Chapitre 7 Équations différentielles

Dans tout ce chapitre, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

1 Vocabulaire et principe de base

1.1 Vocabulaire

Définition 1

Soit I un intervalle de \mathbb{R} , $n \in \mathbb{N}^*$.

- **1.** On note $\mathcal{D}^n(I,\mathbb{R})$ l'ensemble des fonctions n fois dérivables de I dans \mathbb{R} .
- **2.** On note $\mathscr{C}^n(I,\mathbb{R})$ l'ensemble des fonctions de I dans \mathbb{R} n fois dérivables, de dérivée n-ième continue.

Définition 2

Une équation différentielle linéaire est une équation de la forme

$$\forall x \in I, \ y^{(n)}(x) + \sum_{k=0}^{n-1} a_k(x) y^{(k)}(x) = b(x),$$

οù

- ullet I est un intervalle de \mathbb{R} ,
- $n \in \mathbb{N}$,
- y est la fonction inconnue (dérivable n fois),
- (a_0, \ldots, a_n) sont des fonctions continues de I dans \mathbb{R} appelées coefficients de l'équation différentielle linéaire,
- b est une fonction continue de I dans K appelé second membre de l'équation différentielle.

Si a_n n'est pas la fonction nulle, on dit que l'équation différentielle est d'ordre n.

Si b est la fonction constante égale à 0, on dit que l'équation est homogène.

Définition 3

Résoudre une équation différentielle linéaire d'ordre n, c'est trouver l'ensemble des fonctions de $\mathcal{D}^n(I,\mathbb{R})$ solutions de l'équation.

Remarque 4

Très souvent, on ne notera pas la variable réelle de la fonction inconnue. Par exemple

« Résoudre l'équation différentielle $y'' + xy' - 2e^{x}y = 2\sin(x)$ »

est à comprendre comme

Résoudre l'équation différentielle :

$$\forall x \in \mathbb{R}, \ y''(x) + xy'(x) - 2e^x y(x) = 2\sin(x)$$

d'inconnue $y \in \mathcal{D}^2(\mathbb{R}, \mathbb{R})$.

Exercice 5

Montrer que toute fonction solution d'une équation différentielle d'ordre n est indéfiniment dérivable.

Exemple 6

- **1.** L'équation y' = y est une équation différentielle linéaire d'ordre 1, de solution $x \mapsto e^x$.
- 2. L'équation

$$y'' + \ln(x)y' - \sin(x)y = \cosh(x)$$

est une équation différentielle linéaire d'ordre 2, de second membre ch(x).

- **3.** $\theta'' + \lambda \sin(\theta) = 0$ n'est pas une équation différentielle linéaire car sin n'est pas linéaire.
- **4.** $\sqrt{1-x^2}y'-y=1$, à résoudre dans] 1, 1[, n'est pas à proprement parler une équation différentielle linéaire. En revanche,

$$y' - \frac{1}{\sqrt{1 - x^2}}y = \frac{1}{\sqrt{1 - x^2}}$$

en est une.

Point de méthode 7

Pour résoudre une équation différentielle du type

$$a_n(x)$$
 $y^{(n)} + a_{n-1}(x)y^{(n-1)} + \cdots + a_0(x)y = b(x),$

on commence par diviser par $a_n(x)$: l'équation ne peut donc être résolue que sur un **intervalle** sur lequel (a_0, \ldots, a_n) sont définies **et** a_n ne s'annule pas.

Remarque 8

Attention, on résoudra toujours une équation différentielle sur un intervalle.

Exemple. y' = 0 a comme solution une constante si on la résout sur un intervalle uniquement.

1.2 Principes fondamentaux

Proposition 9

Soient f et g deux fonctions de $\mathcal{D}^n(I, \mathbb{K})$. Alors pour tous λ et μ dans \mathbb{K} ,

$$(\lambda f + \mu g)^{(n)} = \lambda f^{(n)} + \mu g^{(n)}.$$

Proposition 10

Soit (E) une EDL (Équation différentielle linéaire) homogène.

Soient f et g deux solutions de (E), λ et μ dans \mathbb{K} .

Alors $\lambda f + \mu g$ est solution de E.

Démonstration

(*E*) s'écrit sous la forme $y^{(n)} + \sum_{k=0}^{n-1} a_k y^{(k)} = 0$, avec $n \in \mathbb{N}^*$, (a_0, \dots, a_{n-1}) des fonctions de I dans \mathbb{K} , I intervalle de \mathbb{R} .

Alors

$$(\lambda f + \mu g)^{(n)} + \sum_{k=0}^{n-1} a_k (\lambda f + \mu g)^{(k)} = \lambda f^{(n)} + \mu g^{(n)} + \sum_{k=0}^{n-1} a_k \lambda f^{(k)} + \sum_{k=0}^{n-1} a_k \mu g^{(k)}$$
$$= \lambda \left(f^{(n)} + \sum_{k=0}^{n-1} a_k f^{(k)} \right) + \mu \left(g^{(n)} + \sum_{k=0}^{n-1} a_k g^{(k)} \right)$$
$$= 0 + 0 = 0.$$

D'où la proposition. ■

Lineárité

Proposition 11

Soit (E) une EDL.

$$y^{(n)} + \sum_{k=0}^{n-1} a_k y^{(k)} = b,$$
 (E)

où $a_0, \ldots, a_{n-1}, b: I \to \mathbb{K}$. Soit (E_h) l'équation homogèhe associée à (E):

$$y^{(n)} + \sum_{k=0}^{n-1} a_k y^{(k)} = 0,$$
 (E_h)

Soit S_h l'ensemble des solutions de (E_h) . Alors si f_0 est une solution particulière de (E), l'ensemble des solutions de (E) est

$$\{f_0+q, q\in \mathcal{S}_h\}.$$

Remarque 12

Retenir la formule que vous utiliserez en physique :

solution générale

=

solution particulière

+

solution générale de l'équation homogène

Forme des solutions

Proposition 13

Soient f une solution de l'équation différentielle

$$y^{(n)} + \sum_{k=0}^{n-1} a_k y^{(k)} = b,$$

et g une solution de l'équation différentielle

$$y^{(n)} + \sum_{k=0}^{n-1} a_k y^{(k)} = b,$$

Alors f + g est solution de l'équation différentielle

$$y^{(n)} + \sum_{k=0}^{n-1} a_k y^{(k)} = b,$$

Principe de superposition

1.3 Problème de Cauchy

Définition 14

Un problème de Cauchy associé à une équation différentielle

$$y^{(n)} + \sum_{k=0}^{n-1} a_k y^{(k)} = b,$$

est un système de la forme

$$\begin{cases} y^{(n)} + \sum_{k=0}^{n-1} a_k y^{(k)} = b, \\ y(x_0) = y_0 \\ y'(x_0) = y_1 \\ \vdots \\ y^{(n-1)}(x_0) = y_{n-1} \end{cases}$$

où $x_0 \in I$ et $(y_0, \dots, y_{n-1}) \in \mathbb{K}^n$ sont les conditions initiales du problème de Cauchy.

