TD 5 Applications, relations

1 Exercices corrigés en classe

Exercice 1. *Quelques exemples.* ●○○

- **1.** Déterminer l'image de]-1,3] et l'image réciproque de [-1,2] par l'application $x\mapsto \sqrt{x^2+x+1}$. On ne demande pas de justification.
- **2.** Soit $f = \sin$, $I = \left[\frac{1}{2}, \frac{3}{2}\right]$. Déterminer $f(f^{-1}(I))$.
- **3.** Soit g l'application exponentielle de $\mathbb C$ dans $\mathbb C$. Déterminer $g^{-1}\left(g\left(\left\{0,i\frac{\pi}{2}\right\}\right)\right)$.

Exercice 2. Images, images réciproques. $\bullet \bullet \bigcirc$ Soient E et F deux ensembles, $f: E \to F$ une application, A,A' des parties de E,B,B' des parties de F. Comparer les ensembles suivants (y a-t-il inclusion ? inclusion réciproque ? égalité ?) Dans les cas où il n'y a pas, en général, égalité, exhiber un contre-exemple.

- **1.** $f^{-1}(f(A))$ et A.
- **2.** $f(f^{-1}(B))$ et B.
- **3.** $f(A \cap A')$ et $f(A) \cap f(A')$.
- **4.** $f(A \cup A')$ et $f(A) \cup f(A')$.
- **5.** $f^{-1}(B \cap B')$ et $f^{-1}(B) \cap f^{-1}(B')$.
- **6.** $f^{-1}(B \cup B')$ et $f^{-1}(B) \cup f^{-1}(B')$.

Exercice 3. $\bullet \bullet \bullet$ Soient *E* et *F* deux ensembles, $f : E \to F$ une application.

- **1.** Déterminer une condition nécessaire et suffisante sur f pour que $\forall A \subset E$, $f^{-1}(f(A)) = A$.
- **2.** Déterminer une condition nécessaire et suffisante sur f pour que $\forall B \subset F$, $f(f^{-1}(B)) = B$.
- **3.** Déterminer une condition nécessaire et suffisante sur f pour que $\forall (A, A') \in \mathcal{P}(E)^2$, $f(A \cap A') = f(A) \cap f(A')$.

Exercice 4. $\bullet \bullet \bigcirc$ Soient E un ensemble et $f: E \to E$ telle que $f \circ f \circ f = f$. Montrer que f est injective si, et seulement si, f est surjective.

Exercice 5. ••• On veut montrer qu'il n'existe pas de surjection d'un ensemble dans l'ensemble de ses parties.

- 1. Pourquoi est-ce évident dans le cas d'un ensemble fini?
- **2.** Soit E un ensemble, $f: E \to \mathcal{P}(E)$. On pose

$$A = \{x \in E, x \notin f(x)\}.$$

Montrer que A n'a pas d'antécédent par f et conclure.

Exercice 6. $\bullet \bigcirc \bigcirc$ Soit \mathcal{R} , la relation binaire définie sur \mathbb{R} par $x\mathcal{R}y$ si et seulement si $x.e^{-y}=y.e^{-x}$. Montrer que \mathcal{R} est bien une relation d'équivalence sur \mathbb{R} et préciser, selon les valeurs de x, le nombre d'éléments de la classe d'équivalence de x.

Exercice 7. $\bullet \bullet \bigcirc$ On considère $(\mathcal{P}(\mathbb{R}), \subset)$. Soit

$$E = \left\{ \left[-\frac{1}{n}, n \right], n \in \mathbb{N}^* \right\}.$$

L'ensemble E possède-t-il un plus grand élément? Possède-t-il un majorant?

