CHAPITRE 22 INTÉGRATION

Table des matières

1	Approximation uniforme de fonctions continues par morceaux		1
	1.1	Fonctions continues par morceaux	1
	1.2	Fonctions en escalier	4
	1.3	Approximation uniforme	5
2	Construction de l'intégrale de Riemann		14
	2.1	Intégrale d'une fonction en escalier	14
	2.2	Intégrale d'une fonction continue par morceaux	18
	2.3	Bornes non ordonnées	26
	2.4	Intégrales et primitives	27
3 Formules de Taylor		nules de Taylor	30
	3.1	Formule de Taylor avec reste intégrale	30
	3.2	Inégalités de Taylor-Lagrange	32
	3.3	Applications des formules de Taylor	34
	3.4	Formule de Taylor-Young	36
4	Calc	cul approché d'intégrales	38

Dans ce chapitre, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

A l'instar de ce qu'on a fait pour définir numériquement les notions de limites et de continuité, nous allons dans ce chapitre **construire l'intégrale**, à l'aide de la notion d'aire sous la courbe.

Il nous faut donc d'abord expliquer que l'on peut « approcher » une fonction par des fonctions dite en escalier.

1 Approximation uniforme de fonctions continues par morceaux

1.1 Fonctions continues par morceaux

On va définir l'intégrale sur des fonctions continues par morceaux. On définit d'abord la notion de subdivision adaptée.

Définition 1.

Soient a < b deux réels.

- **1.** Une subdivision de [a,b] est un ensemble fini σ d'éléments de [a,b] tel que si $\sigma = \{x_0,\ldots,x_n\}$, avec $x_0<\cdots< x_n,\,x_0=a$ et $x_n=b$.
- **2.** La **précision** d'une subdivision $\{x_0, \ldots, x_n\}$ avec $x_0 < \cdots < x_n$ est $\max_{0 \leqslant i \leqslant n-1} (x_{i+1} x_i)$.
- **3.** Si $\forall (i,j) \in [0, n-1]^2$, $x_{i+1} x_i = x_{j+1} x_j$, on dit que la subdivision est régulière Le pas de cette subdivision est $x_1 x_0 = \frac{b-a}{n}$.
- **4.** Si σ et σ' sont deux subtivisions de [a,b], on dit que σ' est plus fine que σ si $\sigma \subset \sigma'$.

Dans la suite, a et b désignent deux réels tels que a < b.

Définition 2.

Soit $f:[a,b] \to \mathbb{K}$.

- **1.** On dit que f est continue par morceaux (cpm) sur [a,b] s'il existe une subdivision σ de [a,b], $\sigma = \{x_0, \ldots, x_n\}$ (avec $a = x_0 < x_1 < \cdots < x_n = b$) telle que pour tout i de [0,n-1],
 - $f|_{]x_i,x_{i+1}[}$ est continue,
 - $f|_{]x_i,x_{i+1}[}$ possède des limites finies en x_i (à droite) et x_{i+1} (à gauche).
- **2.** Si f est continue par morceaux, si $\sigma' = \{y_0, \dots, y_m\}$ est une subdivision de [a, b], avec $a = y_0 < y_1 < \dots < y_n = b$, on dit que σ' est adaptée à f si pour tout i de [0, n-1],
 - $f|_{]y_i,y_{i+1}[}$ est continue,
 - $f|_{]y_i,y_{i+1}[}$ possède des limites finies en y_i et y_{i+1} .
- **3.** Si I est un intervalle de \mathbb{R} , on dit que f est continue par morceaux sur I si elle est continue par morceaux sur tout segment de I.
- **4.** On note $\mathscr{C}_{pm}(I, \mathbb{K})$ l'ensemble des fonctions continues par morceaux de I dans \mathbb{K} .

Exemple 1.1.

La fonction partie entière est continue par morceaux sur tout segment de \mathbb{R} , alors que si $f: x \mapsto \begin{cases} \tan(x) \text{ si } x \neq \frac{\pi}{2}[\pi] \\ 0 \text{ sinon} \end{cases}$, f n'est pas continue par morceaux sur $[0, \pi]$.

Propriété 1.

Soit $f \in \mathscr{C}_{pm}([a, b], \mathbb{K})$.

- **1.** Si σ est une subdivision adaptée à f et si σ' est plus fine que σ , alors σ' est une subdivision adaptée à f.
- **2.** Si σ est une subdivision adaptée à f, si σ' est une subdivision quelconque de [a,b], $\sigma \cup \sigma'$ est une subdivision adaptéee à f.

► Démonstration.

- **1.** Notons $\sigma = \{x_0, \dots, x_n\}, a = x_0 < \dots < x_n = b, \sigma' = \{y_0, \dots, y_m\}, a = y_0 < \dots < y_m = b.$ Soit *i* dans [0, m-1]. Comme $\sigma \subset \sigma'$, on dispose de *j* dans [0, m-1] tel que $[y_i, y_{i+1}] \subset [x_j, x_{j+1}]$. (penser au fait qu'il y a davantage de points dans σ' , donc de plus petits intervalles) Donc
 - $f|_{]y_i,y_{i+1}[}$ est continue car $f|_{]x_i,x_{i+1}[}$,
 - en y_i:
 - si $y_i = x_j$, comme $f_{[]x_j,x_{j+1}[]}$ admet une limite finie en x_j , $f_{[]y_i,y_{i+1}[]}$ admet une limite finie en
 - sinon, $y_i \in]x_j, x_{j+1}[$. Comme $f|_{]x_j, x_{j+1}[}$ est continue elle est continue en y_i , donc admet des limites finies à gauche et à droite en y_i , donc $f_{||y_i,y_{i+1}||}$ admet une limite finie en y_i ,
 - on fait de même en y_{i+1} .

Donc σ' est adaptée à f.

2. $\sigma \subset \sigma \cup \sigma'$ donc, comme σ est adaptée à f, $\sigma \cup \sigma'$ est adaptée à f.

QED◀

Propriété 2. $\mathscr{C}_{pm}([a,b],\mathbb{K}) \text{ est un s.e.v. de } \mathbb{K}^{[a,b]}.$

► Démonstration.

- **1.** La fonction nulle est \mathscr{C}_{pm} .
- **2.** Soient $(f, g) \in \mathscr{C}_{pm}([a, b], \mathbb{K})^2, \lambda \in \mathbb{K}$.

Soit σ une subdivision adaptée à f, σ' une subdivision adaptée à g.

Alors $\sigma \cup \sigma'$ est adaptée à f et à g.

Donc si $\sigma \cup \sigma' = \{x_0, \dots, x_n\}$, avec $a = x_0 < \dots < x_n = b$, pour tout i dans [0, n-1], $(\lambda f + g)|_{[x_i,x_{i+1}[}$

• est continue car $f|_{]x_i,x_{i+1}[}$ et $g|_{]x_i,x_{i+1}[}$ le sont,

• possède une limite finie en x_i et en x_{i+1} car $f|_{]x_i,x_{i+1}[}$ et $g|_{[x_i,x_{i+1}[}$ possèdent une limite finie en x_i et en x_{i+1} .

Donc
$$\lambda f + g \in \mathscr{C}_{pm}([a, b], \mathbb{K}).$$

D'où la structure d'espace vectoriel.

1.2 Fonctions en escalier

Définition 3.

- Soit $f:[a,b]\to\mathbb{C}$. **1.** On dit que f est en escalier sur [a,b] s'il existe une subdivision σ de [a,b], $\sigma=\{x_0,\ldots,x_n\}$ tel que $\forall i \in \llbracket 0, n-1 \rrbracket, \, f_{\mid]x_i,x_{i+1} \llbracket}$ est constante.
- **2.** Si f est en escalier, une subdivision $\sigma' = \{y_0, \dots, y_m\}$ avec $a = y_0 < y_1 < \dots, y_m = b$ est dite adaptée à f si pour tout i dans [0, m-1], $f|_{]y_i,y_{i+1}[}$ est constante.

Remarque 1.2.

- 1. La partie entière est en escalier sur tout segment.
- **2. ATTENTION!** La valeur de la fonction en x_i peut être complètement arbitraire.

On en déduit alors les conséquences suivantes, qui sont les mêmes que pour les fonctions continues par morceaux.

Propriété 3.

- 1. Si f est en escalier sur [a, b], si σ est adaptée à f, alors pour toute subdivision σ',
 (a) si σ ⊂ σ', alors σ' est adaptée à f,
 (b) si σ' est quelconque, σ ∪ σ' est adaptée à f.
- **2.** L'ensemble des fonctions en escalier est un sous-espace vectoriel de $\mathbb{C}^{[a,b]}$.

Exo 1.1 _____

Soit $\sigma = \{x_0, \dots, x_n\}$ une subdivision de [a, b]. Vérifier que

$$F = \{ f \in \mathbb{C}^{[a,b]} \text{ en escalier }, \ \sigma \text{ est adaptée à } f \}$$

est un sous-espace vectoriel de $\mathbb{C}^{[a,b]}$ et déterminer sa dimension.

1.3 Approximation uniforme

Le but de cette partie est alors d'approcher toute fonction continue par morceaux par une fonction en escalier.

Propriété 4.

Soit f une fonction continue par morceaux sur un segment [a,b]. Alors f est bornée sur [a,b] (i.e. |f| est majorée).

► Démonstration.

Soit σ une subdivision adaptée à f, $\sigma = \{x_0, \dots, x_n\}$ avec $a = x_0 < x_1 < \dots < x_n = b$.

soit i dans [0, n − 1]. Alors f_{|]x_i,x_{i+1}} est continue et possède des limites finies en x_i et en x_{i+1}.
 Notons g_i son prolongement par continuité. Alors g_i est continue sur un segment, donc est bornée. Soit M_i tel que pour tout t dans [x_i, x_{i+1}], 0 ≤ g_i(t) ≤ M_i.

Alors pour tout t dans $]x_i, x_{i+1}[, |f(t)| \leq M_i.$

- **2.** Notons $M = \max_{i \in [\![0,n-1]\!]} (M_i)$, $M' = \max_{i \in [\![0,n]\!]} |f(x_i)|$, et $M'' = \max(M,M')$. Montrons que M'' est un majorant de |f|. Soit t dans [a,b]. Alors
 - si $\exists i \in [0, n], t = x_i$. Alors

$$|f(t)| = |f(x_i)| \leqslant M' \leqslant M''$$

• sinon on dispose de i dans [0, n-1] tel que $t \in]x_i, x_{i+1}[$. Donc $|f(x)| \leq M_i \leq M \leq M''$.

Donc |f| est majorée par M''.

QED◀

Remarque 1.3.