Théorème 15

Tout problème de Cauchy associé à une EDL admet une unique solution.

Exemple 16

- **1.** La chute libre z'' = -g, $z(t_0) = z_0$ et $z'(t_0) = v_0$.
- **2.** Certains problèmes de physique ne sont pas des problèmes de Cauchy. **Exemple.** Déterminer la trajectoire d'un projectile que l'on lance depuis la position initiale (x_0, y_0) et qui arrive à la position finale (x_1, y_1) .

2 Équations différentielles du premier ordre

On veut résoudre sur un intervalle I

$$y' + a(x)y = b(x),$$

où a et b sont des fonctions continues de I dans \mathbb{K} .

Proposition 17 (Rappel)

Si
$$f \in \mathscr{C}^1(I, \mathbb{K})$$
, si $x_0 \in I$, alors

$$x \mapsto \int_{x_0}^x f'(t)dt$$

est l'unique primitive de f s'annulant en x_0 . Ainsi,

$$\forall x \in I, \ f(x) = f(x_0) + \int_{x_0}^{x} f'(t) dt.$$

2.1 Le cas homogène

Proposition 18

Soit $\alpha \in \mathbb{K}$. Alors l'ensemble des solutions définies sur \mathbb{R} à valeurs dans \mathbb{K} de $y' + \alpha y = 0$ est

$$\{x \mapsto \lambda e^{-\alpha x}, \lambda \in \mathbb{K}\}$$

Si on note $f_{\alpha}: x \mapsto e^{-\alpha x}$, alors l'ensemble de ces solutions est noté

$$Vect(f_{\alpha}).$$

Remarque 19

- **1.** Attention au signe —.
- 2. Pour $\alpha = -1$, on retrouve y' = y, qui sert, en terminale, à définir la fonction exponen-

Démonstration

Soit S l'ensemble des solutions de $y' + \alpha y = 0$.

Soit \mathcal{T} l'ensemble $Vect(f_{\alpha})$.

• Montrons que $\mathcal{T} \subset \mathcal{S}$.

Soit $f \in E$. Alors on dispose de $\lambda \in \mathbb{K}$ tel que $f : x \mapsto \lambda e^{-\alpha x}$.

Alors f est dérivable et, si $x \in \mathbb{R}$, $f'(x) + \alpha f(x) = -\alpha \lambda e^{-\alpha x} + \alpha \lambda e^{-\alpha x} = 0$.

D'où l'inclusion directe.

• Montrons que $\mathcal{S} \subset \mathcal{T}$.

Soit $f \in \mathcal{S}$.

Posons $g: x \mapsto \frac{f(x)}{e^{-\alpha x}} = f(x)e^{\alpha x}$. Alors g est dérivable et pour tout x dans \mathbb{R} ,

$$g'(x) = f'(x)e^{\alpha x} + \alpha f(x)e^{\alpha x} = e^{\alpha x}(f'(x) + \alpha f(x)) = 0$$
, car $f \in \mathcal{S}$.

Donc g est constante sur $\mathbb R$: on dispose de $\lambda \in \mathbb K$ tel que

$$\forall x \in \mathbb{R}, \ g(x) = \lambda, \ \text{i.e.} \ \forall x \in \mathbb{R}, \ f(x) = \lambda e^{-\alpha x}.$$

Donc $f \in \mathcal{T}$.

D'où l'inclusion réciproque et l'égalité! ■

Proposition 20

Soit I un intervalle de \mathbb{R} , a une **fonction** de I dans \mathbb{K} continue. L'ensemble des solutions de l'équation différentielle

$$y' + a(x)y = 0$$

est

$$\{x \mapsto \lambda e^{-A(x)}, \ \lambda \in \mathbb{K}\},\$$

où A est une primitive de a. Si $x_0 \in I$, cet ensemble est

$$\left\{x\mapsto \lambda \mathrm{e}^{-\int_{x_0}^x a(t)dt},\ \lambda\in\mathbb{K}\right\}.$$

Définition 21

On note l'ensemble précédent $Vect(e^{-A})$.

On dit que l'ensemble des solutions a une structure de droite vectorielle.

Remarque 22

Ceci signifie que toutes les solutions d'une équation différentielle homogène du premier ordre sont proportionnelles!

Démonstration

Soit A une primitive de a, S l'ensemble des solutions de l'équation, T l'ensemble $Vect(e^{-A})$.

• Montrons que $\mathcal{T} \subset \mathcal{S}$. Soit $f \in \mathcal{T}$. On dispose de $\lambda \in \mathbb{K}$ tel que $f = \lambda e^{-A}$. Alors, si $x \in I$,

$$f' + af = \lambda e^{-A}(-A') + a\lambda e^{-A} = -a\lambda e^{-A} + a\lambda e^{-A} = 0,$$

d'où l'inclusion.

• Réciproquement, soit $f \in \mathcal{S}$, notons $g = \frac{f}{e^{-A}} = e^A f$. Alors g est dérivable et

$$g' = A'e^Af + e^Af' = ae^Af + e^Af' = e^A(f' + af) = 0$$

donc comme g est de dérivée nulle sur l'intervalle I, g est constante, donc on dispose de $\lambda \in \mathbb{K}$ tel que $g = \lambda$, i.e. $f = \lambda e^{-A}$, i.e. $f \in \mathcal{T}$.

Exemple 23

Donner l'ensemble des solutions réeles de

- $y' + \tan(x)y = 0$,
- $(1-x^2)y' + x^2y = 0$.

Proposition 24

Soit I un intervalle de \mathbb{R} , $x_0 \in I$, $y_0 \in \mathbb{K}$, $a : \beta \to \mathbb{K}$, continue. L'unique solution du problème

$$\begin{cases} y' + a(x)y = 0 \\ y(x_0) = y_0 \end{cases}$$

est $x \mapsto y_0 e^{-\int_{x_0}^x a(t)dt}$.