Stratégie Les exercices corrigés en classe sont fondamentaux (je ne le répèterai jamais assez). Dans ce TD, **ne sautez pas de questions sans les avoir rédigées**. Ensuite, il faut faire

- des exercices sur les applications : faire par exemple l'exercice 9. Ensuite faire l'exercice 11 pour manipuler des images de fonctions. Enfin, faire le 13, **fondamental**.
- un peu d'exercices sur les relations : l'exercice 20 (1.) et le début du problème 25.
- pour aller plus loin, des exercices très intéressants comme le 14, le 15 ou le 25

2 Applications

Exercice 8. Un exemple arithmétique. $\bullet \bullet \bigcirc$ Soit φ l'application de $\mathbb N$ dans $\mathbb N$ telle que pour tout n dans $\mathbb N$, $\varphi(n)$ est le reste de la division euclidienne de n par 3.

- **1.** La fonction φ est-elle injective?
- **2.** Déterminer $\varphi^{-1}(\{1\})$.

Soit ψ l'application de \mathbb{N}^2 dans \mathbb{N} définie par

$$\forall (n, m) \in \mathbb{N}^2, \ \psi(n, m) = 2^n 3^m.$$

- **3.** Démontrer que ψ est injective.
- **4.** ψ est-elle surjective?

Exercice 9. Deux exemples complexes. ••○

1. Soit $\theta \in \mathbb{R}$, et φ_{θ} l'application de \mathbb{N} dans \mathbb{C} définie par

$$\forall n \in \mathbb{N}, \ \varphi_{\theta}(n) = (e^{i\theta})^n.$$

Démontrer que φ_{θ} n'est pas injective si, et seulement si $\frac{\theta}{2\pi} \in \mathbb{Q}$.

2. Soient P le demi-plan complexe $\{x \in \mathbb{C}, \Im \mathfrak{m}(z) > 0\}$ et D le disque unité ouvert $\{z \in \mathbb{C}, |z| < 1\}$. Soit φ l'application de $\mathbb{C}\setminus\{-i\}$ dans \mathbb{C} définie par

$$\forall z \in \mathbb{C} \setminus \{-i\}, \ \varphi(z) = \frac{z-i}{z+i}.$$

Montrer que φ réalise une bijection de P sur D.

Exercice 10. Applications linéaires. •••

1. Les applications suivantes sont-elles injectives? surjectives? bijectives?

(a)
$$f: \begin{cases} \mathbb{R}^2 \to \mathbb{R}^2 \\ (x,y) \mapsto (2x+y,y-x) \end{cases}$$
 (c) $f: \begin{cases} \mathbb{R}^2 \to \mathbb{R}^3 \\ (x,y) \mapsto (x+2y,y-x,x+y) \end{cases}$ (b) $f: \begin{cases} \mathbb{R}^2 \to \mathbb{R} \\ (x,y) \mapsto x+y \end{cases}$ (d) $f: \begin{cases} \mathbb{R}^3 \to \mathbb{R}^3 \\ (x,y,z) \mapsto (x+y+z,y-x+2z,2y+3z) \end{cases}$

Exercice 11. $\bullet \bullet \bigcirc$ Soient E et F deux ensembles, $f: E \rightarrow F$ une application, A une partie de E et B une partie de F. Montrer, en s'inspirant de la preuve du cours, que

$$f(f^{-1}(f(A))) = f(A).$$

et que

$$f^{-1}(f(f^{-1}(B))) = f^{-1}(B).$$

Exercice 12. $\bullet \bullet \bigcirc$ Soient $f: E \to F$ et $g: F \to G$. Montrer que :

- **1.** Si $g \circ f$ est injective et f est surjective alors g est injective.
- **2.** Si $g \circ f$ est surjective et g est injective alors f est surjective.

Exercice 13. $\bullet \bullet \bigcirc$ Soit $f: E \to E$ une application telle que $f \circ f = f$. Montrer que si f est injective ou surjective, alors $f = Id_E$.

Exercice 14. $\bullet \bullet \bigcirc$ Soit *E* un ensemble, *A* et *B* deux parties de *E*.