La fonction n'atteint pas forcément ses bornes! La fonction

$$f: \left| \begin{array}{c} [0,1] \to \mathbb{R} \\ \\ x \mapsto \begin{cases} x \text{ si } x \in [0,1[,\\ 0 \text{ si } x = 1. \end{cases} \right. \end{cases}$$

est continue par morceaux, bornée sur [0, 1], mais n'atteint pas ses bornes (sa borne inférieure, oui, mais pas sa borne supérieure).

Ceci nous permet de définir ce qu'on appellera la norme ∞ d'une fonction continue par morceaux sur un segment.

Soit $f \in \mathscr{C}_{pm}([a,b],\mathbb{K})$. La quantité $\sup_{t \in [a,b]} |f(t)|$ existe, est finie et est notée $\|f\|_{L^{\infty}([a,b])}$ ou $\|f\|_{\infty}$ s'il n'y a pas d'ambiguïté sur le segment considéré, et appelée norme uniforme ou norme ∞

Exo 1.2 ___

Que signifie $\|f\|_{\infty} \leqslant \varepsilon$? Pour f et ε donnés, dessiner une fonction g vérifiant $\|f-g\|_{\infty} \leqslant \varepsilon$.

Propriété 5.

Soient f,g dans $\mathscr{C}_{pm}([a,b],\mathbb{K}),\,\lambda\in\mathbb{K}.$ Alors (i) $\forall f\in\mathscr{C}_{pm}([a,b],\mathbb{K}),\,\|f\|_{\infty}\geqslant 0.$ (ii) (homogénéité) $\|\lambda f\|_{\infty}=|\lambda|\,\|f\|_{\infty}.$

- (iii) (séparation) $(\|f\|_{\infty} = 0) \Rightarrow f = 0$ sur [a, b].

(iv) (inégalité triangulaire) $\|f+g\|_{\infty} \leqslant \|f\|_{\infty} + \|g\|_{\infty}$.

On dit que $\|\cdot\| \infty$ est une norme sur $\mathscr{C}_{pm}([a,b],\mathbb{K})$.

- ▶ Démonstration. (*, On termine par la première proposition, en fait + dure).
 - (i) comme pour tout t de [a, b], $|f(t)| \ge 0$, $\sup_{t \in [a, b]} |f(t)| \ge 0$.
- (ii) soit f dans $\mathscr{C}_{pm}([a,b],\mathbb{K})$ tel que $||f||_{\infty}=0$. Alors $\sup_{t\in[a,b]}|f(t)|=0$, donc $\forall t\in[a,b],|f(t)|\leqslant0$. Donc : $\forall t\in[a,b],|f(t)|=0$, i.e. f est la fonction nulle.
- (iii) soit $(f, g) \in \mathscr{C}_{pm}([a, b], \mathbb{K})^2$, soit t dans [a, b]. Alors

$$|f(t) + g(t)| \le |f(t)| + |g(t)|,$$

par l'inégalité triangulaire sur \mathbb{K} . Comme $|f(t)| \leq ||f||_{\infty}$ et $|g(t)| \leq ||g||_{\infty}$, on en déduit alors que

$$|f(t) + g(t)| \le ||f||_{\infty} + ||g||_{\infty}$$
,

donc $||f||_{\infty} + ||g||_{\infty}$ est un majorant de $\{|f(t) + g(t)|, t \in [a, b]\}$, donc il est supérieur à la borne supérieure de cet ensemble, donc

$$||f + g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}.$$

- (iv) Soit $f \in \mathscr{C}_{pm}([a, b], \mathbb{K})$ et $\lambda \in \mathbb{K}$.
 - $\text{Si } \lambda = 0, \ \|\lambda f\|_{\infty} = \|0\|_{\infty} = 0 = 0 \times \|f\|_{\infty},$
 - · sinon,
 - soit $t \in [a, b]$:

$$|\lambda f(t)| = |\lambda||f(t)| \leqslant |\lambda| ||f||_{\infty}$$
,

donc
$$\|\lambda f\|_{\infty} \leq |\lambda| \|f\|_{\infty}$$
.

- ensuite,

$$|f(t)| = \left| \frac{1}{\lambda} \lambda f(t) \right| = \frac{1}{|\lambda|} |\lambda f(t)| \leqslant \frac{1}{|\lambda|} ||\lambda f||_{\infty},$$

$$\mathrm{donc} \ \|f\|_{\infty} \leqslant \frac{1}{\lambda|} \left\|\lambda f\right\|_{\infty}, \, \mathrm{i.e.} \ |\lambda| \left\|f\right\|_{\infty} \leqslant \left\|\lambda f\right\|_{\infty}.$$

Donc $\|\lambda f\|_{\infty} = |\lambda| \|f\|_{\infty}$.

QED◀

On va maintenant montrer que l'on peut approcher n'importe quelle fonction continue par morceaux par des fonctions en escalier. Comment montrer cette proposition? On a besoin d'une notion uniforme sur un segment.

Définition 5.

Soit I un intervalle. Une fonction f définie sur I est dite uniformément continue si

$$\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall (x, y) \in I^2, \ |x - y| \leqslant \eta \Rightarrow |f(x) - f(y)| \leqslant \varepsilon.$$

Remarque 1.4.

Qu'est-ce que c'est ne pas être uc?

1. Rappel : « *f* est continue sur I » :

$$\forall x \in I, \ \forall \varepsilon > 0, \exists \eta > 0, \ \forall y \in I, \ |x - y| \leqslant \eta \Rightarrow |f(x) - f(y)| \leqslant \varepsilon.$$

Dans cette définition, le η peut dépendre de x.

- **2.** En revanche, pour une fonction continue, non! Le η doit fonctionner pour **tous** les x.
- 3. Par exemple, la fonction inverse n'est pas uniformément continue!
- **4.** Comment traduire « f n'est pas uniformément continue? »

$$\exists \varepsilon > 0, \ \forall \eta > 0, \ \exists x \in I, \ \exists y \in I, \ |x - y| \leqslant \eta \wedge |f(x) - f(y)| > \varepsilon.$$

Propriété 6.

Soit $I \subset \mathbb{R}$, $f: I \to \mathbb{R}$. Les assertions suivantes sont équivalentes

- Soit I ⊂ ℝ, f : I → ℝ. Les assertions suivairles soin equivaients.
 f n'est pas uniformément continue,
 Il existe ε > 0, deux suites (x_n)_{n∈ℕ} et (y_n)_{n∈ℕ} d'éléments de I telles que x_n y_n → 0 et telles que pour tout n dans ℕ, |f(x_n) f(y_n)| > ε.
 Il existe deux suites (x_n)_{n∈ℕ} et (y_n)_{n∈ℕ} d'éléments de I telles que x_n y_n → 0 et telles que (f(x_n) f(y_n))_{n∈ℕ} ne tende pas vers 0.

► Démonstration.

Si f n'est pas uniformément continue, on dispose de $\varepsilon > 0$ tel que pour tout $\varepsilon > 0$, il existe $(x, y) \in I^2$ tels que $|x - y| \le \eta$ et $|f(x) - f(y)| > \varepsilon$.

Soit $n \in \mathbb{N}$, **prenons** $\varepsilon = \frac{1}{2^n}$. Alors on dispose de x_n et y_n dans I tels que $|x_n - y_n| \leqslant \frac{1}{2^n}$ et $|f(x_n) - f(y_n)| > \varepsilon$.

- 2 \Rightarrow 3 Alors $x_n y_n \underset{n \to +\infty}{\longrightarrow} 0$ et telles que $(f(x_n) f(y_n))_{n \in \mathbb{N}}$ ne tend pas vers 0.
- $3 \Rightarrow 1$ Si on dispose de $(x_n)_{n \in \mathbb{N}}$ et $(y_n)_{n \in \mathbb{N}}$ d'éléments de I telles que $x_n y_n \xrightarrow[n \to +\infty]{} 0$ et telles que $(f(x_n) - f(y_n))_{n \in \mathbb{N}}$ ne tende pas vers 0.

Comme $(f(x_n) - f(y_n))_{n \in \mathbb{N}}$ ne tend pas vers 0, on dispose de $\varepsilon > 0$ tel que pour tout $\eta > 0$, pour tout $N \in \mathbb{N}$, il existe $n \in \mathbb{N}$ tel que $|f(x_n) - f(y_n)| > \varepsilon$.

Donc on dispose de $\varepsilon > 0$ tel que pour tout $\eta > 0$, pour tout $N \in \mathbb{N}$, il existe $(x, y) \in \mathscr{T}^2$ tel que $|f(x) - f(y)| > \varepsilon$.

D'où la non-uniforme continuité!

QED◀

Exemple 1.5.

- **1.** Par exemple, $f: x \mapsto \frac{1}{x}$ n'est pas uniformément continue sur \mathbb{R}_+^* . En effet, posons, pour tout n dans \mathbb{N}^* , $x_n = \frac{1}{n}$ et $y_n = \frac{1}{2n}$. Alors $x_n y_n \underset{n \to +\infty}{\longrightarrow} 0$ mais $f(x_n) f(y_n) = n 2n = -n$ ne tend pas vers 0.
- **2.** De même, $g: x \mapsto x^2$ n'est pas uniformément continue sur \mathbb{R}_+ . Posons en effet, pour tout n dans \mathbb{N} , $x_n = \sqrt{n}$ et $y_n = \sqrt{n+1}$. Alors $x_n - y_n = \sqrt{n} - \sqrt{n+1} = \frac{-1}{\sqrt{n(n+1)}} \xrightarrow[n \to +\infty]{} 0$, et $g(x_n) - g(y_n) = \frac{-1}{\sqrt{n(n+1)}} \xrightarrow[n \to +\infty]{} 0$ n - (n + 1) = -1 ne tend pas vers 0. Donc g n'est pas uniformément continue.

Propriété 7.

- (i) Une fonction uniformément continue sur un intervalle y est continue.
- (ii) Une fonction lipschitzienne est uniformément continue.

▶ Démonstration.

1. Soit f uniformément continue sur I. On dispose alors de η_0 tel que pour tout $\varepsilon > 0$, pour tous x et y dans I, $|x - y| \le \eta_0$ implique $|f(x) - f(y)| \le \varepsilon$.

Soit $\varepsilon > 0$. Soit $x \in I$. Posons $\eta = \eta_0$. Soit $y \in I$ tel que $|x - y| \leqslant \eta$. Alors $|f(x) - f(y)| \leqslant \varepsilon$.

Donc f est continue sur I.

2. Supposons que f soit K-lipschitzienne, avec K > 0.

Soit
$$\varepsilon > 0$$
. Posons $\eta = \frac{\varepsilon}{K}$. Soit $(x, y) \in I^2$, tels que $|x - y| \leqslant \eta$. Alors

$$|f(x)-f(y)|\leqslant K|x-y|\leqslant K.\frac{\varepsilon}{K}=\varepsilon,$$

donc f est uniformément continue.