Démonstration

Existence. Posons $f: x \mapsto y_0 e^{-\int_{x_0}^x a(t)dt}$. Alos si on note $\varphi: x \mapsto \int_0^x a(t)dt$, φ est l'unique primitive de a s'annulant en x_0 . Donc, pour tout x dans I,

$$f'(x) + a(x)f(x) = y_0e^{-\varphi(x)} \times (-\varphi'(x)) + a(x)f(x) = 0$$

et $f(x_0) = y_0 \mathrm{e}^{-\int_{x_0}^{x_0} a(t)dt} = y_0 \mathrm{e}^{-0} = y_0$, d'où l'existence. **Unicité.** Soit f une solution. Comme φ est une primitive de a, on dispose de $\lambda \in \mathbb{K}$ tel que $f = \lambda \mathrm{e}^{-\varphi}$. Or, $f(x_0) = y_0$, donc $\lambda e^{-\varphi(x_0)} = y_0$.

Or, $\varphi(x_0) = 0$, donc $\lambda = y_0$,

donc $f = y_0 e^{-\varphi}$, d'où l'unicité!

Point de méthode 25

Si l'on veut résoudre

$$\begin{cases} y' + \tan(x)y = 0 \\ y\left(\frac{\pi}{4}\right) = 3\sqrt{2} \end{cases}$$

1. Solution générale : on remarque que $-\ln \circ$ cos est une primitive de tan sur I, donc l'ensemble des solutions de l'équation est

$$\left\{x\mapsto \lambda \mathrm{e}^{\ln(\cos(x))},\ \lambda\in\mathbb{R}\right\}=\left\{x\mapsto \lambda\cos,\ \lambda\in\mathbb{R}\right\}.$$

2. On résout le problème de Cauchy.

Soit f une solution du problème. On sait que l'on dispose de $\lambda \in \mathbb{R}$ tel que $f = \lambda \cos$.

Or,
$$f\left(\frac{\pi}{4}\right) = 3\sqrt{2}$$
, donc $\lambda \frac{\sqrt{2}}{2} = 3\sqrt{2}$. Donc $\lambda = 6$, donc $f = 6\cos \theta$.

Donc, par existence et unicité des solutions du problème de Cauchy, la solution est $f=6\cos x$

2.2 Equations du premier ordre avec second membre

On cherche désormais à résoudre une équation différentielle du premier ordre, mais avec un second membre.

Par le théorème de structure, on sait que l'ensemble des solutions est de la forme

$$f_0 + S_h$$

où f_0 est une solution particulière de l'équation et S_h est l'ensemble des solutions de l'équation homogène.

Notre but est donc de déterminer une solution particulière de l'équation avec second membre. **Idée principale.** De même que, pour déterminer les solutions de l'équation homogène, on prenait une fonction solution et on montrait que $\frac{f}{\mathrm{e}^{-A}}$ était constante, si f est solution de l'équation avec second membre, on peut essayer de considérer $g=\frac{f}{\mathrm{e}^{-A}}$ ou bien d'écrire $f(x)=g(x)\mathrm{e}^{-A(x)}$. On a ainsi procédé en remplaçant le λ de $\lambda\mathrm{e}^{-A(x)}$ par une **fonction** g(x): on a fait varier la constante.

Proposition 26 (Variation de la constante)

Soit I un intervalle de \mathbb{R} , a et b continues de I dans \mathbb{K} , (E) l'équation

$$v' + av = b$$
.

Alors si A est une primitive de a, si g est une primitive de $x \mapsto e^{A(x)}b(x)$, la fonction

$$x \mapsto q(x)e^{-A(x)}$$

est une solution particulière de E sur I.

Démonstration

C'est presque la méthode de la démonstration qui est plus utile que la proposition. Soit f une fonction dérivable de I dans \mathbb{K} , $g: x \mapsto f(x)e^{A(x)}$. Alors $f: x \mapsto g(x)e^{-A(x)}$ et, pour tout x dans I,

$$f'(x) + af(x) = g'(x)e^{-A(x)} + g(x)(-A'(x))e^{-A(x)} + ag(x)e^{-A(x)}$$
$$= g'(x)e^{-A(x)} - a(x)g(x)e^{-A(x)} + ag(x)e^{-A(x)}$$
$$= g'(x)e^{-A(x)}.$$

Donc on a les équivalences suivantes

$$f$$
 est solution de l'équation $\Leftrightarrow f'(x) + af(x) = b(x) \forall x \in I$, $\Leftrightarrow g'(x)e^{-A(x)} = b(x) \forall x \in I$, $\Leftrightarrow g'(x) = b(x)e^{A(x)} \forall x \in I$, $\Leftrightarrow g$ est une primitive de $x \mapsto e^{A(x)}b(x)$.

D'où le résultat désiré! ■

Point de méthode 27

Il faut toujours refaire la méthode! Ainsi, si l'on veut résoudre sur $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$ l'équation

$$y' + \tan(x)y = \sin(x),$$

alors

1. On résout l'équation homogène : comme une primitive de tan est $x \mapsto -\ln(\cos(x))$, donc l'ensemble des solutions de l'équation homogène est

$$\{x \mapsto \lambda \cos(x), \ \lambda \in \mathbb{K}\}.$$

2. On résout l'équation avec second membre. Soit $f \in \mathcal{D}^1(I, \mathbb{K}), g : x \mapsto \frac{f(x)}{\cos(x)}$. Ainsi, $f : x \mapsto g(x)\cos(x)$.

Alors on a les équivalences suivantes

f est solution de l'équation $\Leftrightarrow f'(x) + \tan(x)f(x) = \sin(x)$ $\Leftrightarrow g'(x)\cos(x) - g(x)\sin(x) + \tan(x)g(x)\cos(x) = \sin(x)$ $\Leftrightarrow g'(x)\cos(x) = \sin(x)$ $\Leftrightarrow g'(x) = \tan(x)$.

Or, une primitive de tan est $x \mapsto -\ln(\cos(x))$, donc une solution particulière de l'équation est

$$x \mapsto -\ln(\cos(x))\cos(x)$$
.

3. Ainsi, l'ensemble des solutions de l'équation différentielle est

$$\{x \mapsto -\ln(\cos(x))\cos(x) + \lambda\cos(x), \ \lambda \in \mathbb{K}\}.$$

Notation 28

On note alors l'ensemble des solutions sous la forme

$$f_0 + \text{Vect}(e^{-A})$$
,

avec f_0 une solution particulière de l'équation.