- **1.** À quelle CNS sur A l'application $\varphi_A: \left| \begin{array}{c} \mathcal{P}(E) \to \mathcal{P}(E) \\ X \mapsto X \cap A \end{array} \right|$ est-elle injective? Surjective? **2.** À quelle CNS sur A l'application $\psi_A: \left| \begin{array}{c} \mathcal{P}(E) \to \mathcal{P}(E) \\ X \mapsto X \cup A \end{array} \right|$ est-elle injective? Surjective?
- **3.** À quelle CNS sur A et B l'application $\theta_{A,B}: \left| \begin{array}{c} \mathcal{P}(E) \to \mathcal{P}(E) \times \mathcal{P}(E) \\ X \mapsto (X \cap A, X \cap B) \end{array} \right|$ est-elle injective? Surjective?

Exercice 15. $\bullet \bullet \bigcirc$ Soit *E* un ensemble non vide et *a* un élément de *E*.

On définit des ensembles F, M et N et une application g de la façon suivante :

- $F = E \setminus \{a\}$;
- $M = \{X \in \mathcal{P}(E) \mid a \in X\}$;
- $N = \mathcal{P}(F)$;
- $g: \begin{vmatrix} M \to \mathcal{P}(E) \\ X \mapsto X \cap F \end{vmatrix}$
- 1. Montrer que M et N sont non vides et constituent une partition de $\mathcal{P}(E)$ (c'est-à-dire que $M \cap N = \emptyset$ et que $M \cup N = \mathcal{P}(E)$).
- **2.** Montrer que $Im(g) \subset N$.
- **3.** Démontrer que g est une bijection de M sur N et donner une expression de sa bijection réciproque.
- **4.** Soit h l'application de $\mathcal{P}(E)$ dans $\mathcal{P}(E)$ définie comme suit : Pour tout $X \in \mathcal{P}(E)$, h(X) = g(X) si $X \in M$ et $h(X) = g^{-1}(X)$ si $X \in N$. Montrer que h est une bijection de $\mathcal{P}(E)$ sur $\mathcal{P}(E)$.
- 5. En déduire que, dans tout ensemble fini non vide, il y a autant de parties ayant un nombre pair d'éléments que de parties ayant un nombre impair d'éléments.

Exercice 16. $\bullet \bullet \bigcirc$ Déterminer les applications $f : \mathbb{R} \to \mathbb{R}$ croissantes telles que $f \circ f = \mathrm{Id}_{\mathbb{R}}$.

Exercice 17. $\bullet \bullet \bigcirc$ Déterminer toutes les injections $f: \mathbb{N} \to \mathbb{N}$ telles que pour tout entier naturel $f(n) \leqslant n$.

Exercice 18. Sur les applications de \mathbb{N} dans \mathbb{N} .

- 1. Existe-t-il une application de \mathbb{N} dans \mathbb{N} qui soit strictement décroissante?
- 2. Existe-t-il une application injective de N dans N qui ne soit pas croissante?
- **3.** ($\bullet \bullet \bullet$) Que dire de la limite, lorsque n tend vers $+\infty$, de f(n), où f est une application injective de \mathbb{N} dans \mathbb{N} .

3 Relations

Exercice 19. $\bullet \bigcirc \bigcirc$ On considère dans le plan \mathbb{R}^2 rapporté à une origine O la relation binaire définie par $M\mathcal{R}N$ si et seulement si O, M et N sont alignés. Est-ce une relation d'équivalence?

Exercice 20. $\bullet \bigcirc \bigcirc$ On définit sur $\mathbb{Z} \times \mathbb{N}^*$ la relation binaire \sim par

$$[(p,q) \sim (p',q')] \Leftrightarrow pq' = p'q.$$

- **1.** Montrer que \sim est une relation d'équivalence.
- **2.** $\bullet \bullet \bullet$ À quoi correspond l'ensemble quotient $\mathbb{Z} \times \mathbb{N}^* / \sim$?

Exercice 21. $\bullet \bullet \bullet \bullet$ Soient A et B deux parties de \mathbb{R} non vides et majorées. On pose $A+B=\{x+y,\ x\in A,\ y\in B\}$. Montrer que A+B admet une borne supérieure et que $\sup(A+B)=\sup(A)+\sup(B)$.