QED∢

Exemple 1.6.

Attention, la réciproque de la dernière proposition est fausse ! On verra en TD que $x \mapsto \sqrt{x}$ est uniformément continue mais pas continue sur \mathbb{R}_+ .

On a un théorème qui va faire que tout fonctionne bien sur un segment :

Théroème 8 (Heine).

Toute fonction continue sur un segment y est uniformément continue.

► Démonstration. (*).

Soit $f:[a,b] \to \mathbb{K}$, continue. On suppose que f n'est pas uniformément continue.

Alors on dispose de $\varepsilon > 0$, $(x_n)_{n \in \mathbb{N}}$ et de $(y_n)_{n \in \mathbb{N}}$ deux suites de [a, b] telles que $x_n - y_n \underset{n \to +\infty}{\longrightarrow} 0$ et telles que pour tout n, $|f(x_n) - f(y_n)| > \varepsilon$.

• $(x_n)_{n\in\mathbb{N}}$ est bornée donc, d'après le théorème de Bolzano-Weierstrass, on dispose de φ extraction et de $\ell \in \mathbb{R}$ tels que $u_{\varphi(n)} \xrightarrow[n \to +\infty]{} \ell$.

Or, pour tout n dans \mathbb{N} , $a \leqslant x_{\varphi(n)} \leqslant b$ donc $a \leqslant \ell \leqslant b$.

· De plus.

$$y_{\varphi(n)} = y_{\varphi(n)} - x_{\varphi(n)} + x_{\varphi(n)} \underset{n \to +\infty}{\longrightarrow} \ell.$$

Mais, par continuité de f en ℓ,

$$f(x_{\varphi(n)}) - f(y_{\varphi(n)}) \underset{n \to +\infty}{\longrightarrow} \ell - \ell = 0,$$

ABSURDE!

Donc f est uniformément continue sur [a, b].

QED◀

Le but est alors d'approcher toute fonction continue par morceaux par une fonction en escalier!

Propriété 9.

- On note ici $\mathcal{E}([a,b],\mathbb{K})$ l'ensemble des fonctions en escalier de [a,b] dans \mathbb{K} .

 1. $\forall f \in \mathscr{C}^0([a,b],\mathbb{K}), \ \forall \varepsilon > 0, \ \exists g \in \mathcal{E}([a,b],\mathbb{K}) \ \text{telle que } \|f-g\|_{\infty} \leqslant \varepsilon.$ 2. $\forall f \in \mathscr{C}^0_{pm}([a,b],\mathbb{K}), \ \forall \varepsilon > 0, \ \exists g \in \mathcal{E}([a,b],\mathbb{K}) \ \text{telle que } \|f-g\|_{\infty} \leqslant \varepsilon.$ 3. $\forall f \in \mathscr{C}^0_{pm}([a,b],\mathbb{K}), \ \exists (g_n)_{n \in \mathbb{N}} \in \mathcal{E}([a,b],\mathbb{K})^{\mathbb{N}} \ \text{telle que } \|f-g_n\|_{\infty} \underset{n \to +\infty}{\longrightarrow} 0.$ On dit que $(g_n)_{n\in\mathbb{N}}$ converge uniformément vers f.

► Démonstration. (*).

1. Soit $f \in \mathcal{C}([a, b], \mathbb{K})$ et $\varepsilon > 0$. f est continue sur [a, b] donc uniformément continue sur [a, b], donc on dispose de $\eta > 0$ tel que

$$\forall (x, y) \in [a, b]^2, |x - y| \leqslant \eta \Rightarrow |f(x) - f(y)| \leqslant \varepsilon.$$

Soit alors $\sigma = \{x_0, \dots, x_n\}$ une subdivision régulière de [a, b] de pas inférieur ou égal à ε (il suffit d'avoir $\frac{b-a}{n} \leqslant \eta$, i.e. $n \geqslant \frac{b-a}{n}$).

Posons $g:[a,b] \to \mathbb{K}$ définie par :

- $\forall i \in [0, n-1], g_{|[x_i, x_{i+1}]} = f(x_i),$
- g(b) = (b).

Alors

- g est en escalier,
- pour tout *t* dans [*a*, *b*],

- si
$$t = b$$
, $|f(t) - g(t)| = 0 \le \varepsilon$,

— sinon, on dispose de $i \in [0, n-1]$, tel que $t \in [x_i, x_{i+1}[$. Alors $|t - x_i| \le \eta$, donc, par uniforme continuité, $|f(t) - f(x_i)| \le \varepsilon$, donc

$$|f(t)-g(t)| \leq \varepsilon$$
.

Donc pour tout t dans [a, b], $|f(t) - g(t)| \le \varepsilon$, donc $||f - g||_{\infty} \le \varepsilon$.

D'où le résultat demandé!

2. Soit $f \in \mathscr{C}_{pm}([a, b], \mathbb{K})$, $\sigma = \{x_0, \dots, x_n\}$ une subdivision adaptée à f. Soit $\varepsilon > 0$.

Là l'idée est d'approcher f comme précédemment sur les intervalles sur lesquels elle est continue, et de traiter les discontinuités séparément.

Soit i dans [0, n-1]. Alors $f|_{]x_i,x_{i+1}[}$ est continue et prolongeable par continuité en x_i et x_{i+1} . Soit $\tilde{f_i}$ le prolongement par continuité de cette fonction sur $[x_i,x_{i+1}]$. Soit g_i en escalier telle que $\|\tilde{f_i}-g_i\|_{\infty,[x_i,x_{i+1}]} \leqslant \varepsilon$.

Soit alors

$$\varphi: \left| \begin{array}{c} [a,b] \to \mathbb{K} \\ t \mapsto \begin{cases} g_i(t) \text{ si } \exists i \in \llbracket 0,n-1 \rrbracket, \ t \in]x_i, x_{i+1} \llbracket f(x_i) \text{ si } \exists i \in \llbracket 0,n \rrbracket, \ t = x_i. \end{cases} \right|$$

Soit alors $t \in [a, b]$.

• si $\exists i \in [0, n-1]$ tel que $t \in]x_i, x_{i+1}[$,

$$|\varphi(t)-f(t)|=|g_i(t)-\tilde{f}_i(t)|\leqslant \left\|\tilde{f}_i-g_i\right\|_{\infty,\left[X_i,X_{i+1}\right]}\leqslant \varepsilon.$$

• si $\exists i \in [0, n]$ tel que $t = x_i$, alors

$$|\varphi(t)-f(t)|=|f(x_i)-f(x_i)|=0\leqslant \varepsilon.$$

 $\mathsf{Donc} \ \|f - \varphi\|_{\infty,[a,b]} \leqslant \varepsilon, \, \mathsf{et} \ \varphi \ \mathsf{est} \ \mathsf{en} \ \mathsf{escalier} \ \mathsf{car} \ \mathsf{pour} \ \mathsf{tout} \ i \ \mathsf{dans} \ [\![\mathtt{0}, n-1]\!], \, g_i \ \mathsf{est} \ \mathsf{en} \ \mathsf{escalier}.$

3. Soit $n \in \mathbb{N}$. Prenons $\varepsilon = \frac{1}{2^n}$. Alors on dispose de φ_n en escalier telle que $||f - \varphi_n||_{\infty,[a,b]} \le \varepsilon = \frac{1}{2^n}$.

On a alors construit une suite de fonctions en escalier, $(\varphi_n)_{n\in\mathbb{N}}$, telle que pour tout n dans \mathbb{N} ,

$$\|\varphi_n - f\|_{\infty,[a,b]} \leqslant \frac{1}{2^n} \underset{n \to +\infty}{\longrightarrow} 0.$$

QED∢

Remarque: étant donnée la construction précédente, on a la proposition suivante :

Propriété 10.

Soit $f \in \mathscr{C}_{pm}([a, b], \mathbb{R})$, positive sur [a, b]. Alors il existe $(g_n)_{n \in \mathbb{N}} \in \mathcal{E}([a, b], \mathbb{K})^{\mathbb{N}}$ telle que $\|f - g_n\|_{\infty} \xrightarrow[n \to +\infty]{} 0$ et telle que pour tout n dans \mathbb{N} , g_n est positive sur [a, b].

Maintenant on a tous les outils en main pour pouvoir définir l'intégrale, d'abord d'une fonction en escalier, puis d'une fonction continue par morceaux.

Construction de l'intégrale de Riemann 2

Dans toute cette section, on note $\mathcal{E}([a,b],\mathbb{K})$ l'ensemble des fonctions en escalier de [a,b] dans \mathbb{K} .

Intégrale d'une fonction en escalier

Propriété 11.

► Démonstration.

1. Soit σ adaptée à f, σ' plus fine que σ (c'est-à-dire que $\sigma \subset \sigma'$).

On écrit
$$\sigma = \{x_0, \dots, x_n\}$$
, et

$$\sigma' = \{y_0, \ldots, y_m\}$$

où $m \ge n$.

Alors

- $x_0 = y_0$,
- $x_n = y_m$,
- pour tout *i* dans [0, n], il existe k_i dans [0, m] tel que $y_{k_i} = x_i$ (c'est parce que $\sigma \subset \sigma'$).

Notons μ_j la valeur de f sur $]y_j, y_{j+1}[$. Alors la somme associée à σ' est

$$\sum_{j=0}^{m-1} \mu_j(y_{j+1} - y_j) = \sum_{i=0}^{m-1} \sum_{j=k_i}^{k_{i+1}-1} \mu_j(y_{j+1} - y_j).$$

Mais, pour tout j dans $[\![k_i,k_{i+1}-1]\!]$, $\mu_j=\lambda_i!$ En effet, f est constante sur $]x_i,x_{i+1}[$, c'est-à-dire sur $]y_{k_i},y_{k_{i+1}}[!]$ Donc

$$\sum_{j=0}^{m-1} \mu_j(y_{j+1} - y_j) = \sum_{i=0}^{n-1} \sum_{j=k_i}^{k_{i+1}-1} \lambda_i(y_{j+1} - y_j)$$

$$= \sum_{i=0}^{n-1} \lambda_i \sum_{j=k_i}^{k_{i+1}-1} (y_{j+1} - y_j)$$

$$= \sum_{i=0}^{n-1} \lambda_i (y_{k_{i+1}} - y_{k_i}) \text{ par t\'elescopage.}$$

$$= \sum_{i=0}^{n-1} \lambda_i (x_{i+1} - x_i),$$

d'où l'égalité des deux sommes!

2. Si σ et σ' sont maintenant deux subtivisions quelconques adaptées à f, $\sigma \subset \sigma \cup \sigma'$ et $\sigma' \subset \sigma \cup \sigma'$, donc les sommes correpondant à ces trois subdivisions sont égales par le point précédant σ'

Exemple 2.1.