On dit que l'ensemble des solutions d'une équation différentielle linéaire non homogène du premier ordre a une structure de droite affine (droite car il y a un seul élément dans le Vect, et affine car elle ne passe pas nécessairement par 0).

Exercice 29

Résoudre les équations suivantes :

1.
$$\sqrt{1-x^2}y'+y=-1$$
,

2.
$$y' + e^x y = e^{2x}$$
, $y(0) = 1$.

Proposition 30 (Existence et unicité de la solution d'un problème de Cauchy)

Soit I un intervalle de \mathbb{R} , a et b continues de I dans \mathbb{K} , $x_0 \in I$, $y_0 \in \mathbb{K}$, et le problème de Cauchy

$$\begin{cases} y' + ay = b \\ y(x_0) = y_0 \end{cases}$$

Alors ce problème admet une unique solution f, donnée par

$$\forall x \in I, \ f(x) = \int_{x_0}^{x} e^{\int_{x}^{t} a(s)ds} b(t)dt + y_0 e^{-\int_{x_0}^{x} a(t)dt}.$$

Démonstration

Là encore, c'est la preuve qui m'intéresse le plus, la formule n'est clairement pas à connaître par coeur!

Résolvons déjà l'équation y' + ay = b. Notons $\varphi : x \mapsto \int_{x_0}^x a(t)dt$, l'unique primitive de a qui s'annule en x_0 .

1. Équation homogène. L'ensemble des solutions de l'équation homogène est

$$\{x \mapsto \lambda e^{-\varphi(x)}, \ \lambda \in \mathbb{K}\}.$$

2. Recherche d'une solution particulière. On cherche une solution particulière de la forme $f: x \mapsto g(x) \mathrm{e}^{-\varphi(x)}$ où g est dérivable sur I. Alors on sait que f est solution de l'équation si, et seulement si

$$g'(x) = e^{\varphi(x)}b(x).$$

Ainsi, si $g: x \mapsto \int_{x_0}^x \mathrm{e}^{\varphi(t)} b(t) dt$, $x \mapsto g(x) \mathrm{e}^{-\varphi(x)}$ est solution particulière de l'équation

Donc l'ensemble des solutions de y' + ay = b est

$$\left\{x\mapsto \mathrm{e}^{-\varphi(x)}\int_{x_0}^x \mathrm{e}^{\varphi(t)}b(t)dt + \lambda\mathrm{e}^{-\varphi(x)},\ \lambda\in\mathbb{K}\right\}.$$

Déterminons l'existence et l'unicité de la solution au problème de Cauchy par analyse-synthèse.

• Analyse. Soit f une solution du problème de Cauchy. Alors on dispose de λ dans $\mathbb K$ tel que

$$\forall x \in I, \ f(x) = e^{-\varphi(x)} \int_{x_0}^x e^{\varphi(t)} b(t) dt + \lambda e^{-\varphi(x)}.$$

Or, $f(x_0) = y_0$, donc, comme $\varphi(x_0) = 0$ et $\int_{x_0}^x e^{\varphi(t)} b(t) dt = 0$,

$$e^{-\varphi(x_0)} \int_{x_0}^{x_0} e^{\varphi(t)} b(t) dt + \lambda e^{-\varphi(x_0)} = 0 + \lambda,$$

donc $\lambda = y_0$.

Donc

$$\forall x \in I, \ f(x) = e^{-\varphi(x)} \int_{x_0}^{x} e^{\varphi(t)} b(t) dt + y_0 e^{-\varphi(x)}$$
$$= \int_{x_0}^{x} e^{\varphi(t) - \varphi(x)} b(t) dt + y_0 e^{-\varphi(x)}$$

soit, en écrivant $\varphi(x) = \int_{x_0}^x a(t)dt$, et comme $\varphi(t) - \varphi(x) = \int_x^t a(s)ds$,

$$\forall x \in \mathbf{I}, \ f(x) = \int_{x_0}^{x} e^{\int_{x}^{t} a(s)ds} b(t)dt + y_0 e^{-\int_{x_0}^{x} a(t)dt}.$$

• Synthèse. Posons

$$\forall x \in I, \ f(x) = e^{-\varphi(x)} \int_{x_0}^x e^{\varphi(t)} b(t) dt + y_0 e^{-\varphi(x)}$$

Alors

$$- f(x_0) = e^{-\varphi(x_0)} \int_{x_0}^{x_0} e^{\varphi(t)} b(t) dt + y_0 e^{-\varphi(x_0)} = y_0.$$

— f est dérivable et pour tout x dans I,

$$f'(x) = -\varphi'(x)e^{-\varphi(x)} \int_{x_0}^x e^{\varphi(t)}b(t)dt + e^{-\varphi(x)}e^{\varphi(x)}b(x) + -\varphi'(x)y_0e^{-\varphi(x)}$$
$$= -a(x)e^{-\varphi(x)} \int_{x_0}^x e^{\varphi(t)}b(t)dt + b(x) + -a(x)y_0e^{-\varphi(x)},$$

donc

$$f'(x) + a(x)f(x) = -a(x)e^{-\varphi(x)} \int_{x_0}^x e^{\varphi(t)}b(t)dt + b(x) + -a(x)y_0e^{-\varphi(x)}$$
$$+ a(x)e^{-\varphi(x)} \int_{x_0}^x e^{\varphi(t)}b(t)dt + a(x)y_0e^{-\varphi(x)}$$
$$= b(x).$$

donc f est solution de l'équation différentielle, et du problème de Cauchy!

Remarque 31

Remarquez que lorsqu'on a un point privilégié (en l'occurrence x_0 , il est naturel de prendre, comme primitive d'une fonction h, $x \mapsto \int_{-\infty}^{x} h(t)dt$)

3 Le cas du second ordre à coefficients constants

Pour le second ordre, on ne va pas traiter n'importe quel type d'équation mais seulement celles à coefficients constants!

3.1 Équations homogènes

Remarque 32 (Heuristique du second ordre à coefficients constants)

Soient $(a, b, c) \in \mathbb{K}^3$, $a \neq 0$, et (E) l'équation

$$ay'' + by' + cy = 0$$

Étant donné que pour une équation du premier ordre à coefficients constants, les exponentielles étaient une bonne base de solutions, il peut paraître naturel de chercher des solutions sous la

forme d'exponentielles. Si $\alpha \in \mathbb{K}$, on se demande à quelle condition $f: x \mapsto e^{\alpha x}$ est solution. On calcule alors

$$af''(x) + bf'(x) + cf(x) = (a\alpha^2 + b\alpha + c)e^{\alpha x}.$$

Donc f est solution si et seulement si $a\alpha^2 + b\alpha + c = 0$. C'est la notion-clef des propositions qui suivent.