Exercice 22. $\bullet \bullet \bigcirc$ Soit *E* un ensemble de cardinal *n*.

- 1. Combien peut-on définir de relations binaires sur *E* ?
- 2. Combien sont réflexives?
- **3.** Combien sont symétriques?

Exercice 23. $\bullet \bullet \bullet \bullet$ Soit (E, \preceq) un ensemble ordonné non vide. On suppose que toute partie non vide de E admet une borne supérieure et une borne inférieure.

Soit $f: E \to E$ une application croissante.

On pose $A = \{x \in E, x \leq f(x)\}$. Montrer que A est non vide, admet une borne supérieure a et que a = f(a).

Exercice 24. Comment rendre une application injective?. $\bullet \bullet \bullet$ Soient E et F deux ensembles et $f: E \to F$.

- **1.** On définit la relation \sim par $(x \sim y) \Leftrightarrow (f(x) = f(y))$. Montrer que cette relation est relation d'équivalence.
- **2.** Décrire les classes d'équivalence sous \sim . Comment traduire en termes de classes d'équivalence la propriété « f est injective » .
- **3.** Sur E/\sim , on définit l'application \overline{f} comme suit :

$$\overline{f}: \begin{cases} E/\sim \to F \\ \overline{x}\mapsto \overline{f}(\overline{x})=f(x) \end{cases}$$

Montrer que \overline{f} est bien définie (c'est-à-dire qu'elle ne dépend pas du choix du représentant) et qu'elle est injective.

Exercice 25. Ordres non totaux et prolongements. ••• -•••

Les questions marquées d'une étoile (*) sont des questions plus difficiles pour les plus algébristes d'entre vous.

- **1.** COURS Soit E un ensemble, \leq une relation binaire sur E. Définir « \leq est une relation d'ordre sur E ».
- **2.** (cette question est indépendante des questions suivantes) Soit (E, \preceq) un ensemble muni d'une relation d'ordre. Soit f une application de E dans E, et \lhd_f la relation binaire sur E définie par

$$\forall (x, y) \in E^2, \ x \triangleleft_f y \Leftrightarrow f(x) \leq f(y).$$

(a) Démontrer que \triangleleft_f est réflexive et transitive.

- (b) Démontrer que \triangleleft_f est une relation d'ordre si et seulement si f est injective. On raisonnera par double implication et on fera très attention au squelette de la démonstration. Cette question rapportera beaucoup de points, faites-la soigneusement.
- (c) $\boxed{\text{COURS}}$ Définir « \preceq est une relation d'ordre total » .
- (d) Dans le cas où f est bijective, démontrer que \lhd_f est une relation d'ordre total si et seulement si \preceq est une relation d'ordre total.

Soit (E, \preceq) un ensemble muni d'une relation d'ordre. Soit \leqq une autre relation d'ordre sur E. On dit que \leqq est un **prolongement** de la relation \preceq si

$$\forall (x, y) \in E^2, \ x \leq y \Rightarrow x \leq y.$$

On dit que c'est un **prolongement total** si \leq est un prolongement de \leq et \leq est totale.

3. (a) COURS On rappelle que la relation de divisibilité | sur ℕ est définie par

$$\forall (m, n) \in \mathbb{N}^2, \ m|n \Leftrightarrow \exists k \in \mathbb{N}, \ n = km.$$

Montrer que cette relation est une relation d'ordre. L'ordre défini est-il total? (on demande une justification)

(b) Sur \mathbb{N}^* , montrer que la relation d'ordre usuel \leqslant est un prolongement total de la relation de divisibilité |. Le résultat fonctionne-t-il toujours sur \mathbb{N} ?