Par exemple,

$$\int_0^{\pi} \lfloor x \rfloor \, dx = 0 \times (1 - 0) + 1 \times (2 - 1) + 2 \times (\pi - 3) = 2\pi - 5.$$

Exo 2.3

Calculer, pour $x \in \mathbb{R}_+$, $\int_0^x \lfloor t \rfloor dt$.

Propriété 12.

Soient a < b deux réels, $f \in \mathcal{E}([a, b], \mathbb{K})$.

- **1.** $\varphi \mapsto \int_a^b \varphi$ est une forme linéaire sur $\mathcal{E}([a,b],\mathbb{K})$. **2.** Si $g \in \mathbb{K}^{[a,b]}$ est égale à f sauf en un nombre fini de points, g est en escalier et $\int_a^b f = \int_a^b g$. **3.** Si $c \in [a,b]$, $\int_a^b f = \int_a^c f + \int_c^b f$. **4.** On a l'inégalité triangulaire : $\left| \int_a^b f \right| \leqslant \int_a^b |f|$

$$\int_a^b f = \int_a^c f + \int_c^b f.$$

$$\left| \int_{a}^{b} f \right| \leqslant \int_{a}^{b} |f|$$

► Démonstration.

1. Soient φ et ψ dans $\mathcal{E}([a,b],\mathbb{K})$, $\alpha\in\mathbb{K}$, σ une subdivision adaptée à f, σ' une subdivision adaptée à g. Alors $\sigma \cup \sigma'$ est adaptée à f, à g et à $\alpha f + g$.

Notons $\sigma \cup \sigma' = \{x_0, \dots, x_n\}$ avec $a = x_0 < \dots < x_n = b$, notons, pour tout i dans [0, n-1], λ_i la valeur de f sur $]x_i, x_{i+1}[$ et μ_i la valeur de g sur $]x_i, x_{i+1}[$. Alors

$$\int_{a}^{b} \alpha f + g = \sum_{i=1}^{n-1} (\alpha \lambda_{i} + \mu_{i})(x_{i+1} - x_{i})$$

$$= \alpha \sum_{i=0}^{n-1} \lambda_{i}(x_{i+1} - x_{i}) + \sum_{i=0}^{n-1} \mu_{i}(x_{i+1} - x_{i})$$

$$= \alpha \int_{a}^{b} f + \int_{a}^{b} g,$$

d'où la linéarité.

2. Soit σ une subdivision adaptée à f et $\{z_1, \ldots, z_p\}$ les points en lesquels g diffère de f.

Alors $\sigma \cup \{z_1, \ldots, z_p\}$ est adaptée à f mais aussi à g: en effet, si on note $\sigma \cup \{z_1, \ldots, z_p\}$ $\{x_0,\ldots,x_n\}$ avec $a=x_0<\cdots< x_n=b$, alors f est constante sur $]x_i,x_{i+1}[$, tout comme g (gn'est pas différente de f sur un tel intervalle car g ne diffère de f que en les z_k).

Mais alors

$$\int_{a}^{b} g = \sum_{i=0}^{n-1} \lambda_{i}(x_{i+1} - x_{i}) = \int_{a}^{b} f.$$

3. si σ est une subdivision adaptée à f, alors $\sigma \cup \{c\}$ est aussi adaptée à f. Notons

$$\sigma \cup \{c\} = \{x_0, \dots, x_n\}$$
 avec $a = x_0 < x_1 < \dots < x_n = b$,

et notons i_0 l'indice de [0, n] tel que $x_{i_0} = c$. Alors $\{x_0, \ldots, x_{i_0}\}$ est adaptée à $f|_{[a,c]}$ et $\{x_{i_0}, \ldots, x_n\}$ est adaptée à $f|_{[c,b]}$. Donc

$$\int_{a}^{c} f(t)dt + \int_{c}^{b} f(t)dt = \sum_{k=0}^{i_{0}-1} \lambda_{k} (x_{k+1} - x_{k}) + \sum_{k=i_{0}}^{n-1} \lambda_{k} (x_{k+1} - x_{k})$$

$$= \sum_{k=0}^{n-1} \lambda_{k} (x_{k+1} - x_{k})$$

$$= \int_{a}^{b} f(t)dt.$$

4. Soit $f \in \mathcal{E}([a,b],\mathbb{K})$, $\sigma = \{x_0,\ldots,x_n\}$ adaptée à f, $a = x_0 < \cdots < x_n$, λ_i la valeur de f sur $]x_i, x_{i+1}[$. Alors σ est aussi adaptée à |f| et |f| égale $|\lambda_i|$ sur $]x_i, x_{i+1}[$. Donc

$$\left| \int_{a}^{b} f \right| = \left| \sum_{i=0}^{n-1} \lambda_{i}(x_{i+1} - x_{i}) \right|$$

$$\leq \sum_{i=0}^{n-1} |\lambda_{i}(x_{i+1} - x_{i})| \text{ par l'inégalité triangulaire sur } \mathbb{K}$$

$$= \sum_{i=0}^{n-1} |\lambda_{i}|(x_{i+1} - x_{i}) = \int_{a}^{b} |f|$$

QED◀

Propriété 13.

Soient f et g dans $\mathcal{E}([a,b],\mathbb{R})$. **1.** Si $f(t)\geqslant 0$ pour tout t de [a,b], alors $\int_a^b f\geqslant 0$.

2. si
$$f(t) \leqslant g(t)$$
 pour tout t de $[a, b]$, alors $\int_a^b f \leqslant \int_a^b g$.

► Démonstration.

Immédiate, vient de la définition pour la première et de la linéarité pour la seconde. QED◀

Remarque 2.2.

Attention! La réciproque est fausse : l'intégrale de $x \mapsto \lfloor x \rfloor$ est positive sur [-1, 3] mais la partie entière n'y est pas positive.

▶ Démonstration.

1. soit $\sigma = \{x_0, \dots, x_n\}$ une subdivision adaptée à f, $a = x_0 < \dots < x_n = b$, λ_i la valeur de f sur $[x_i, x_{i+1}]$. Alors pour tout i, $\lambda_i \ge 0$ et

$$\int_a^b f = \sum_{i=0}^{n-1} \underbrace{\lambda_i}_{\geqslant 0} \underbrace{(x_{i+1} - x_i)}_{\geqslant 0} \geqslant 0.$$

2. On sait que pour tout t dans [a, b], $g(t) - f(t) \ge 0$, donc

$$\int_{a}^{b} g(t) - f(t)dt \geqslant 0,$$

donc, par linéarité, $\int_a^b f(t)dt \leqslant \int_a^b g(t)dt$.

2.2 Intégrale d'une fonction continue par morceaux

Théroème 14 (et defi).

Soit f dans $\mathscr{C}_{pm}([a,b],\mathbb{C})$. Alors quelle que soit la suite (φ_p) de fonctions en escalier convergeant uniformément vers f, l'intégrale $\int_a^b \varphi_p(t) dt$ converge vers une limite indépendante du choix de φ_p . Cette quantité est appelée intégrale de a à b de f, notée $\int_{[a,b]} f$, $\int_a^b f$, ou

$$\int_a^b f(t)dt.$$

► Démonstration.

1. On établit déjà le **lemme** suivant : si $(\varphi_n)_{n\in\mathbb{N}}$ et $(\psi_n)_{n\in\mathbb{N}}$ sont deux suites de fonctions en escalier telles que $\|f - \varphi_n\|_{\infty} \underset{n \to +\infty}{\longrightarrow} 0$ et $\|f - \psi_n\|_{\infty} \underset{n \to +\infty}{\longrightarrow} 0$, alors

$$\|\varphi_n - \psi_n\|_{\infty} \underset{n \to +\infty}{\longrightarrow} 0 \text{ et } \int_a^b \varphi_n - \psi_n \underset{n \to +\infty}{\longrightarrow} 0.$$

Remarque: $\|\varphi_n - \psi_n\|_{\infty}$ est un **réel**, pas une fonction! \triangleright *Démonstration*.

Soit n dans \mathbb{N} . Alors

- $0 \leqslant \|\varphi_n \psi_n\|_{\infty} = \|\varphi_n f + f \psi_n\|_{\infty} \leqslant \|\varphi_n f\|_{\infty} + \|\psi_n f\|_{\infty} \underset{n \to +\infty}{\longrightarrow} 0$, donc $\|\varphi_n \psi_n\|_{\infty} \underset{n \to +\infty}{\longrightarrow} 0$.
- Par l'inégalité triangulaire,

$$\left| \int_{a}^{b} \varphi_{n}(t) - \psi_{n}(t) dt \right| \leqslant \int_{a}^{b} |\varphi_{n}(t) - \psi_{n}(t)| dt$$

Or, pour tout t dans [a, b], $|\varphi_n(t) - \psi_n(t)| \le ||\varphi_n - \psi_n||_{\infty}$. (on rappelle que le membre de droite est **une constante**). donc

$$\int_{a}^{b} |\varphi_{n}(t) - \psi_{n}(t)| dt \leqslant \int_{a}^{b} \|\varphi_{n} - \psi_{n}\|_{\infty} dt = (b - a) \|\varphi_{n} - \psi_{n}\|_{\infty} \underset{n \to +\infty}{\longrightarrow} 0,$$

donc

$$\int_{a}^{b} \varphi_{n}(t) - \psi_{n}(t) dt \underset{n \to +\infty}{\longrightarrow} 0$$

QED∢

2. Ensuite, soit $(\varphi_n)_{n\in\mathbb{N}}$ une suite de fonctions en escalier telle que $\|\varphi_n - f\|_{\infty} \xrightarrow[n \to +\infty]{} 0$. Posons, pour tout n, $u_n = \int_{0}^{b} \varphi_n$, et démontrons que $(u_n)_{n\in\mathbb{N}}$ converge.

• déjà, $(u_n)_{n\in\mathbb{N}}$ est bornée. En effet, soit n dans \mathbb{N} . Alors

$$|u_{n}| = \left| \int_{a}^{b} \varphi_{n}(t) dt \right| \leqslant \int_{a}^{b} |\varphi_{n}(t)| dt$$

$$\leqslant \int_{a}^{b} \|\varphi_{n}\|_{\infty} \operatorname{car} \forall t \in [a, b], |\varphi_{n}(t)| \leqslant \|\varphi_{n}\|_{\infty}$$

$$= (b - a) \|\varphi_{n}\|_{\infty}$$

$$= (b - a) \|\varphi_{n} - f + f\|_{\infty}$$

$$\leqslant (b - a) (\|\varphi_{n} - f\|_{\infty} + \|f\|_{\infty}).$$

Mais $\|\varphi_n - f\|_{\infty}$) $_{n \in \mathbb{N}}$ converge donc est bornée, et les autres termes ne dépendent pas de n, donc $(u_n)_{n \in \mathbb{N}}$ est bornée.