Proposition 33 (Le cas complexe)

Soit $(a, b, c) \in \mathbb{C}^* \times \mathbb{C}^2$, soit (E) l'équation différentielle

$$ay'' + by' + cy = 0. ag{E}$$

Soit (e) l'équation caractéristique de (E):

$$ar^2 + br + c = 0, (e)$$

d'inconue $r \in \mathbb{C}$. Soit Δ le discriminant de l'équation, $\Delta = b^2 - 4ac$.

1. Si $\Delta \neq 0$, (e) a deux solutions r_1 et r_2 , donc l'ensemble des solutions est

$$\{x \mapsto \lambda e^{r_1 \cdot x} + \mu e^{r_2 \cdot x}, \ (\lambda, \mu) \in \mathbb{C}^2\} = \operatorname{Vect}(x \mapsto e^{r_1 \cdot x}, x \mapsto e^{r_2 \cdot x}).$$

2. Si $\Delta = 0$, (e) a une solution r_0 et l'ensemble des solutions de (E) est

$$\{x \mapsto \lambda(\lambda + \mu.x)e^{r_0x}, \ (\lambda, \mu) \in \mathbb{C}^2\} = \operatorname{Vect}(x \mapsto e^{r_0.x}, x \mapsto xe^{r_0.x}).$$

Démonstration

Rappel avant la preuve. On rappelle que pour une équation du second degré $ar^2 + br + c = 0$, si Δ est le discriminant et δ est une racine de Δ ,

- dans le cas où $\Delta \neq 0$, les deux solutions sont $r_1 = \frac{-b \delta}{2a}$ et $r_2 = \frac{-b + \delta}{2a}$, donc, en particulier $r_1 + r_2 = \frac{-b}{a}$.
- dans le cas où $\Delta = 0$, la solution est $r_0 = \frac{-b}{2a}$.

L'idée ensuite est de procéder comme pour le premier ordre, i.e. de diviser par une exponentielle.

- 1. Cas où $\Delta \neq 0$.
 - **Analyse.** Soit f une solution de l'équation (E). Notons $g: x \mapsto \frac{f(x)}{e^{r_1 x}}$. Alors $f: x \mapsto g(x)e^{r_1 x}$. En particulier,

$$f': x \mapsto g'(x)e^{r_1x} + g(x)r_1e^{r_1x}$$

$$f'': x \mapsto g''(x)e^{r_1x} + 2g'(x)r_1e^{r_1x} + g(x)r_1^2e^{r_1x}$$

Donc pour tout x dans \mathbb{R} ,

$$af''(x) + bf'(x) + cf'(x) = ag''(x)e^{r_1x} + 2ag'(x)r_1e^{r_1x} + ag(x)r_1^2e^{r_1x} + bg'(x)e^{r_1x} + bg(x)r_1e^{r_1x} + cg(x)e^{r_1x} + cg(x)e^{r_1x} + (2ar_1 + b)g'(x)e^{r_1x} + \underbrace{(ar_1^2 + br_1 + c)}_{=0 \text{ car } r_1 \text{ est solution de (e)}} g(x)e^{r_1x} + ag''(x)e^{r_1x} + (2ar_1 + b)g'(x)e^{r_1x} + \underbrace{(ar_1^2 + br_1 + c)}_{=0 \text{ car } r_1 \text{ est solution de (e)}} g(x)e^{r_1x}$$

Donc, comme f est solution de l'équation, $ag''(x) + (2ar_1 + b)g'(x) = 0$, c'est-à-dire, comme $a \neq 0$,

$$g''(x) + \left(2r_1 + \frac{b}{a}\right)g'(x) = 0,$$

ou encore, comme $2r_1 + \frac{b}{a} = r_1 + r_1 + \frac{b}{a} = r_1 - r_2$,

$$g''(x) + (r_1 - r_2)g'(x) = 0.$$

Donc g' est solution de l'équation **du premier ordre** $y' + (r_1 - r_2)y = 0$, donc on dispose de α dans $\mathbb C$ tel que

$$\forall x \in \mathbb{R}, \ g'(x) = \alpha e^{(r_2 - r_1)x},$$

donc on dispose de $\beta \in \mathbb{C}$ tel que

$$\forall x \in \mathbb{R}, \ g(x) = \frac{\alpha}{r_2 - r_1} e^{(r_2 - r_1)x} + \beta.$$

Donc

$$\forall x \in \mathbb{R}, \ f(x) = e^{r_1 x} g(x) = \frac{\alpha}{r_2 - r_1} e^{r_2 x} + \beta e^{r_1 x}.$$

Donc f est de la forme souhaitée!

- **Synthèse.** Si l'on dispose de λ et de μ tels que pour tout x dans \mathbb{R} , $f(x) = \lambda e^{r_1 x} + \mu e^{r_2 x}$, alors f est bien solution (facile à vérifier).
- **2.** Cas où $\Delta = 0$.
 - **Analyse.** Soit f une solution de l'équation (E). Notons $g: x \mapsto \frac{f(x)}{e^{r_0x}}$. Alors $f: x \mapsto g(x)e^{r_0x}$. En particulier,

$$f': x \mapsto g'(x)e^{r_0x} + g(x)r_0e^{r_0x}$$

$$f'': x \mapsto g''(x)e^{r_0x} + 2g'(x)r_0e^{r_0x} + g(x)r_0^2e^{r_0x}$$

Donc pour tout x dans \mathbb{R} ,

$$af''(x) + bf'(x) + cf'(x) = ag''(x)e^{r_0x} + 2ag'(x)r_0e^{r_0x} + ag(x)r_0^2e^{r_0x} + bg'(x)e^{r_0x} + bg(x)r_0e^{r_0x} + cg(x)e^{r_0x} + cg(x)e^{r_0x} + \underbrace{(2ar_0 + b)}_{=0 \text{ car } r_0 = \frac{-b}{2a}} g'(x)e^{r_0x} + \underbrace{(ar_0^2 + br_0 + c)}_{=0 \text{ car } r_0 \text{ est solution de (e)}} g(x)e^{r_0x} + \underbrace{(ar_0^2 + br_0 + c)}_{=0 \text{ car } r_0 \text{ est solution de (e)}}$$

Donc, pour tout x dans \mathbb{R} , g''(x) = 0, donc on dispose de λ et de μ tels que pour tout x dans \mathbb{R} , $g(x) = \lambda + \mu x$. Donc,

$$\forall x \in \mathbb{R}, \ f(x) = (\lambda + \mu x)e^{r_0x},$$

donc f est de la forme souhaitée!

