MPSI 1

Mathématiques DS 04

Samedi 2 décembre – 8h-12h

- Durée : 4 heures.
- Toute calculatrice ou appareil électronique est interdit.
- Le sujet est constitué de deux exercices et d'un problème.
- Le sujet est long : il ne faut pas essayer de tout faire. Un sujet long vous permet de choisir ce qui vous inspire le plus. Repérez les questions indépendantes, les parties indépendantes des autres, etc.
- Prenez 10-15 minutes pour lire le sujet en entier et décider de la stratégie que vous adopterez.
- Encadrez, soulignez vos résultats et numérotez vos pages.
- À tout moment, vous pouvez admettre le résultat d'une question pour pouvoir continuer : il suffit de le préciser clairement sur la copie.
- Si vous voyez ce qui semble être une erreur d'énoncé, indiquez-le sur la copie.
- Essayez de changer de copie, au moins de page, lorsque vous changez d'exercice ou de partie.
- Laissez de la place dans une marge à gauche pour pouvoir noter plus facilement le devoir.
- Une réponse fausse, si elle ne laisse pas paraître de calculs intermédiaires, compte 0 points; avec calculs intermédiaires elle peut rapporter quelques points.

♪ Bon courage! ♪

En début de copie, merci d'indiquer votre objectif personnel pour ce devoir.

Exercice 1. Une équation fonctionnelle. Soit $f: \mathbb{R}_+^* \to \mathbb{R}$, dérivable, vérifiant

$$\forall x \in \mathbb{R}_+^*, \ f'\left(\frac{1}{x}\right) = f(x).$$

- **1.** Justifier que f est deux fois dérivable et démontrer qu'elle satisfait sur \mathbb{R}_+^* une équation différentielle linéaire du second ordre à coefficients non constants.
- **2.** On note, pour tout t dans \mathbb{R} , $g(t) = f(e^t)$. Démontrer que g est deux fois dérivable et qu'elle est solution d'une équation différentielle du second ordre à coefficients constants.
- **3.** Démontrer que l'on dispose de deux constantes λ et μ vérifiant

$$\forall x \in \mathbb{R}_+^*, \ f(x) = \sqrt{x} \left(\lambda \cos \left(\frac{\sqrt{3}}{2} \ln(x) \right) + \mu \sin \left(\frac{\sqrt{3}}{2} \ln(x) \right) \right).$$

4. En déduire l'ensemble des fonctions vérifiant $f'\left(\frac{1}{x}\right) = f(x)$ pour tout x > 0.

Exercice 2. Moyenne AGH de trois réels. Pour tous n dans \mathbb{N}^* et (a_1, \ldots, a_n) n réels strictement positifs, on définit :

- la moyenne arithmétique de (a_1, \ldots, a_n) par $M(a_1, \ldots, a_n) = \frac{a_1 + \cdots + a_n}{n}$,
- la moyenne géométrique de (a_1, \ldots, a_n) par $G(a_1, \ldots, a_n) = (a_1 \times \cdots \times a_n)^{\frac{1}{n}}$,
- la moyenne harmonique de (a_1, \ldots, a_n) par $H(a_1, \ldots, a_n) = \frac{n}{\frac{1}{a_1} + \cdots + \frac{1}{a_n}}$.

A. Inégalités entre moyennes.

- **1.** Soit $(a, b, c) \in (\mathbb{R}_+^*)^3$. Développer $\frac{1}{2}(a+b+c)\left((a-b)^2+(b-c)^2+(c-a)^2\right)$ et en déduire que $M(a^3, b^3, c^3) \geqslant G(a^3, b^3, c^3)$.
- 2. En déduire que

$$\forall (x, y, z) \in (\mathbb{R}_+^*), \ G(x, y, z) \leqslant M(x, y, z) \text{ puis } \forall (x, y, z) \in (\mathbb{R}_+^*), \ H(x, y, z) \leqslant G(x, y, z).$$

On pourra exprimer H(x, y, z) à l'aide d'une certaine moyenne arithmétique $M(\alpha, \beta, \gamma)$.