• par le théorème de Bolzano-Weierstrass, on dispose de α extraction telle que $u_{\alpha(n)}$ converge vers $\ell \in \mathbb{R}$. Montrons que $u_n \underset{n \to +\infty}{\longrightarrow} \ell$. On écrit simplement que pour tout n dans \mathbb{N} ,

$$u_n = u_{\alpha(n)} + (u_n - u_{\alpha(n)}).$$

Or,

$$u_n - u_{\alpha(n)} = \int_a^b \varphi_n - \varphi_{\alpha(n)}.$$

Mais comme $\|\varphi_n - f\|_{\infty} \xrightarrow[n \to +\infty]{} 0$ et $\|\varphi_{\alpha(n)} - f\|_{\infty} \xrightarrow[n \to +\infty]{} 0$, on en déduit, par le lemme, que $\int_a^b \varphi_n - \varphi_{\alpha(n)} \xrightarrow[n \to +\infty]{} 0$, donc que $u_n - u_{\alpha(n)} \xrightarrow[n \to +\infty]{} 0$. Donc

$$u_n = u_{\alpha(n)} + (u_n - u_{\alpha(n)}) \underset{n \to +\infty}{\longrightarrow} \ell.$$

3. Soit $(\psi_n)_{n\in\mathbb{N}}$ une suite de fonctions en escalier telle que $\|\psi_n - f\|_{\infty} \underset{n\to+\infty}{\longrightarrow} 0$. Alors,

$$\int_{a}^{b} \psi_{n} = \int_{a}^{b} \varphi_{n} + \int_{a}^{b} \psi_{n} - \varphi_{n} \underset{n \to +\infty}{\longrightarrow} \ell,$$

par le Lemme!

Donc la limite ne dépend pas de la suite de fonctions en escalier choisie!

QED■

Propriété 15.

- (i) L'application $f\mapsto \int_{[a,b]}f$ est linéaire sur l'espace vectoriel des fonctions cpm.
- (ii) Pour toute fonction f cpm,

$$\left| \int_{a}^{b} f(t) dt \right| \leqslant \int_{a}^{b} |f(t)| dt.$$

- (iii) Si $f \in \mathscr{C}_{pm}([a,b],\mathbb{K})$, si g est une fonction égale à f sauf en un nombre fini de points, alors g est continue par morceaux et $\int_{a}^{b} g = \int_{a}^{b} f$.
- (iv) Pour toute fonction f cpm, pour tout c dans [a, b],

$$\int_{a}^{b} f(t)dt = \int_{a}^{c} f(t)dt + \int_{c}^{b} f(t)dt.$$

(v) Pour toute fonction f cpm,

$$\int_{a}^{b} f(t)dt = \int_{a}^{b} \mathfrak{Re}(f(t))dt + \int_{a}^{b} \mathfrak{Im}(f(t))dt$$

$$\int_a^b f(t)dt = \int_a^b \mathfrak{Re}(f(t))dt + \int_a^b \mathfrak{Im}(f(t))dt.$$
(vi) Si f est dans $\mathscr{C}_{pm}([a,b],\mathbb{K}), \left|\int_a^b f\right| \leqslant \int_a^b |f|.$

► Démonstration.

1. Soient (f,g) dans $\mathscr{C}_{pm}([a,b],\mathbb{K})^2$, $\lambda \in \mathbb{K}$. Soient $(\varphi_n)_{n \in \mathbb{N}}$ et $(\psi_n)_{n \in \mathbb{N}}$ suties de fonctions en escalier telles que $\|\varphi_n - f\|_{\infty} \underset{n \to +\infty}{\longrightarrow} 0$ et $\|\psi_n - g\|_{\infty} \underset{n \to +\infty}{\longrightarrow} 0$. Soit n dans $\mathbb N$. Alors, par linéarité de l'intégrale pour les fonctions en escalier,

$$\int_a^b \lambda \varphi_n + \psi_n = \lambda \int_a^b \varphi_n + \int_a^b \psi_n.$$

Mais on remarque que

$$\begin{split} \left\|\lambda f + g - (\lambda \varphi_n + \psi_n)\right\|_{\infty} &\leq \left\|\lambda f - \lambda \varphi_n\right\|_{\infty} + \left\|g - \psi_n\right\|_{\infty} \\ &= \left|\lambda\right| \left\|f - \varphi_n\right\|_{\infty} + \left\|g - \psi_n\right\|_{\infty} \underset{n \to +\infty}{\longrightarrow} 0, \end{split}$$

donc

$$\int_{a}^{b} \lambda \varphi_{n} + \psi_{n} \underset{n \to +\infty}{\longrightarrow} \int_{a}^{b} \lambda f + g,$$

donc, par unicité de la limite, et comme

$$\int_a^b \varphi_n \underset{n \to +\infty}{\longrightarrow} \int_a^b f \text{ et } \int_a^b \psi_n \underset{n \to +\infty}{\longrightarrow} \int_a^b g$$

2. On remarque que g - f est alors en escalier, nulle partout sauf en un nombre fini de points. Par définition de l'intégrale d'une fonction en escalier, cette intégrale est nulle, donc

$$\int_{a}^{b} g - f = 0,$$

donc, par linéarité, $\int_{a}^{b} g = \int_{a}^{b} f$.

3. Soit φ_n telle que $\|f - \varphi_n\|_{\infty} \xrightarrow[n \to +\infty, [a,b]]{} 0$. Alors

$$\|f - \varphi_n\|_{\infty,[a,c]} = \sup_{t \in [a,c]} |f(t) - \varphi_n(t)| \leqslant \sup_{t \in [a,b]} |f(t) - \varphi_n(t)| = \|f - \varphi_n\|_{\infty,[a,b]} \underset{n \to +\infty}{\longrightarrow} 0$$

et, de même,

$$\|f-\varphi_n\|_{\infty,[b,a]} = \sup_{t\in[b,a]} |f(t)-\varphi_n(t)| \leqslant \sup_{t\in[a,b]} |f(t)-\varphi_n(t)| = \|f-\varphi_n\|_{\infty,[a,b]} \underset{n\to+\infty}{\longrightarrow} 0.$$

Donc, par définition de l'intégrale,

$$\int_{a}^{b} \varphi_{n} \underset{n \to +\infty}{\longrightarrow} 0,$$

mais par la propriété de Chasles pour l'intégrale des fonctions en escalier, pour tout n dans \mathbb{N} ,

$$\int_{a}^{b} \varphi_{n} = \int_{a}^{c} \varphi_{n} + \int_{c}^{b} \varphi_{n} \underset{n \to +\infty}{\longrightarrow} \int_{a}^{c} f + \int_{c}^{b} f,$$

d'où l'égalité désirée.

4. Immédiat : si $\|f - \varphi_n\|_{\infty} \underset{n \to +\infty}{\longrightarrow} 0$, alors, comme pour tout z dans \mathbb{C} , $|\mathfrak{Re}(z)| \leqslant |z|$ et $|\mathfrak{Im}(z)| \leqslant |z|$ |z|, on a

$$\|\mathfrak{Re}(f) - \mathfrak{Re}(\varphi_n)\|_{\infty} \underset{n \to +\infty}{\longrightarrow} 0 \text{ et } \|\mathfrak{Im}(f) - \mathfrak{Im}(\varphi_n)\|_{\infty} \underset{n \to +\infty}{\longrightarrow} 0.$$

5. On fait de même que précédemment, simplement en se rendant compte que si $\|f - \varphi_n\| \underset{n \to +\infty}{\longrightarrow}$ 0, alors par l'inégalité triangulaire inversée, pour tout t dans [a, b],

$$||f(t)| - |\varphi_n(t)|| \leqslant |f(t) - \varphi_n(t)|,$$

donc

$$|||f| - |\varphi_n|||_{\infty} \leq ||f - \varphi_n||_{\infty} \underset{n \to +\infty}{\longrightarrow} 0.$$

QED◀

Pour les fonctions réelles, on a les deux propositions suivantes :

Propriété 16.

(i) Si
$$\forall t \in [a, b], \ f(t) \geqslant 0, \ \text{alors} \int_a^b f(t) dt \geqslant 0$$

(ii) Si
$$\forall t \in [a, b], \ f(t) \leqslant g(t), \ \text{alos} \int_a^b f(t)dt \leqslant \int_a^b g(t)dt.$$

Soient
$$f$$
 et g deux fonctions cpm à valeurs réellles sur $[a,b]$.

(i) Si $\forall t \in [a,b], \ f(t) \geqslant 0, \ \text{alors} \int_a^b f(t)dt \geqslant 0$

(ii) Si $\forall t \in [a,b], \ f(t) \leqslant g(t), \ \text{alos} \int_a^b f(t)dt \leqslant \int_a^b g(t)dt.$

(iii) Si f est continue, si $f(t) \geqslant 0$ sur $[a,b], \int_a^b f(t)dt = 0 \Rightarrow f = 0.$

▶ Démonstration.

(i) Si $\forall t \in [a, b]$, $f(t) \ge 0$, alors par la proposition 10, on dispose de (φ_n) une suite de fonctions en escalier telle que pour tout n dans \mathbb{N} , φ_n est positive sur [a, b] et

$$||f - \varphi_n||_{\infty} \xrightarrow[n \to +\infty]{} 0.$$

Alors, pour tout n dans \mathbb{N} , $\int_a^b \varphi_n \ge 0$, donc, en faisant tendre n vers $+\infty$, $\int_a^b f \ge 0$.

- (ii) On utilise la linéarité.
- (iii) (*) Soit f continue sur [a, b] et positive. On suppose que f n'est pas identiquement nulle, et on montre que f est d'intégrale non nulle (contraposée de la proposition à démontrer).
 On dispose donc de x₀ dans]a, b[tel que f(x₀) > 0 (on peut supposer x₀ dans]a, b[car si f(a) > 0 ou f(b) > 0, alors, par continuité, il existe un voisinage de a ou de b sur lequel f est strictement positive).

Là, l'idée est d'utiliser la continuité en x_0 : il va falloir choisir un bon ε : faisons un dessin! Prenons $\varepsilon = \frac{f(x_0)}{2}$. Alors, comme f est continue, on dispose de $\eta > 0$ tel que pour tout t dans [a,b],

$$|x_0 - t| \leq \eta \Rightarrow |f(x_0) - f(t)| \leq \varepsilon.$$

On peut de plus choisir η tel que $[x_0 - \eta, x_0 + \eta] \subset [a, b]$. Alors pour tout t dans $[x_0 - \eta, x_0 + \eta]$,

$$f(x_0) - f(t) \leqslant \frac{f(x_0)}{2}$$
, donc $f(t) \geqslant \frac{f(x_0)}{2} > 0$.

