MPSI1 – Programme de colles Semaine 05 – du 13 au 17 octobre 2025

Fonctions usuelles

Révisions sur le programme précédent.

Raisonnement et vocabulaire ensembliste

CONTENUS CAPACITÉS & COMMENTAIRES

c) Applications et relations

Application d'un ensemble dans un ensemble. Le point de vue est intuitif : une application de E dans F

Graphe d'une application. associe à tout élément de E un unique élément de F.

Le programme ne distingue pas les notions de fonction et

d'application.

Notations $\mathscr{F}(E,F)$ et F^E .

Famille d'éléments d'un ensemble.

Fonction indicatrice d'une partie d'un ensemble. Notation \mathbb{I}_A .

Restriction et prolongement. Notation $f|_A$. Image directe. Notation f(A).

Image réciproque. Notation $f^{-1}(B)$. Cette notation pouvant prêter à confusion,

on peut provisoirement en utiliser une autre.

Composition.

Injection, surjection. Composée de deux injections, de

deux surjections.

Bijection, réciproque. Composée de deux bijections, réci-

proque de la composée.

Notation f^{-1} . Compatibilité de cette notation avec celle de

l'image réciproque.

Programme de cette colle :

- cours sur les fonctions usuelles, notamment la définition des fonctions circulaires réciproques (catastrophiques la semaine dernière) + cours sur le début des applications.
- exercices sur les fonctions usuelles, notamment les fonctions circulaires réciproques. En fin de colle et en fin de semaine, exercices sur les applications.

Exemples de questions de cours

- 1. Définition d'une des fonctions circulaires réciproques avec un théorème de la bijection + propriétés.
- 2. « Associativité » de la composition + Id est un « neutre » pour la composition.
- 3. Définition de l'image/de l'image réciproque + $A \subset f^{-1}(f(A))$ et $f(f^{-1}(B)) \subset B$. Contre-exemples à l'aide d'une fonction de \mathbb{R} dans \mathbb{R} .
- 4. Une composée d'injections est injective ; une composée de surjections est surjective.
- 5. L'exponentielle complexe est surjective de \mathbb{C}^* sur \mathbb{C} mais n'est pas injective.
- 6. Si $f \circ g$ est injective, alors g est injective; si $f \circ g$ est surjective, alors f est surjective.
- 7. Équivalence des définitions d'une bijection (injective et surjective / $\forall y \in F$, $\exists ! x \in E$, f(x) = y / existence d'une bijection réciproque)