• **Synthèse.** Si l'on dispose de λ et de μ tels que pour tout x dans \mathbb{R} , $f(x) = (\lambda + \mu x)e^{r_0x}$, alors f est bien solution (facile à vérifier).

Remarque 34

- **1.** On dit que l'ensemble des solutions d'une équation homogène d'ordre 2 a une structure de **plan vectoriel.**
- **2.** La notion d'équation caractéristique peut aussi « servir » pour l'ordre 1 à coefficients constants : pour résoudre $y' + \alpha y = 0$, l'équation caractéristique associée est $r + \alpha = 0$, d'unique solution $r = -\alpha$, donc l'ensemble des solutions est $\{x \mapsto \lambda e^{-\alpha x}, \ \lambda \in \mathbb{K}\}$.
- **3.** Attention! La notion d'équation caractéristique ne s'applique que pour des équations à coefficients constants! Si l'on veut résoudre $y'' + x^2y' + \sin(x)y = 0$, on **ne peut pas** parler d'une équation caractéristique dont les coefficients dépendraient de x.

Exemple 35

Quelques exemples:

1. Résolvons y'' - 2y' + y = 0. L'équation caractéristique associée est $r^2 - 2r + 1 = 0$, d'unique solution $r_0 = 1$. Donc l'ensemble des solutions de l'équation est

$$\{x \mapsto (\lambda + \mu.x)e^x, (\lambda, \mu) \in \mathbb{C}^2\}.$$

2. Résolvons y'' - 3y' + (3-i)y = 0. L'équation caractéristique associée est $r^2 - 3r + (3-i) = 0$, de discriminant $\Delta = 9 - 4(3-i) = -3 + 4i$. Déterminons alors les racines de Δ .

Soit $\omega = a + ib \in C$. Alors on a les équivalences suivantes

$$\omega^{2} = -3 + 4i \Leftrightarrow \begin{cases} a^{2} - b^{2} = -3\\ 2ab = 4 \end{cases}$$

$$\Leftrightarrow \begin{cases} a^{2} - b^{2} = -3\\ a^{2} + b^{2} = |-3 + 4i| = \sqrt{25} = 5 \end{cases}$$

$$2ab = 4$$

$$\Leftrightarrow \begin{cases} a^{2} - b^{2} = -3\\ 2a^{2} = 2\\ 2ab = 4 \end{cases}$$

$$\Leftrightarrow \begin{cases} a^{2} - b^{2} = -3\\ a = \pm 1\\ 2ab = 4 \end{cases}$$

Donc, comme a et b sont de même signe, les deux solutions sont $\pm (1+2i)$. Donc une racine de Δ est 1+2i, donc les deux solutions de l'équation caractéristique sont

$$r_1 = \frac{3 - (1 + 2i)}{2} = 1 - i$$
 et $r_2 = \frac{3 + 1 + 2i}{2} = 2 + i$.

Donc l'ensemble des solutions de l'équation est

$$\{x \mapsto \lambda e^{(1-i)x} + \mu e^{(2+i)x}, \ (\lambda, \mu) \in \mathbb{C}^2\} = \text{Vect}(x \mapsto e^{(1-i)x}, x \mapsto e^{(2+i)x})$$

Proposition 36 (Le cas réel)

Soit $(a, b, c) \in \mathbb{R}^* \times \mathbb{R}^2$, soit (E) l'équation différentielle

$$ay'' + by' + cy = 0. ag{E}$$

Soit (e) l'équation caractéristique de (E):

$$ar^2 + br + c = 0, (e)$$

d'inconue $r \in \mathbb{R}$. Soit Δ le discriminant de l'équation, $\Delta = b^2 - 4ac$.

1. Si $\Delta > 0$, (e) a deux solutions réelles r_1 et r_2 , et l'ensemble des solutions réelles est

$$\left\{x\mapsto \lambda e^{r_1.x} + \mu e^{r_2.x}, \ (\lambda,\mu)\in \mathbb{R}^2\right\} = \operatorname{Vect}(x\mapsto e^{r_1.x},x\mapsto e^{r_2.x}).$$

2. Si $\Delta = 0$, (e) a une solution réelle r_0 et l'ensemble des solutions réelles de (E) est

$$\{x \mapsto \lambda(\lambda + \mu.x)e^{r_0x}, \ (\lambda, \mu) \in \mathbb{R}^2\} = \operatorname{Vect}(x \mapsto e^{r_0.x}, x \mapsto xe^{r_0.x}).$$

3. Si $\Delta < 0$, (e) admet deux solutions complexes conjuguées, $r_1 = \alpha + i\beta$ et $r_2 = \alpha - i\beta$. L'ensemble des solutions réelles de (E) est donc

$$\{x \mapsto e^{\alpha x}(A.\sin(\beta x) + B.\cos(\beta x)), \ (A,B) \in \mathbb{R}^2\} = \operatorname{Vect}(x \mapsto e^{\alpha x}\sin(\beta x), x \mapsto e^{\alpha x}\cos(\beta x))$$

Démonstration

Déjà, les deux premiers points se démontrent exactement comme dans le cas complexe! Attardonsnous sur le troisième point.

Soit f une solution réelle de (E) dans le cas où $\Delta < 0$. Alors, par la théorie sur le cas complexe, on sait que l'on dispose de λ et μ deux complexes tels que

$$\forall x \in \mathbb{R}, \ f(x) = \lambda e^{\alpha x + i\beta x} + \mu e^{\alpha x - i\beta x}.$$

Mais on sait que pour tout x dans \mathbb{R} , $f(x) \in \mathbb{R}$, donc $f(x) = \overline{f(x)}$, donc, pour tout x dans \mathbb{R} ,

$$\lambda e^{\alpha x + i\beta x} + \mu e^{\alpha x - i\beta x} = \overline{\lambda} e^{\alpha x - i\beta x} + \overline{\mu} e^{\alpha x + i\beta x}$$

donc, pour tout x dans \mathbb{R} ,

$$\lambda e^{i\beta x} + \mu e^{-i\beta x} = \overline{\lambda} e^{-i\beta x} + \overline{\mu} e^{i\beta x}$$

(car $e^{\alpha x} \neq 0$).