Donc

$$\int_{a}^{b} f(t)dt = \int_{a}^{x_{0}-\eta} f(t)dt + \int_{x_{0}-\eta}^{x_{0}+\eta} f(t)dt + \int_{x_{0}+\eta}^{b} f(t)dt$$

$$\geqslant \int_{x_{0}-\eta}^{x_{0}+\eta} f(t)dt \text{ car } f \text{ est positive sur } [a, b]$$

$$\geqslant \int_{x_{0}-\eta}^{x_{0}+\eta} \frac{f(x_{0})}{2}dt = \eta f(x_{0}) > 0,$$

donc
$$\int_a^b f(t)dt > 0$$
.

Remarque 2.3.

On peut remplacer l'hypothèse de la dernière propriété par « f de signe constant » .

Exo 2.4 _

Soit f continue de [a, b] dans \mathbb{R} . Montrer que

$$\left| \int_{a}^{b} f(t) dt \right| = \int_{a}^{b} |f(t)| dt$$

si et seulement si f est de signe constant.

Que se passe-t-il si f est complexe?

On finit ce chapitre par une inégalité parfois très utile :

Propriété 17 (Inégalité de Cauchy-Scwartz).

Soient f et g deux fonctions continues par morceaux sur [a, b], à valeurs dans \mathbb{R} . Alors

$$\left| \int_{a}^{b} f(t)g(t)dt \right| \leqslant \sqrt{\int_{a}^{b} f^{2}(t)dt \int_{a}^{b} g^{2}(t)dt}.$$

 $\left|\int_a^b f(t)g(t)dt\right|\leqslant \sqrt{\int_a^b f^2(t)dt}\int_a^b g^2(t)dt.$ Si f et g sont continues, il y a égalité si, et seulement si f et g sont colinéaires, i.e. il existe $\lambda \in \mathbb{K}$, tel que pour tout t dans [a, b], $f(t) = \lambda g(t)$.

► Démonstration. (*).

Consitérons, pour tout x dans \mathbb{R} ,

$$P(x) = \int_a^b (f(t) + xg(t))^2 dt.$$

Alors, pour tout x dans \mathbb{R} , $P(x) \ge 0$ et

$$P(x) = x^{2} \int_{a}^{b} g(t)^{2} dt + 2x \int_{a}^{b} f(t)g(t) dt + \int_{a}^{b} f(t)^{2} dt,$$

docn P est un polynôme du second degré, de signe constant, donc est de discriminant négatif ou nul, donc

$$\left(\int_{a}^{b} f(t)g(t)dt\right)^{2} \leqslant \left(\int_{a}^{b} g(t)^{2}dt\right) \left(\int_{a}^{b} f(t)^{2}dt\right),$$

d'où le résultat en passant à la racine carrée.

Si f et g sont continues et qu'il y a égalité, alors on dispose de x_0 tel que $P(x_0) = 0$, i.e.

$$\int_{3}^{b} (f(t) + x_0 g(t))^2 dt = 0.$$

Comme $(f(t) + x_0g(t))^2 \ge 0$ pour tout t dans [a, b] et que $t \mapsto (f(t) + x_0g(t))^2$ est **continue** sur [a, b], alors pour tout t dans [a, b], $(f(t) + x_0 g(t))^2 = 0$, i.e. $f(t) = -x_0 g(t)$, d'où la colinéarité désirée. (la réciproque est immédiate).

2.3 Bornes non ordonnées

On définit alors l'intégrale de b à a où a < b:

Définition 6.

Soit
$$f \in \mathscr{C}_{pm}([a,b],\mathbb{C})$$
. On définit
$$\int_b^a f(t)dt = -\int_a^b f(t)dt.$$

On a alors la relation de Chasles suivante :

Propriété 18.

Soit
$$I$$
 un intervalle, $f \in \mathscr{C}_{pm}(I,\mathbb{C})$. $a,b,c \in I$. Alors
$$\int_a^b f(t)dt + \int_b^c f(t)dt = \int_a^c f(t)dt.$$

► Démonstration.

Pour la preuve, il suffit de remettre les bornes dans l'ordre (tous les cas sont à distinguer). QED◀

Remarque 2.4.

ATTENTION!!!!!!! L'inégalité

$$\left| \int_{a}^{b} f(t) dt \right| \leqslant \int_{a}^{b} |f(t)| dt$$

n'est vraie **que** si $a \le b$ ou f = 0.

Intégrales et primitives

Soit $F \in \mathcal{C}([a,b],\mathbb{C})$. Une primitive de f est une fonction F, dérivable sur [a,b], telle que $\forall x \in [a,b], F'(x) = f(x)$.

Propriété 19 (rappel).

- Deux primitives d'une même fonction diffèrent d'une constante.
- Deux primitives d'une même fonction égales en un point sont égales.

Propriété 20.

Soit I un intervalle, $a \in I$, $f \in \mathcal{C}(I, \mathbb{C})$. Alors

- (i) La fonction $F: x \mapsto \int_a^x f(t)dt$ est l'unique primitive de f s'annulant en a.

 (ii) L'unique primitive de f prenant la valeur A en a est $x \mapsto A + \int_a^x f(t)dt$.

 (iii) Soit F une primitive de f. Alors

$$\int_{a}^{b} f(t)dt = F(b) - F(a).$$

► Démonstration.

(i) Soit $x \in I$. On va montrer que $\frac{F(x+h) - F(x)}{h} \xrightarrow[h \to 0]{} f(x)$. Soit $h \in \mathbb{R}^*$ tel que $x + h \in I$.

$$F(x+h) - F(x) = \int_{a}^{x+h} f - \int_{a}^{x} f = \int_{x}^{x+h} f.$$

Soit $\varepsilon > 0$. f est continue en x donc on dispose de $\eta > 0$ tel que pour tout y dans I, $|y-x| \leqslant \eta \Rightarrow |f(y)-f(x)| \leqslant \varepsilon.$

Soit *h* tel que $|h| \leq \eta$ et $x + h \in I$. Alors

$$\left| \frac{F(x+h) - F(x)}{h} - f(x) \right| = \left| \frac{1}{h} \int_{x}^{x+h} f(t) dt - f(x) \right|$$
$$= \left| \frac{1}{h} \int_{x}^{x+h} f(t) dt - \frac{1}{h} \int_{x}^{x+h} f(x) dt \right|$$

(méthode importante!)

$$=\frac{1}{|h|}\left|\int_{x}^{x+h}(f(t)-f(x)dt\right|.$$

• si h > 0,

$$\left|\frac{F(x+h)-F(x)}{h}-f(x)\right| \leqslant \frac{1}{|h|} \int_{x}^{x+h} |(f(t)-f(x))| dt \leqslant \frac{1}{h} \int_{x}^{x+h} \varepsilon dt = \varepsilon.$$

• $\sin h < 0$,

$$\left|\frac{F(x+h)-F(x)}{h}-f(x)\right|\leqslant -\frac{1}{|h|}\int_{x}^{x+h}|(f(t)-f(x))|\,dt\leqslant \frac{1}{h}\int_{x}^{x+h}\varepsilon dt=\varepsilon.$$

Donc
$$\frac{F(x+h)-F(x)}{h}-f(x)\underset{h\to 0}{\longrightarrow} 0$$
, donc $\frac{F(x+h)-F(x)}{h}\underset{h\to 0}{\longrightarrow} f(x)$.

De plus F(a) = 0.

L'unicité vient de la proposition précédente.

- (ii) Si $G: x \mapsto \int_a^x f + A = F + A$, alors G est dérivable et G' = F' = f, et G(a) = A. L'unicité vient de la proposition précédente.
- (iii) Si H est une primitive de F, par 2, $H: x \mapsto H(a) + \int_a^x f$, donc

$$H(b) - H(a) = H(a) + \int_a^b f - \left(H(a) + \int_a^a f\right) = \int_a^b f.$$

QED◀

Remarque 2.5.

QUe se passe-t-il avec une fonction \mathscr{C}_{pm} ?

Exo 2.5 _____

Établir la dérivabilité, puis calculer la dérivée de la fonction

$$x \mapsto \int_{e^{-x}}^{e^x} \sqrt{1 + \ln^2(t)} dt.$$

Remarque 2.6.

Attention! On ne peut pas passer directement à la limite n'importe comment dans une intégrale.

Ainsi, si l'on considère $f_n(x) = \sin(x) \cos^n(x)$, on peut calculer la limite de l'intégrale et l'intégrale de la limite.

Méthode 1.

Petit récapitulatif des différentes méthodes de calcul d'intégrales :

- (i) La primitivation directe, lorsqu'on reconnaît f'(u(x))u'(x).
- (ii) L'intégration par parties : soit en écrivant $f(t) = 1 \times f(t)$ (par exemple pour In), soit en remarquant que l'un des membres du produit est stable par dérivation/intégration (par exemple, $t^k e^t$)
- (iii) Le changement de variables
- (iv) Pour les intégrales de fractions rationnelles : la décomposition en éléments simples
- (v) Pour les intégrales de fractions rationnelles en sinus et cosinus : soit on repère un changement de variables $\sin/\cos/\tan$ qui parait naturel, soit, si on ne voit pas, le changement de variables $u = \tan(t/2)$.
- (vi) Pour les intégrales de fractions rationnelles en ch et sh, soit on essaie de regarder le changement de variables qui conviendrait à la fraction rationnelle trigonométrique correspondante, soit on effectue le changement de variables $u = e^t$.

RÉVISER LES DIFFÉRENTS CHAPITRES FAISANT INTERVENIR DES INTÉGRALES

3 Formules de Taylor

On va enfin démontrer proprement les trois formules de Taylor.

3.1 Formule de Taylor avec reste intégrale

Théroème 21.

Soit f une fonction de classe \mathscr{C}^{n+1} sur $I\subset\mathbb{R}$, à valeurs dans \mathbb{K} , $a\in I$. Alors

$$\forall x \in I, \ f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \int_{a}^{x} \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt.$$

Exemple 3.1.

Regardons la formule pour n = 0, n = 1.

• n = 0:

$$\frac{f(a)}{0!}(x-a)^0 + \int_a^x \frac{(x-t)^0}{0!} f'(t)dt = f(a) + \int_a^x f'(t)dt$$
$$= f(a) + f(x) - f(a) = f(x).$$

• n = 1:

$$\frac{f(a)}{0!}(x-a)^0 + \frac{f'(a)}{1!}(x-a) + \int_a^x \frac{(x-t)}{1!}f'(t)dt$$

$$= f(a) + f'(a)(x-a) + [f'(t)(x-t)]_a^x - \int_a^x f'(t) \times (-1)dt$$

$$= f(a) + f'(a)(x-a) - f'(a)(x-a) + f(x) - f(a) = f(x).$$

► Démonstration. (*).