Le but de la fin de l'exercice est de prolonger totalement une relation d'ordre quelconque sur un ensemble. Soit (E, \preceq) un ensemble muni d'une relation d'ordre. On définit la relation \mathcal{R} sur E par

$$\forall (x,y) \in E^2, x \mathcal{R} y \Leftrightarrow (x=y) \text{ ou } (x \text{ et } y \text{ ne sont pas comparables})$$

(pour rappel, on dit que x et y sont comparables si $x \leq y$ ou $y \leq x$)

- **4.** Montrer que la relation \mathcal{R} est réflexive et symétrique.
- 5. On se pose la question de la transitivité de cette relation dans certains cas particuliers :
 - (a) Montrer que lorsque \prec est total, alors \mathcal{R} est transitive.
 - (b) Montrer que lorsque $E=\mathbb{N}^*$ et \preceq est la relation de divisibilité, alors la relation n'est pas transitive.

Pour finir l'exercice, on se place dans le cas où E est fini et \mathcal{R} est transitive, i.e. lorsque \mathcal{R} est une relation d'équivalence. On définit, pour x et y dans E, $x \prec y$ par « $(x \preceq y)$ et $x \neq y$ ».

- 6. Questions de cours.
 - (a) COURS Définir ce qu'est la classe d'équivalence d'un élément de E.

On nomme alors c_1, \ldots, c_n les classes d'équivalence de E. Il y en a un nombre fini car E est fini.

- (b) COURS Si $i \neq j$, que peut-on dire de $c_i \cap c_j$? Que vaut $\bigcup_{i=1}^n c_i$? (on ne demande pas de justifications)
- 7. (a) (*) Soient a et b deux éléments de E. Montrer que si $a\mathcal{R}b$ alors on ne peut pas avoir $a \prec b$
 - (b) (*) Soient x, y, x' et y' quatre éléments de E tels que $x\mathcal{R}x'$ et $y\mathcal{R}y'$. Montrer que si $x \prec y$ alors $x' \prec y'$. On pourra commencer par montrer que $x \prec y'$.

Pour chaque classe d'équivalence c_i , on définit une relation d'ordre arbitraire, \lesssim_i (on prend tous les éléments de c_i que l'on ordonne dans l'ordre que l'on souhaite). On définit alors la relation \lessapprox sur E par

 $\forall (x,y) \in E^2$, $(x \lesssim y) \Leftrightarrow (x \prec y)$ ou $(x \text{ et } y \text{ appartiennent à une même classe d'équivalence } c_i)$ et $(x \lesssim_i y)$

8. (**) Montrer que \lessapprox est une relation d'ordre, et que c'est un prolongement total de \preceq .

Indications:

- 1. Faire une représentation graphique ou une étude de fonction (on ne demande pas de justification!)
 - **2.** Déterminer les réels x tels que $\sin(x) \in [1/2, 3/2]$. Puis regarder l'image de ces réels par sin.
 - **3.** Résoudre l'équation $e^z = e^0$ et $e^z = e^{i\frac{\pi}{2}}$.
- 2 Les deux premières questions sont du cours. Pour le reste, tenter une double inclusion. Et, si vous bloquez sur une inclusion, c'est peut-être qu'elle n'est pas vraie en général!
- 4 Supposer f injective et montrer qu'elle est surjective, et réciproquement (raisonnement par double implication). Respecter très formellement la manière de rédiger. Et penser que l'injectivité permet de « simplifier » par f.
- 5 Pour la 2, supposer que A admet un antécédent x_0 et se demander si $x_0 \in A$ ou si $x_0 \notin A$.
- 6 Démontrer que cette relation équivaut à f(x) = f(y) pour une certaine fonction f à définir.
- 7 Supposer que E possède un plus grand élément et aboutir à une contradiction. Ensuite penser que tous les éléments de $\mathcal{P}(\mathbb{R})$ sont majorés.
- 8 **1.** Regarder 0 et 3.
 - **2.** Écrire, si $x \in \mathbb{N}$, que $x \in \varphi^{-1}(\{1\}) \Leftrightarrow \varphi(x) = 1$ et conclure.
 - **3.** Supposer $\psi(n, m) = \psi(n', m')$ et supposer par exemple que $n \leqslant n'$.
 - 4. Penser à 5.
- 9 1. Faire une double implication, et penser à la négation de l'injectivité.
 - **2.** Résoudre une équation du type $\varphi(z) = \omega$ (c'est une des méthodes importantes pour la bijectivité).
- 10 Revenir à la définition de l'injectivité et de la surjectivité.
- 11 Rédiger **très proprement**, en faisant une double inclusion. Exemple pour la première. **Soit** $y \in f(f^{-1}(f(A)))$. **Alors on dispose de** $x \in f^{-1}(f(A))$ tel que y = f(x)...
- 12 Revenir à la définition de « être injectif/être surjectif » \mathbf{OU} montrer directement que f est une bijection (dans la première question).
- 14 **1.** S'intéresser à ce que donne $\varphi_A(X)$ si X est une partie de $E \setminus A$.
 - **2.** S'intéresser à ce que donne $\psi_A(X)$ si X est une partie de A.
 - **3.** Comment « reconstruire » une partie de E en connaissant son intersection avec deux parties de E?
- 13 **Exercice important.** Supposer que f est injective et montrer que $f = \operatorname{Id}_E$. Supposer que f est surjective et montrer que $f = \operatorname{Id}_E$.
- 15 **1.** Montrer que toute partie de *E* contient *a* ou ne contient pas *a*.
 - **2.** Écrire proprement : **soit** $Y \in \mathfrak{Im}(g)$.
 - **3.** Montrer que g est injective et surjective. Ou trouver directement sa bijection réciproque.
 - **4.** Écrire proprement l'injectivité et la surjectivité. Pour l'injectivité, il faut faire attention à distinguer, si $(X, X') \in \mathcal{P}(E)$, au cas $(X, X') \in M^2$, $(X, X') \in N^2$ ou $(X, X') \in M \times N$. Remarquer aussi que h envoie les éléments de M sur N et réciproquement.
 - **5.** On pourra poser $A = \{X \in \mathcal{P}](E) \mid X$ a un nombre pair d'éléments $]\}]$, $B = \{X \in \mathcal{P}\}(E) \mid X$ a un nombre impair d'éléments $]\}]$, et examiner l'effet de l'application h sur ces ensembles.
- 16 Procéder par analyse-synthèse. Si $x \in \mathbb{R}$, distinguer les cas $f(x) \leq x$ ou $f(x) \geq x$.

- 17 Démontrer par récurrence sur n que f(n) = n.
- 18 **1.** Non (raisonner par l'absurde)
 - 2. Oui (trouver un exemple)
 - **3.** Montrer que c'est $+\infty$, en utilisant le fait que $f(n) \underset{n \to +\infty}{\longrightarrow}$ équivaut (par définition) à

$$\forall M \in \mathbb{R}, \exists N \in \mathbb{N}, \forall n \geqslant N, f(n) \geqslant M.$$

- 19 Remarquer que ce n'est pas une relation d'équivalence sur \mathbb{R}^2 mais c'en est une sur $\mathbb{R}^2 \setminus \{(0,0)\}$.
- 20 **1.** Revenir à la définition.
 - 2. Remarquer qu'il s'agit d'une définition de Q.
- 21 Démontrer une double inégalité :
 - L'inégalité $\sup(A+B) \leq \sup(A) + \sup(B)$ est assez simple.
 - L'inégalité inverse est plus dure. Commencer ainsi : « Soit a dans A. Alors si b est dans B, $a+b \in A+B$. Donc $a=a+b-b \leqslant \sup(A+B)-b$. »
- 22 Penser au fait qu'une relation binaire se définit par une « table de relation, à double entrée ».
- 23 Pour montrer que $a \le f(a)$, utiliser le fait que a est la borne supérieure de A et que f(a) est un majorant de A. Pour l'inégalité réciproque, utiliser la croissance de f pour montrer que $f(a) \in A$.
- 24 Pas d'indication particulière, c'est juste délicat à écrire.
- 25 Il s'agit + d'un entraînement au DS. Me demander si besoin d'indications.