Évaluons l'égalité précédente en 0. Alors $\lambda + \mu = \overline{\lambda + \mu}$, donc $\lambda + \mu$ est réel, autrement dit $\mathfrak{Im}(\lambda) + \mathfrak{Im}(\mu) = 0$.

Évaluons l'égalité précédente en $\frac{\pi}{2\beta}$. Alors

$$i\lambda - i\mu = -i\overline{\lambda} + i\overline{\mu},$$

donc $i\lambda - i\mu = \overline{i\lambda - i\mu}$, donc $i\lambda - i\mu$ est réel, donc $\Re(\lambda) - \Re(\mu) = 0$.

Finalement, μ a la même partie réelle que λ et une partie imaginaire opposée, donc $\mu = \overline{\lambda}$.

Écrivons alors $\lambda = c + id$ et $\mu = d - id$. On sait alors que pour tout x dans \mathbb{R} ,

$$f(x) = e^{\alpha x} ((c + id)e^{i\beta x} + (c - id)e^{-i\beta x})$$

$$= e^{\alpha x} (c(e^{i\beta x} + e^{-i\beta x}) + id(e^{i\beta x} - e^{-i\beta x}))$$

$$= e^{\alpha x} (2c\cos(\beta x) + id(2i\sin(\beta x)))$$

$$= e^{\alpha x} (2c\cos(\beta x) - 2d\sin(\beta x)),$$

donc f est de la forme souhaitée!

Nous ne ferons pas la synthèse, les vérifications sont faciles! ■

Exemple 37

Regardons plusieurs exemples

1. Résolvons y'' - 3y' + 2y = 0. L'équation caractéristique est $r^2 - 3r + 2$, de solutions $r_1 = 1$ et $r_2 = 2$. Donc l'ensemble des solutions de l'équation est

$$\{x \mapsto \lambda e^x + \mu e^{2x}, \ (\lambda, \mu) \in \mathbb{R}^2\}.$$

2. Résolvons $y'' + \omega^2 y = 0$ où $\omega > 0$. L'équation caractéristique est $r^2 + \omega = 0$, de solutions $\pm i\omega$. Donc l'ensemble des solutions de l'équation différentielle est

$$\{x \mapsto A\cos(\omega t) + B\sin(\omega t), (A, B) \in \mathbb{R}^2\}.$$

(ici, il n'y a pas de partie réelle)

3. Soit $(\omega_0, Q) \in (\mathbb{R}_+^*)^2$ (on appelle ω_0 pulsation propre et Q facteur de qualité). On considère l'équation

$$y'' + \frac{\omega_0}{Q}y' + \omega_0^2 y = 0,$$

et on s'intéresse, en fonction des valeurs de Q, aux solutions de l'équation. L'équation caractéristique est

$$r^2 + \frac{\omega_0}{Q}r + \omega_0^2 = 0.$$

Le discriminant Δ de cette équation est

$$\Delta = \left(\frac{\omega_0}{Q}\right)^2 - 4\omega_0^2 = \omega_0^2 \frac{1 - 4Q^2}{Q^2}.$$

Dono

• si $Q<\frac{1}{2}$ (cas **apériodique**), alors $\Delta>0$ et les deux solutions de l'équation caractéristique sont

$$r_1 = \frac{-\frac{\omega_0}{Q} - \omega_0 \frac{\sqrt{1 - 4Q^2}}{Q}}{2} = \frac{-\omega_0 (1 + \sqrt{1 - 4Q^2})}{2Q} \text{ et } r_2 = \frac{-\omega_0 (1 - \sqrt{1 - 4Q^2})}{2Q}.$$

Comme $\sqrt{1-4Q^2}<1$, r_1 et r_2 sont strictement négatives et toute solution de l'équation est une somme d'exponentielles décroissantes : l'ensemble des solutions est

$$\{x\mapsto \lambda \mathrm{e}^{r_1x} + \mu \mathrm{e}^{r_2x}, \ (\lambda,\mu)\in \mathbb{R}^2\}.$$

• si $Q=\frac{1}{2}$ (cas **critique**), alors $\Delta=0$ et l'unique solution de l'équation est $r_0=\frac{-\omega_0}{2Q}=-\omega_0$. L'ensemble des solutions de l'équation est alors

$$\{x \mapsto (\lambda + \mu x)e^{r_0x}, (\lambda, \mu) \in \mathbb{R}^2\}.$$

Ces solutions croissent pour x proche de 0 mais décroissent ensuite de manière quasi-exponentielle.

• si $Q > \frac{1}{2}$ (cas **pseudo-périodique**), alors $\Delta < 0$ et les deux solutions de l'équation différentielle sont

$$r_1 = \frac{-\frac{\omega_0}{Q} - i\omega_0 \frac{\sqrt{4Q^2 - 1}}{Q}}{2} = -\frac{\omega_0}{2Q} - i\omega_0 \frac{\sqrt{4Q^2 - 1}}{2Q} \text{ et } r_2 = -\frac{\omega_0}{2Q} + i\omega_0 \frac{\sqrt{4Q^2 - 1}}{2Q}.$$

Notons $\omega=\omega_0\frac{\sqrt{4Q^2-1}}{2Q}$ la **pseudo-période**. Alors l'ensemble des solutions de l'équation est

$$\left\{x\mapsto \mathrm{e}^{-\frac{\omega_0}{2Q}x}\left(A.\sin(\omega x)+B.\cos(\omega x)\right),\ (A,B)\in|R^2\right\}.$$

On a une exponentielle décroissante modulée par un sinus et un cosinus. On remarque de plus que quand Q tend vers $+\infty$, $\frac{\omega_0}{2Q} \to 0$ et $\omega \to \omega_0$, on retrouve l'oscillateur harmonique.

Proposition 38 (Existence et unicité de la solution d'un problème de Cauchy)

Soient $(a, b, c) \in \mathbb{K}^3$, $a \neq 0$. Soit $x_0 \in \mathbb{R}$, $(y_0, y_1) \in \mathbb{K}^2$. Alors le problème de Cauchy

$$\begin{cases} ay'' + by' + cy = 0 \\ y(x_0) = y_0 \\ y'(x_0) = y_1 \end{cases}$$

admet une unique solution.

Exemple 39

Résoudre le problème de Cauchy
$$\begin{cases} y'' + 4y = 0 \\ y(0) = 1 \\ y'(0) = -2 \end{cases}$$

3.2 Seconds membres particuliers – résonances

L'idée est maintenant de savoir comment résoudre une équation non homogène du second ordre.