Démontrons, par récurrence sur $n \in \mathbb{N}$, la propriété

$$(\mathscr{P}_n) \text{ Si } f \in \mathscr{C}^{n+1}(I, \mathbb{K}), \ \forall x \in I, \ f(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k + \int_a^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt.$$

• Initialisation. Supposons $f \in \mathscr{C}^1(I, \mathbb{K})$. Alors

$$f(x) = f(a) + \int_{x}^{a} f'(t)dt = \frac{f(a)}{0!}(x-a)^{0} + \int_{a}^{x} \frac{(x-t)^{0}}{0!} f'(t)dt,$$

d'où l'initialisation.

• **Hérédité.** Soit $n \in \mathbb{N}$ tel que \mathscr{P}_n est vraie.

Supposons f dans $\mathscr{C}^{n+2}(I,\mathbb{K})$. Soit $x \in I$. Par hypothèse de récurrence, comme $f \in \mathscr{C}^{n+1}(I,\mathbb{K})$,

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \int_a^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt.$$

Effectuons une intégration par parties, avec $u(t) = f^{(n+1)}(t)$, donc $u'(t) = f^{(n+2)}(t)$, et $v'(t) = f^{(n+2)}(t)$

$$\frac{(x-t)^n}{n!}$$
, donc $v(t) = -\frac{(x-t)^{n+1}}{(n+1)!}$. Alors

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k} + \left[f^{(n+1)}(t) - \frac{(x-t)^{n+1}}{(n+1)!} \times \right]_{a}^{x} + \int_{a}^{x} \frac{(x-t)^{n+1}}{(n+1)!} f^{(n+2)}(t) dt$$

$$= \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k} + f^{(n+1)}(a) \frac{(x-a)^{n+1}}{(n+1)!} + \int_{a}^{x} \frac{(x-t)^{n+1}}{(n+1)!} f^{(n+2)}(t) dt$$

$$= \sum_{k=0}^{n+1} \frac{f^{(k)}(a)}{k!} (x-a)^{k} + \int_{a}^{x} \frac{(x-t)^{n+1}}{(n+1)!} f^{(n+2)}(t) dt,$$

d'où l'hérédité, et le résultat par le principe de récurrence.

QED◀

Cette formule est déjà utile en soi, mais son application l'est encore plus!

3.2 Inégalités de Taylor-Lagrange

Théroème 22.

Soit I un intervalle de \mathbb{K} , soit f une fonction de classe \mathscr{C}^{n+1} sur O et $a \in I$. Alors si $|f^{(n+1)}|$ est borné par M > 0 sur I,

$$\forall x \in I, \ \left| f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k \right| \leqslant M \frac{|x-a|^{n+1}}{(n+1)!}.$$

▶ Démonstration.

Soit $x \in I$. Par la formule de Taylor avec reste intégrale entre a et x à l'ordre n,

$$\underbrace{f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^{k}}_{g(x)} = \int_{a}^{x} \frac{f^{(n+1)}(t)}{(n)!} (x - t)^{n} dt.$$

Si $x \geqslant a$,

$$|g(x)| \le \int_{a}^{x} \frac{|f^{(n+1)}(a)| \cdot (x-t)^{n}}{n!} dt$$

$$\le \int_{a}^{x} \frac{M(x-t)^{n}}{n!} dt$$

$$= \frac{M}{n!} \int_{a}^{x} (x-t)^{n} dt$$

$$= \frac{M}{n!} \left[-\frac{(x-t)^{n+1}}{n+1} \right]_{a}^{x}$$

$$= \frac{M}{n!} \frac{(x-a)^{n+1}}{n+1} = \frac{M|x-a|^{n+1}}{(n+1)!}.$$

Si $x \leq a$,

$$|g(x)| \le -\int_{a}^{x} \frac{|f^{(n+1)}(a)| \cdot (x-t)^{n}}{n!} dt$$

$$\le \int_{x}^{a} \frac{|f^{(n+1)}(a)| \cdot |x-t|^{n}}{n!} dt$$

$$\le \int_{x}^{a} \frac{M(t-x)^{n}}{n!} dt$$

$$= \frac{M}{n!} \int_{x}^{a} (t-x)^{n} dt$$

$$= \frac{M}{n!} \left[\frac{(t-x)^{n+1}}{n+1} \right]_{x}^{a}$$

$$= \frac{M}{n!} \frac{(a-x)^{n+1}}{n+1} = \frac{M|x-a|^{n+1}}{(n+1)!}.$$

D'où le résultat désiré!

QED∢

Remarque 3.2.

Attention aux majorations avec les intégrales. Si a < b, si $f(t) \le M$ pour tout t et si $g \ge 0$, alors

$$\int_a^b f(t)g(t)dt \leqslant \int_a^b Mg(t)dt.$$

De plus, attention (bis), ce n'est pas parce que $f(t) \leqslant M$ que pour φ quelconque,

$$\left| \int_{a}^{b} f(t) \varphi(t) dt \right| \leqslant \left| \int_{a}^{b} M \varphi(t) dt \right|$$

(prendre φ constante égale à -1).

3.3 Applications des formules de Taylor

1. Démontrons que $\lim_{n \to +\infty} \sum_{k=0}^{n} \frac{x^k}{k!} = e^x$.

Soit $x \in \mathbb{R}$. ALors pour tout t dans [0, x], $|e^t| \leq \max(1, e^x)$. Donc, comme \exp est \mathscr{C}^{∞} et que pour tout n dans \mathbb{N} , $\exp^{(n)}(0) = 1$, par l'inégalité de Taylor Lagrange à l'ordre n entre 0 et x,

$$\left| e^{x} - \sum_{k=0}^{n} \frac{x^{k}}{k!} \right| \leq \frac{\max(1, e^{x})|x|^{n+1}}{(n+1)!} \xrightarrow[n \to +\infty]{} 0,$$

la limite venant du fait que la série de terme général $\frac{|x|^{n+1}}{(n+1)!}$ converge par la règle de D'Alembert (et donc le terme général tend vers 0).

2. Établissement d'inégalités classiques : par exemple, montrer que $\forall x > 0$, $\ln(1+x) \geqslant x - \frac{x^2}{2}$. Cette fois, les inégalités de Taylor-Lagrange ne sont pas les plus utiles. En revanche, par la formule de Taylor avec reste intégrale, si $f: x \mapsto \ln(1+x)$, $f^{(3)}: x \mapsto \frac{2}{(1+x)^2}$, donc

$$\ln(1+x) = f(0) + f'(0) + \frac{f''(0)}{2} + \int_0^x \frac{f^{(3)}(t)(x-t)^2}{2!} dt$$
$$= 0 + x - \frac{x^2}{2} + \int_0^x \frac{(x-t)^2}{(1+t)^3} dt \geqslant x - \frac{x^2}{2},$$

car l'intégrande de la dernière intégrale est positif!

3. Inégalités de Kolmogorov : Soit $f \in \mathscr{C}^2(\mathbb{R}, \mathbb{R})$. On suppose qu'il existe M_0 et M_2 deux réels strictement positifs tels que pour tout $x \in \mathbb{R}$, $|f(x)| \leq M_0$ et $|f''(x)| \leq M_2$. Montrer que f' est bornée sur \mathbb{R} et que pour tout x dans \mathbb{R} , $|f'(x)| \leq 2\sqrt{M_0M_2}$.

Soit $x \in \mathbb{R}$ et h > 0. Par l'inégalité de Taylor-Lagrange entre x et x + h,

$$|f(x+h)-f(x)-hf'(x)| \leq \frac{M_2h^2}{2}.$$

Deux manières d'arriver à l'inégalité voulue :

• En revenant à un encadrement :

$$\begin{split} \text{D\'ej\`a}, \ -\frac{M_2h^2}{2} &\leqslant f(x+h) - f(x) - hf'(x) \leqslant \frac{M_2h^2}{2}, \\ \text{Donc}: \ -\frac{M_2h^2}{2} &\leqslant f(x) + hf'(x) - f(x+h) \leqslant \frac{M_2h^2}{2} \\ \text{C\'est-\`a-dire que}: \ -\frac{M_2h^2}{2} - f(x) + f(x+h) \leqslant hf'(x) \leqslant \frac{M_2h^2}{2} - f(x) + f(x+h). \end{split}$$

Mais
$$-M_0 \leqslant -f(x) \leqslant M_0, -M_2 \leqslant -f''(x) \leqslant M_2$$
, et $-M_0 \leqslant f(x+h) \leqslant M_0$, donc

$$-\frac{M_2h^2}{2} - 2M_0 \leqslant hf'(x) \le \frac{M_2h^2}{2} + 2M_0,$$

donc, en divisant par h, $|f'(x)| \leq \frac{M_2h}{2} + \frac{2M_0}{h}$.

· directement avec l'inégalité triangulaire : on écrit que

$$|f'(x)| = \frac{1}{h} |hf'(x)|$$

$$= \frac{1}{h} |hf'(x) - f(x+h) + f(x) + f(x+h) - f(x)|$$

$$\leq \frac{1}{h} |hf'(x) - f(x+h) + f(x)| + \frac{1}{h} |f(x+h) - f(x)|$$

$$\leq \frac{1}{h} |-f(x) - hf'(x) + f(x+h)| + \frac{1}{h} (|f(x+h)| + |f(x)|)$$

$$\leq \frac{1}{h} \frac{M_2 h^2}{2} + \frac{1}{h} 2M_0 = \frac{M_2 h}{2} + \frac{2M_0}{h}.$$

Ensuite, comme l'inégalité est vraie pour tout h, est est vraie pour h qui minimise la fonction $\varphi: h \mapsto \frac{M_2h}{2} + \frac{2M_0}{h}$. Or $\varphi': h \mapsto \frac{M_2}{2} + \frac{2M_0}{h^2}$, nulle en $h_0 = 2\sqrt{\frac{M_0}{M_2}}$, négative avant, positive

ensuite. Donc φ atteint son minimum en h_0 , et donc

$$|f'(x)| \le \varphi(h_0) = \frac{M_2}{2} 2\sqrt{\frac{M_0}{M_2}} + \frac{2M_0}{2\sqrt{\frac{M_0}{M_2}}} = 2\sqrt{M_0M_2}.$$

D'où le résultat!

Remarque : en fait on peut avoir une borne en $\sqrt{2M_0M_2}$ mais c'est plus compliqué : cf. TD!

3.4 Formule de Taylor-Young

Théroème 23 (Formule de Taylor-Young).

Soit f une fonction de classe \mathscr{C}^n sur I et $a \in I$. Alors

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k} + o((x-a)^{k}).$$

Remarque 3.3.

