utiles, afin de vous guider sur la question « à quelle fonction appliquer une inégalité de convexité? »

Exercice 5. $\bullet \bigcirc \bigcirc$ Soit $f:[a,b] \longrightarrow \mathbb{R}$ une fonction convexe positive pour laquelle f(a)=f(b)=0. Montrer que f est la fonction nulle.

Exercice 6. $\bullet \bigcirc \bigcirc$ Soit $f : \mathbb{R} \to \mathbb{R}$, concave. Démontrer que s'il existe $(a, b) \in \mathbb{R}^2$ tels que a < b et f(a) > f(b), alors $f(x) \xrightarrow[x \to +\infty]{} -\infty$.

Exercice 7. •OO Démontrer que :

$$\forall x, y \in]1, +\infty[, \ln\left(\frac{x+y}{2}\right) \geqslant \sqrt{\ln(x)\ln(y)}$$

Exercice 8. Une application de l'inégalité arithmético-géométrico-harmonique. $\bullet \bigcirc \bigcirc$ Soient $x_1 \ldots x_n$ des réels > 0. Montrer, en utilisant l'inégalité arithmético-géométrico-harmonique, que

$$\frac{x_1}{x_2} + \frac{x_2}{x_3} + \dots + \frac{x_{n-1}}{x_n} + \frac{x_n}{x_1} \geqslant n.$$

Exercice 9. $\bullet \bullet \bigcirc$ Montrer que pour tous a, b, x, y > 0

$$(x+y)\ln\frac{x+y}{a+b} \leqslant x\ln\frac{x}{a} + y\ln\frac{y}{b}.$$

Exercice 10. •• Montrer que pour tout n dans \mathbb{N}^* , $(a_1, \ldots, a_n) \in \mathbb{R}^{*n}_+$

$$\sqrt{\sum_{i=1}^{n} a_i} \geqslant \frac{1}{\sqrt{n}} \sum_{k=1}^{n} \sqrt{a_i}$$

En déduire que $\forall x > 1$,

$$\sqrt{x^{2n}-1} \geqslant \sqrt{\frac{x+1}{x-1}} \frac{x^n-1}{\sqrt{n}}$$

Exercice 11. $\bullet \bigcirc \bigcirc$ Encadrer la fonction cos sur $[\pi/2, \pi]$ par deux **bonnes** fonctions affines nulles en $\pi/2$, de la manière la plus optimale possible.

Exercice 12. $\bullet \bullet \bigcirc$ Soit f et g deux fonctions convexes définies sur un intervalle f. Montrer que si f + g est affine, alors f et g sont toutes les deux affines.

Exercice 13. $\bullet \bullet \bigcirc$ Soit I un intervalle ouvert et $f: I \to \mathbb{R}$ une fonction convexe. Montrer que fest lipschitzienne sur tout segment inclus dans I.

Exercice 14. Limite de f(x) - xf'(x). $\bullet \bullet \bullet$ Soit $f: \mathbb{R} \to \mathbb{R}$, convexe, dérivable, et $g: x \mapsto$ f(x) - xf'(x).

Indication. L'exercice est beaucoup plus simple si f est 2 fois dérivable... vous pouvez commencer avec cette hypothèse.

Convexité

1. Montrer que g admet une limite (éventuellement infinie) en $+\infty$.

On se place dans le cas où g admet une limite finie p

- 2. Démontrer que $x \mapsto \frac{f(x) f(0)}{x}$ et $x \mapsto \frac{f(x) p}{x}$ admettent des limites en $+\infty$, puis en déduire que $\frac{f(x)}{x}$ et f'(x) admettent une même limite finie m en $+\infty$.
- **3.** Montrer alors que $f(x) mx p \xrightarrow{x \to +\infty} 0$.

Exercice 15. $\bullet \bullet \bigcirc$ On dit que $f: I \to \mathbb{R}_+^*$ est *logarithmiquement convexe* sur l'intervalle I si I est convexe sur I.

- **1.** Soit f définie par $f(x) = e^{2x-\cos x}$, montrer que f est convexe sur \mathbb{R} .
- 2. Montrer que si f est logarithmiquement convexe, alors f est convexe. Réciproque?
- **3.** Montrer que f est logarithmiquement convexe si, et seulement si, pour tout $\alpha > 0$, f^{α} est convexe.
- **4.** Montrer que f est logarithmiquement convexe si, et seulement si, pour tout $a \in \mathbb{R}$, $x \mapsto e^{ax} f(x)$ est convexe.
- 5. Montrer que le produit et la somme de deux fonctions logarithmiquement convexes l'est aussi.

Exercice 16. $\bullet \bullet \bullet$ Soit $f : \mathbb{R}^+ \longrightarrow \mathbb{R}$ positive, bornée, de classe \mathcal{C}^2 telle que $f \leqslant f''$.