Proposition 40 (et définition)

L'ensemble des solutions d'une équation différentielle linéaire du second ordre non homogène a une structure de **plan affine**, c'est-à-dire qu'il existe deux fonctions f_1 et f_2 solutions de l'équation homogène, une fonction f_0 solution de l'équation non homogène, telles que l'ensemble des solutions de l'équation est

$$\{f_0 + \lambda f_1 + \mu f_2, (\lambda, \mu) \in \mathbb{K}^2\} = f_0 + \text{Vect}(f_1, f_2).$$

On utilisera aussi la proposition (admise) suivante

Proposition 41 (Existence et unicité de la solution d'un problème de Cauchy)

Soient $(a, b, c) \in \mathbb{K}^3$, $a \neq 0$, $g : \mathbb{R} \to \mathbb{K}$. Soit $x_0 \in \mathbb{R}$, $(y_0, y_1) \in \mathbb{K}^2$. Alors le problème de Cauchy

$$\begin{cases} ay'' + by' + cy = g \\ y(x_0) = y_0 \\ y'(x_0) = y_1 \end{cases}$$

admet une unique solution.

On ne va pas considérer n'importe quel type de second membre, mais avec des seconds membres exponentiels ou en sin / cos /sh/ch.

Exercice 42

Soit $\overline{a \in \mathbb{C}, r \in \mathbb{C}}$, $(E): y' + ay = e^{rx}$. Trouver une solution particulière de (E) (on fera une discussion en fonction de r.

L'idée derrière cet exercice va nous servir pour la suite!

Proposition 43 Soit $(a, b, c) \in \mathbb{K}^3$, $a \neq 0$, $\alpha \in \mathbb{K}$, $\lambda \in \mathbb{K}$. Soit (E) l'équation

$$ay'' + by' + cy = \lambda e^{\alpha x}$$
.

Soit (e) l'équation caractéristique de (E) : $ar^2 + br + c = 0$.

1. si α n'est pas racine de (e), alors (E) admet une solution particulière de la forme

$$x \mapsto \mu e^{\alpha x}$$
,

avec $\mu \in \mathbb{K}$.

2. si α est racine simple de (e) (i.e. α est racine de (e) et le discriminant de (e) est non nul), alors on (E) admet une solution particulière de la forme

$$x \mapsto \mu x e^{\alpha x}$$

avec $\mu \in \mathbb{K}$.

3. si α est racine double de (e) (i.e. α est racine de (e) et le discriminant de (e) est nul), alors on (E) admet une solution particulière de la forme

$$x \mapsto \mu x^2 e^{\alpha x}$$
,

avec $\mu \in \mathbb{K}$.

Exemple 44

Résolvons

$$\begin{cases} y'' - 2y' + y = 3e^{x} \\ y(0) = 1 \\ y'(0) = -1 \end{cases}$$

1. On résout l'équation homogène. Son équation caractéristique est $r^2 - 2r + 1 = 0$, de racine double 1. L'ensemble des solutions de cette équation est donc

$$\{x \mapsto (\lambda + \mu x)e^x, (\lambda, \mu) \in \mathbb{R}^2\}$$

2. Recherchons une solution particulière de (E). Comme le second membre est de la forme $\lambda e^{\alpha x}$, avec $\alpha=1$, racine double de l'équation caractéristique, on cherche une solution particulière sous la forme

$$f_0: x \mapsto \mu x^2 e^x$$
.

On a alors les équivalences suivantes

$$\begin{split} f_0 \text{ est solution de } (E) &\Leftrightarrow f_0'' - 2f_0' + f_0 = 3e^x \\ &\Leftrightarrow 2\mu e^x + 4\mu x e^x + \mu x^2 e^x - 2 \times (2\mu x e^x + \mu x^2 e^x) + \mu x^2 e^x = 3e^x \\ &\Leftrightarrow 2\mu e^x = 3e^x \\ &\Leftrightarrow 2\mu = 3 \Leftrightarrow \mu = \frac{3}{2}. \end{split}$$

Donc la fonction $f_0: x \mapsto \frac{3}{2}x^2e^x$ est solution de (E).

3. Soit maintenant f solution du problème de Cauchy. On dispose de $(\lambda, \mu) \in \mathbb{R}^2$ tels que

$$\forall x \in \mathbb{R}, \ f(x) = \frac{3}{2}x^2e^x + \lambda e^x + \mu x e^x.$$

Or, f(0) = 1 donc $\lambda = 1$. De plus f'(0) = -1. Or,

$$f'(x) = 3xe^{x} + \frac{3}{2}x^{2}e^{x} + \mu e^{x} + \mu xe^{x} + \lambda e^{x},$$

donc $\lambda + \mu = -1$ donc $\mu = -2$. Donc par existence et unicité de la solution du problème de Cauchy, la solution du problème cherché est

$$x \mapsto \left(\frac{3}{2}x^2 + (1 - 2x)\right) e^x.$$

Point de méthode 45 (Traiter des seconds membres en sin / cos /sh/ch)

1. Pour trouver une solution particulière d'une éqaution différentielle **réelle** avec un second membre en sin ou en cos, par exemple

$$ay'' + by' + cy = \lambda \sin(\alpha x),$$

on trouve une solution particulière complexe de

$$ay'' + by' + cy = \lambda e^{i\alpha x},$$

puis on prend la partie imaginaire (si c'est un sinus) ou réelle (si c'est un cosinus) de la solution trouvée.

2. pour une équation différentielle quelconque avec sin / cos /sh/ch, on écrit ces fonctions comme somme d'exponentielles et on utilise le **principe de superposition**!

Exercice 46

- 1. Résoudre $y'' 2y' + 2y = \sin(x)e^x$.
- **2.** Résoudre y'' 3y + 2y = ch(x).

Remarque : on a la proposition plus générale suivante, qui pourra dans de très rares cas vous servir!

Proposition 47

Soient $(a, b, c) \in \mathbb{K}^* \times \mathbb{K}^2$. L'équation $ay''(x) + by'(x)cy(x) = e^{\alpha x}P(x)$, avec P polynôme admet une solution de la forme $x \mapsto e^{\alpha x}Q(x)$ avec Q polynôme tel que

- deg(Q) = deg(P) + 2 si α est une racine double de l'équation caractéristique
- $\deg(Q) = \deg(P) + 1$ si α est une racine simple de l'équation caractéristique
- $\deg(Q) = \deg(P)$ si α n'est pas racine de l'équation caractéristique