- L'hypothèse est plus faible que pour les autres formules de Taylor (\mathscr{C}^n au lieu de \mathscr{C}^{n+1}).
- · Mais le résultat lui-même est plus faible car il est local seulement, et pas global!

► Démonstration. (*).

Quitte à considérer une translation, on va supposer a = 0. On montre par récurrence sur n:

$$(\mathscr{P}_n) \ \forall f \in \mathscr{C}^n(\mathbf{I}, \mathbb{K}), \ f(x) = \sum_{k=0}^n \frac{f^{(k)}(0)}{k!} x^k + o(x^n).$$

- Initialisation. si $f \in \mathscr{C}^0(I, \mathbb{C})$, alors f(x) = f(0) + f(x) f(0). Mais, comme $f(x) f(0) \xrightarrow[x \to 0]{} 0$, f(x) f(0) = o(1), et l'initalisation est prouvée!
- Hérédité. Soit n∈ N tel que P_n est vraie. Démontrons que P_{n+1} est vraie.
 Soit f∈ Cⁿ⁺¹(I, K). Alors f'∈ Cⁿ(I, K). Donc, par hypothèse de récurrence,

$$f'(x) = \sum_{k=0}^{n} \frac{(f')^{(k)}(0)}{k!} x^{k} + o(x^{n}),$$

c'est-à-dire que

$$f'(x) = \sum_{k=0}^{n} \frac{f^{(k+1)}(0)}{k!} x^k + o(x^n).$$

On veut intégrer la relation suivante (mais on n'a pas démontré que l'on pouvait intégrer les o!) : on dispose d'une fonction φ telle que $\varphi(x) \underset{x \to 0}{\longrightarrow} 0$ telle que pour tout x dans I

$$f'(x) = \sum_{k=0}^{n} \frac{f^{(k+1)}(0)}{k!} x^{k} + x^{n} \varphi(x).$$

On intègre entre 0 et x (attention à bien changer la variable d'intégration).

$$\int_0^x f(t)dt = \int_0^x \sum_{k=0}^n \frac{f^{(k+1)}(0)}{k!} t^k + t^n \varphi(t) dt,$$

c'est-à-dire que

$$f(x) - f(0) = \sum_{k=0}^{n} \frac{f^{(k+1)}(0)}{(k+1)!} x^{k+1} + \int_{0}^{x} t^{n} \varphi(t) dt,$$

c'est-à-dire, après changement d'indice et ajout de f(0) à la somme,

$$f(x) = \sum_{k=0}^{n+1} \frac{f^{(k)}(0)}{(k)!} x^k + \int_0^x t^n \varphi(t) dt.$$

Il nous reste à démontrer que

$$\int_0^x t^n \varphi(t) dt \underset{x \to 0}{=} o(x^n),$$

i.e. que
$$\frac{\int_0^x t^n \varphi(t) dt}{x^n} \underset{n \to +\infty}{\longrightarrow} 0$$
.

Soit $\varepsilon > 0$. Soit $\eta > 0$ tel que pour tout t de I tel que $|t| \leqslant \eta$, $|\varphi(t)| \leqslant \varepsilon$. Soit alors x dans I, tel que $|x| \leqslant |\eta|$. Alors, si x > 0,

$$\left| \int_0^x t^n \varphi(t) dt \right| \leqslant \int_0^x |t|^n |\varphi(t)| dt \leqslant \varepsilon \int_0^x t^n dt = \varepsilon \frac{x^{n+1}}{n+1} \leqslant \varepsilon |x|^{n+1},$$

et, si x < 0, on montre que

$$\left| \int_0^x t^n \varphi(t) dt \right| \leqslant \varepsilon \frac{|x|^{n+1}}{n+1} \leqslant \varepsilon |x|^{n+1},$$

donc
$$\frac{\int_0^x t^n \varphi(t) dt}{x^n} \xrightarrow[n \to +\infty]{} 0$$
, d'où l'hérédité, et le résultat désiré!

4 Calcul approché d'intégrales

On va voir dans cette section différentes manières d'approcher une fonction par des rectangles ou par des tapèzes.

Définition 8.

Soit f une fonction continue sur [a,b], $\{x_i\}_{0\leqslant i\leqslant n}$ une subdivision de [a,b], $(c_i)_{0\leqslant i\leqslant n-1}$ une suite de réels telle que pour tout i de [0,n-1], $c_i\in [x_i,x_{i+1}]$. La somme de Riemann associée à f, à $\{x_i\}_{0\leqslant i\leqslant n}$ et à $(c_i)_{0\leqslant i\leqslant n-1}$ est la somme

$$R(f) = \sum_{k=0}^{n-1} (x_{k+1} - x_k) f(c_k).$$

Propriété 24 (HP).

Soit f une fonction continue sur [a,b]. Alors pour tout $\varepsilon>0$, il existe $\eta>0$ tel que pour toute subdivision de pas $\leqslant \eta$, toute somme de Riemann R(f) associée à f et à cette subdivision vérifie

$$\left| \int_a^b f(t)dt - R(f) \right| \leqslant \varepsilon.$$

Le seul théorème vraiment au programme est celui de la méthode des rectanges.

Définition 9.

Soit f une fonction continue sur [a, b]. Alors la méthode des rectangles à gauche (resp. à droite) consiste à calculer la somme de Riemann associée à f, à la subdivision régulière $\{a+k\frac{b-a}{n}\}_{0\leqslant k\leqslant n}$, et avec $c_k=a+k\frac{b-a}{n}$ pour $k\in \llbracket 0,n-1 \rrbracket$ (resp. $k\in \llbracket 1,n \rrbracket$). Ainsi, les sommes considérées sont

$$\frac{b-a}{n}\sum_{k=0}^{n-1}f\left(a+k\frac{b-a}{n}\right) \text{ et } \frac{b-a}{n}\sum_{k=1}^{n}f\left(a+k\frac{b-a}{n}\right)$$

Propriété 25.

1. Soit f lipschitzienne sur [a, b] de constante de Lipschitz K. Alors

$$\frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a+k\frac{b-a}{n}\right) \xrightarrow[n \to +\infty]{} \int_{a}^{b} f(t)dt$$
et $\frac{b-a}{n} \sum_{k=1}^{n} f\left(a+k\frac{b-a}{n}\right) \xrightarrow[n \to +\infty]{} \int_{a}^{b} f(t)dt$

Plus précisément.

$$\left| \int_a^b f(t)dt - \frac{b-a}{n} \sum_{k=0}^n f\left(a + k \frac{b-a}{n}\right) \right| \leqslant \frac{K(b-a)^2}{2N}.$$

2. (généralisation) Soit $f \in \mathscr{C}_{pm}([a,b],\mathbb{K})$. Alors

$$\frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a+k\frac{b-a}{n}\right) \underset{n \to +\infty}{\longrightarrow} \int_{a}^{b} f(t)dt$$

$$\text{et } \frac{b-a}{n} \sum_{k=1}^{n} f\left(a+k\frac{b-a}{n}\right) \underset{n \to +\infty}{\longrightarrow} \int_{a}^{b} f(t)dt$$

► Démonstration.

1. Soit $n \in \mathbb{N}$. Posons, pour tout k dans [0, n], $x_k = a + k \frac{b-a}{n}$. $(\{x_0, \dots, x_n\})$ est une subdivision

régulière de [a, b]). Alors

$$\int_{a}^{b} f(t)dt - \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a+k\frac{b-a}{n}\right)$$

$$= \int_{a}^{b} f(t)dt - \sum_{k=0}^{n-1} (x_{k+1} - x_k) f(x_k)$$

$$= \sum_{k=0}^{n-1} \int_{x_k}^{x_{k+1}} f(t)dt - \sum_{k=0}^{n-1} (x_{k+1} - x_k) f(x_k)$$

$$= \sum_{k=0}^{n-1} \left(\int_{x_k}^{x_{k+1}} f(t)dt - (x_{k+1} - x_k) f(x_k) \right) = \sum_{k=0}^{n-1} \int_{x_k}^{x_{k+1}} (f(t) - f(x_k)) dt.$$

Donc

$$\left| \int_{a}^{b} f(t)dt - \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a + k \frac{b-a}{n}\right) \right|$$

$$= \left| \sum_{k=0}^{n-1} \int_{x_{k}}^{x_{k+1}} (f(t) - f(x_{k})) dt \right|$$

$$\leqslant \sum_{k=0}^{n-1} \left| \int_{x_{k}}^{x_{k+1}} (f(t) - f(x_{k})) dt \right|$$

$$\leqslant \sum_{k=0}^{n-1} \int_{x_{k}}^{x_{k+1}} |f(t) - f(x_{k})| dt$$

$$\leqslant \sum_{k=0}^{n-1} \left| \frac{(t-x_{k})^{2}}{2} \right|_{x_{k}}^{x_{k+1}}$$

$$= \sum_{k=0}^{n-1} K \frac{(x_{k+1} - x_{k})^{2}}{2n^{2}}$$

$$= nK \frac{(b-a)^{2}}{2n^{2}} = \frac{K(b-a)^{2}}{2n} \xrightarrow{n \to +\infty} 0,$$

d'où le résultat désiré! On fait de même pour les autres bornes (de 1 à n).

2. On ne traite que le cas $f \in \mathscr{C}^1([a,b],\mathbb{K})$. Si $f \in \mathscr{C}^1([a,b],\mathbb{K})$, alors f' est continue sur le

segment [a, b] donc est bornée et atteint ses bornes sur ce segment. Elle y est donc lipschitzienne!

Exemple 4.1.

Déterminer
$$\lim_{n \to +\infty} \sum_{k=0}^{n-1} \ln \left(1 + 3 \frac{k}{n} \right)$$
.

Méthode : toujours se ramener à une intégrale de 0 à 1, i.e. à $\frac{1}{n}\sum_{k=0}^{n-1}f\left(\frac{k}{n}\right)$.

Ici, si on prend $f: t \mapsto \ln(1+3t)$, alors f est continue par morceaux, donc par théorème de convergence des sommes de Riemann,

$$\frac{1}{n}\sum_{k=0}^{n-1}\ln\left(1+3\frac{k}{n}\right) = \frac{1}{n}\sum_{k=0}^{n-1}f\left(\frac{k}{n}\right)\underset{n\to+\infty}{\longrightarrow}\int_{0}^{1}f(t)dt.$$

Mais

$$\int_0^1 f(t)dt = \int_0^1 \ln(1+3t)dt$$

$$= \frac{1}{3} [(1+3t)\ln(1+3t) - (1+3t)]_0^1$$

$$= \frac{1}{3} (4\ln(4) - 4 - \ln(1) + 1) = \frac{8}{3}\ln(2) - 1.$$