- 1. Montrer que f est convexe et décroissante.
- **2.** Montrer que f' tend vers 0 en $+\infty$.
- **3.** Soit g et h définies par $g(x) = f(x)e^x$ et $h(x) = (f'(x) + f(x))e^{-x}$ pour $x \ge 0$. Étudier le signe de h, et les variations de g.
- **4.** En déduire que pour $x \ge 0$, on a $f(x) \le f(0)e^{-x}$.

Exercice 17. $\bullet \bullet \bullet$ Soit $f : \mathbb{R} \to \mathbb{R}$, continue telle que pour tout $(x, y) \in \mathbb{R}^2$,

$$f\left(\frac{x+y}{2}\right) \leqslant \frac{f(x)+f(y)}{2}.$$

Montrer que f est convexe.

Indications.

- 1. Dans la première question, tout vient de la concavité de ln et de l'inégalité de Jensen.
- **2.** Utiliser l'inégalité des pentes pour montrer que f tend vers $+\infty$ ou $-\infty$ en $+\infty$ ou $-\infty$.
- **5.** Utiliser l'inégalité des pentes, ainsi que la positivité de f.
- 6. Utiliser, encore, l'inégalité des pentes. (oui, elle est très importante, cette inégalité!)
- 7. Utiliser, en la démontrant, la concavité de $x \mapsto \ln(\ln(x))$
- **8.** Poser, pour $i \in [1, n-1]$, $a_i = \frac{x_i}{x_{i+1}}$, et $a_n = \frac{x_n}{x_1}$.
- **9.** Utiliser la concavité du ln (peut-être la convexité de ln d'ailleurs...!), toujours, mais pas directement avec x et y: c'est ça la subtilité!
- **10.** Utiliser la concavité de $x \mapsto \sqrt{x}$ puis l'inégalité de Jensen. Ensuite, factoriser $x^{2n} 1 = (x^2 1) \times \dots$
- 11. Calquer sur l'exercice de cours avec le sinus.

- 12. Raisonner par l'absurde : quelle inégalité stricte vérifie une fonction convexe non affine?
- **13.** Utiliser l'inégalité des pentes, en pensant au fait que si $[a, b] \subset I$, il existe $c \in I$, c > b.
- **14. 1.** Démontrer que g est décroissante (attention, f n'est pas deux fois dérivable donc on ne peut pas dériver g!) Revenir donc à la définition de la décroissance et utiliser la croissance des pentes.
 - 2. Démontrer que $h: x \mapsto \frac{f(x)}{x}$ admet une limite et qu'elle est bornée, puis remarquer que $f'(x) = \frac{g(x)}{x} + \frac{f'(x)}{x}$.
 - 3. Démontrer que $\varphi(x) = \frac{f(x) p}{x}$ décroît en tendant vers m, puis utiliser que f' croît en tendant vers m pour conclure par théorème d'encadrement.
- **15. 1.** Dériver simplement deux fois!
 - 2. Remarquer que l'on peut composer une inégalité de convexité par une fonction convexe croissante! (l'exponentielle, à tout hasard...) Pour la réciproque, cf. la question précédente.
 - **3.** Pour le sens direct, faire comme la question précédente. Pour le sens réciproque, pour x fixé, quelle est la dérivée de $\alpha \mapsto f(x)^{\alpha}$? Cela devrait pouvoir aider à prendre une limite d'un taux d'accroissement pour démontrer la log-convexité!
 - **4.** Un sens est évident. Pour l'autre, vraiment plus dur, Montrer que si toutes les fonctions f_c sont convexes, alors pour tous $x,y\in I$ avec $x\neq y$, et $\lambda\in]0,1[.$ $\forall c\in \mathbb{R}:f((1-\lambda)x+\lambda y)\leqslant (1-\lambda)e^{c\lambda(x-y)}f(x)+\lambda e^{c(1-\lambda)(y-x)}f(y)$. Considérer ensuite la valeur de c pour laquelle $\varphi(c)=(1-\lambda)e^{c\lambda(x-y)}f(x)+\lambda e^{c(1-\lambda)(y-x)}f(y)$ est minimal, et vérifier que pour cette valeur de c, on a $\varphi(c)=f(x)^{1-\lambda}f(y)^{\lambda}$. Conclure!
 - 5. Utiliser l'une des deux caractérisations précédentes!
- **16.** 1. Supposer qu'il existe a < b tels que f(a) < f(b) et utiliser l'inégalité des pentes!
 - **2.** Raisonner par l'absurde en remarquant que f' a nécessairement une limite dans $\mathbb{R}_- \cup \{-\infty\}$, puis remarquer, par exemple, que $f(x) f(x_0) = \int_{x_0}^x f'(t) dt$.
 - 3. C'est juste du calcul, ainsi qu'une inégalité entre une fonction monotone et sa limite.
 - 4. Déduction directe.
- **17.** Exercice difficile! Remarquer que l'ensemble des dyadiques, $\left\{\frac{a}{2^b}, \ a \in \mathbb{Z}, \ b \in \mathbb{N}\right\}$ est dense dans \mathbb{R} , et prouver l'inégalité de convexité uniquement pour des λ dyadiques! Il faut pour cela faire une récurrence sur la puissance de 2 au dénominateur.