B. Étude de trois suites récurrentes.

Soient a, b et c trois réels tels que 0 < a < b < c. On définit les suites $(u_n)_{n \in \mathbb{N}}$, $(v_n)_{n \in \mathbb{N}}$ et $(w_n)_{n \in \mathbb{N}}$ par $u_0 = a$, $v_0 = b$, $w_0 = c$ et, pour tout n dans \mathbb{N} ,

$$u_{n+1} = H(u_n, v_n, w_n), \ v_{n+1} = G(u_n, v_n, w_n), \ w_{n+1} = M(u_n, v_n, w_n).$$

- **3.** Démontrer que pour tout n de \mathbb{N} , $0 < u_n \leqslant v_n \leqslant w_n$.
- **4.** Démontrer que $(u_n)_{n\in\mathbb{N}}$ est croissante et que $(w_n)_{n\in\mathbb{N}}$ est décroissante.
- **5.** En déduire que $(u_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ convergent, puis que $(v_n)_{n\in\mathbb{N}}$ converge.
- 6. Démontrer que les trois suites précédentes convergent vers la même limite.

Problème 1. Étude d'un opérateur intégral

On note $\mathscr{C}(\mathbb{R},\mathbb{R})$ l'ensemble des fonctions continues de \mathbb{R} dans \mathbb{R} . On définit l'application T sur $\mathscr{C}(\mathbb{R},\mathbb{R})$ comme suite. Si f appartenant à $\mathscr{C}(\mathbb{R},\mathbb{R})$, la fonction T(f) est la fonction définie par

$$\forall x \in \mathbb{R}, T(f)(x) = 1 - \int_0^x \frac{tf(t)}{1 + t^2} dt.$$

T(f) est donc une fonction de $\mathbb R$ dans $\mathbb R$. Par exemple, si $f: x \mapsto 1 + x^2$, alors pour tout x dans $\mathbb R$,

$$T(f)(x) = 1 - \int_0^x \frac{t(1+t^2)}{1+t^2} dt = 1 - \int_0^x t dt = 1 - \frac{x^2}{2}.$$

On note φ l'application définie par : $\forall x \in \mathbb{R}$, $\varphi(x) = \frac{1}{\sqrt{1+x^2}}$.

A. Questions préliminaires

- **1.** Justifier que si $f \in \mathscr{C}(\mathbb{R}, \mathbb{R})$, alors $T(f) \in \mathscr{C}(\mathbb{R}, \mathbb{R})$. T est donc une application de $\mathscr{C}(\mathbb{R}, \mathbb{R})$ dans $\mathscr{C}(\mathbb{R}, \mathbb{R})$.
- **2.** Démontrer que $T(\varphi) = \varphi$.

B. Une suite de fonctions

On définit la suite $(f_n)_{n\in\mathbb{N}}$ d'éléments de $\mathscr{C}(\mathbb{R},\mathbb{R})$ ainsi : on se fixe une fonction f_0 de $\mathscr{C}(\mathbb{R},\mathbb{R})$ et on donne la relation de récurrence

$$\forall n \in \mathbb{N}, f_{n+1} = T(f_n).$$

On se propose de montrer que si x est un réel fixé, la suite numérique $(f_n(x))_{n\in\mathbb{N}}$ converge vers le réel $\varphi(x)$ lorsque n tend vers $+\infty$.

B-I. Une suite auxilliaire

On définit, pour n dans \mathbb{N} , g_n par la relation $f_n = \varphi + (-1)^n g_n$.

3. Montrer que :

$$\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, g_{n+1}(x) = \int_0^x \frac{t}{1+t^2} g_n(t) dt.$$

B-II. Une suite particulière

On se propose d'étudier un cas particulier $(f_n^*)_{n\in\mathbb{N}}$ de suite définie par la relation de récurrence précédente.

A cet effet, on définit la fonction g_0^* par $\forall x \in \mathbb{R}$, $g_0^*(x) = 1$ et la suite de fonctions $(g_n^*)_{n \in \mathbb{N}}$ par :

$$\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, g_{n+1}^*(x) = \int_0^x \frac{t}{1+t^2} g_n^*(t) dt$$

On pose alors, pour tout n dans \mathbb{N} ,

$$\forall n \in \mathbb{N}, f_n^* = \varphi + (-1)^n g_n^*$$

- **4.** Déterminer g_1^* et g_2^* .
- **5.** Montrer que $\forall n \in \mathbb{N}, \exists a_n \in \mathbb{R}, \forall x \in \mathbb{R}, g_n^*(x) = a_n \left[\ln \left(1 + x^2 \right) \right]^n$.
- **6.** Soit x un réel. Déterminer la limite de $g_n^*(x)$ puis de $f_n^*(x)$ lorsque n tend vers $+\infty$.

B-III. Retour au cas général

Dans cette partie, f_0 est une fonction quelconque de $\mathscr{C}(\mathbb{R},\mathbb{R})$. On fixe un réel positif a. La fonction g_0 définie par $g_0 = f_0 - \varphi$ étant continue sur [-a,a], **on admet** qu'elle est bornée : on dispose de m et M deux réels vérifiant : $\forall x \in [-a,a], \ m \leqslant g_0(x) \leqslant M$.

- **7.** Établir que : $\forall n \in \mathbb{N}, \forall x \in [0, a], mg_n^*(x) \leq g_n(x) \leq Mg_n^*(x)$.
- 8. A l'aide des résultats précédents, montrer que :

$$\forall x \in [-a, a], mg_n^*(x) \leq g_n(x) \leq Mg_n^*(x)$$

9. En déduire que, pour tout réel x, la suite numérique $(f_n(x))_{n\in\mathbb{N}}$ converge vers $\varphi(x)$.

C. Valeurs propres et vecteurs propres de T

C-I. Une équation aux valeurs propres

On se propose à présent de déterminer les fonctions φ_{λ} de $\mathscr{C}(\mathbb{R},\mathbb{R})$ non nulles et les réels λ non nuls tels que :

$$T(\varphi_{\lambda}) = \lambda \varphi_{\lambda}. \tag{E_{\lambda}}$$

10. Montrer que si une fonction φ_{λ} satisfait à (E_{λ}) alors elle satisfait à l'équation différentielle :

$$\lambda y' + \frac{x}{1 + x^2} y = 0 \tag{D_{\lambda}}$$

- **11.** Pour $\lambda \neq 0$, résoudre l'équation différentielle (D_{λ}) sur \mathbb{R} . Montrer que l'ensemble des solutions est de la forme $\{C\theta_{\lambda}, C \in \mathbb{R}\}$, où θ_{λ} est une fonction que l'on précisera.
- 12. Déterminer C de manière à ce que $C\theta_{\lambda}$ soit solution de (E_{λ}) . En déduire que pour tout réel $\lambda \neq 0$ il existe une unique solution φ_{λ} non nulle de (E_{λ}) dont on donnera l'expression.

C-II. Convergence vers un vecteur propre

Pour $\lambda \neq 0$ on définit la suite $(F_n)_{n \in \mathbb{N}}$ d'éléments de $\mathscr{C}(\mathbb{R}, \mathbb{R})$ par $F_0 \in \mathscr{C}(\mathbb{R}, \mathbb{R})$ et par la relation :

$$\forall n \in \mathbb{N}, F_{n+1} = \frac{1}{\lambda} T(F_n).$$

13. En reprenant la démarche de la partie B., montrer que, pour tout réel x, la suite numérique $(F_n(x))_{n\in\mathbb{N}}$ converge vers $\varphi_{\lambda}(x)$ lorsque n tend vers $+\infty$.