TD 6 Intégration

1 Exercices corrigés en classe – calculs avancés

NB : comme il y a eu beaucoup d'exercices dans le poly de cours, ces exercices sont difficiles. C'est normal!

Exercice 1. Déterminer une primitive de $x \mapsto \frac{1}{\cos(x)}$, ...

- en effectuant le changement de variables $t = \tan \frac{x}{2}$,
- en écrivant que $\frac{1}{\cos(x)} = \frac{\cos(x)}{\cos^2(x)} = \frac{\cos(x)}{1-\sin^2(x)}$ (et en faisant éventuellement le changement de variables $y = \sin(x)$ si on ne voit pas d'intégration directe).

Exercice 2. Lemme de Riemann-Lebesgue. Soit f une fonction \mathscr{C}^1 sur un segment [a,b]. Démontrer que, si $\omega \in \mathbb{R}^*$,

$$\int_{a}^{b} f(t) \sin(n\omega t) dt \underset{n \to +\infty}{\longrightarrow} 0.$$

Exercice 3. Représenter la fonction $x \mapsto \int_0^1 \max(x, t) dt$.

Exercice 4. Démontrer que la fonction $x \mapsto \int_0^1 \frac{\mathrm{e}^t}{t+x} dt$ est dérivable et déterminer l'expression de sa dérivée.

Exercice 5. À l'aide d'un joli dessin, expliquer pourquoi la suite $\left(\int_0^{4\pi n} \frac{\sin(t)}{t} dt\right)_{n \in \mathbb{N}}$ est décroissante.

2 Exercices à faire en TD

Exercice 6. Calculs directs. ●○○ - ●●○ Calculer les intégrales ou primitives suivantes, sans utiliser ni IPP, ni changement de variable.

1.
$$\int_{-2}^{3} (y^2 - y + 4) dy$$
,
2. $\int_{0}^{2} x e^{-3x^2} dx$,
3. $\int_{-2}^{x} \frac{1}{(3t+2)^2} dt$,
4. $\int_{1}^{4} \frac{\ln(t)}{t} dt$,
5. $\int_{1}^{x} \frac{1}{t \ln(t)} dt$,
6. $\int_{-\frac{\pi}{3}}^{\frac{\pi}{4}} \sin(x) dx$,
7. $\int_{-\frac{\pi}{3}}^{\frac{\pi}{4}} \sin(x) \cos(x) dx$,
8. $\int_{-1}^{1} \sinh(t) dt$,
9. $\int_{1}^{x} \tan^2(t) dt$,
10. $\int_{1}^{x} \frac{dt}{\sqrt{1-t^2} \operatorname{Arcsin}(t)}$,
11. $\int_{1}^{x} \frac{\sin(2\theta)}{1+\cos^2(\theta)} d\theta$
12. $\int_{1}^{x} \frac{dt}{\cos^2(t) \tan(t)}$.

Exercice 7. *Intégration par parties*. ●○○ - ●●○ Calculer les intégrales suivantes, en utilisant une intégration par parties.

1.
$$\int_{0}^{2} t e^{t} dt$$
,
2. $\int_{1}^{2} \ln \frac{t-1}{t+1} dt$,
3. $\int_{0}^{\frac{\pi}{3}} \frac{\theta}{\cos^{2}(\theta)} d\theta$
4. $\int_{0}^{x} t^{2} e^{t} dt$,
5. $\int_{0}^{y} \ln(1+x^{2}) dx$,
6. $\int_{0}^{x} Arcsin(t) dt$,
7. $\int_{0}^{x} t ch(t) dt$,
8. $\int_{0}^{1} e^{2t} cos(t) dt$.

Exercice 8. Changement de variable. • O - • O Calculer les intégrales suivantes, en effectuant des changements de variable adéquats.

1.
$$x \int \frac{dt}{t + \sqrt{t}}$$
,
2. $\int_{2}^{y} \frac{x}{\sqrt{x - 1}} dx$, où $y > 1$,
3. $\int_{1}^{y} \frac{1}{\cosh(t)} dt$,
4. $\int_{-1}^{1} \theta^{2} \sqrt{1 - \theta^{2}} d\theta$,
5. $\int_{1}^{\frac{\pi}{2}} \frac{1}{\sin(t) + \cos(t)} dt$,
6. $\int_{1}^{x} \sqrt{e^{t} - 1} dt$.

Exercice 9. Orthogonalité des fonctions trigonométriques. $\bullet \bullet \bigcirc$ Déterminer, en fonction de la valeur de m et n entiers, la valeur de l'intégrale

$$I_{m,n} = \int_0^{2\pi} \cos(mt) \cos(nt) dt.$$

Exercice 10. $\bullet \bullet \bigcirc$ Soit $f:[a,b] \rightarrow \mathbb{R}$ telle que pour tout x de [a,b], f(a+b-x)=f(x).

- 1. Interpréter l'égalité en termes de graphe de f.
- 2. Montrer que

$$\int_a^b x f(x) dx = \frac{a+b}{2} \int_a^b f(x) dx.$$

3. Application: calculer

$$\int_0^\pi \frac{x \sin(x)}{1 + \cos^2(x)} dx.$$

Exercice 11. $\bullet \bullet \bigcirc$ Pour tous entiers naturels n et p on pose

$$I_{n,p} = \int_0^1 t^n (1-t)^p dt.$$

1. Montrer que pour tout n non nul et pour tout p entier,

$$I_{n,p} = \frac{n}{p+1} I_{n-1,p+1}.$$

2. En déduire une expression de $I_{n,p}$ pour tous n et p entiers.

Exercice 12. $\bullet \bullet \bullet$ Calculer, pour tout n dans \mathbb{N} , $I_n = \int_0^1 x^n \sqrt{1-x} dx$.

Exercice 13. Une suite d'intégrales – extrait DS 2020-2021. $\bullet \bullet \bigcirc$ Pour tout k dans \mathbb{N}^* , on note φ_k la fonction

$$\varphi_k: \begin{vmatrix} \mathbb{R} \to \mathbb{R} \\ x \mapsto \int_0^x \frac{dt}{\operatorname{ch}^k(t)} \end{vmatrix}$$

On admet l'existence de $\varphi_k(x)$ pour tout k de \mathbb{N}^* et pour tout x de \mathbb{R} étant donné que $\forall k \in \mathbb{N}^*$, $t \mapsto \frac{1}{\operatorname{ch}^k(t)}$ est continue sur \mathbb{R} .

- **1.** Calculer $\varphi_1(x)$ et $\varphi_2(x)$, pour x fixé.
- **2.** Soit $x \in \mathbb{R}$. Montrer que

$$\forall k \in \mathbb{N}^*, \ \varphi_{k+2}(x) = \frac{\operatorname{sh}(x)}{(k+1)\operatorname{ch}^{k+1}(x)} + \frac{k}{k+1}\varphi_k(x).$$

3. En déduire les valeurs de $\varphi_3(x)$ et $\varphi_4(x)$.

Étude des fonctions φ_k **Dans cette partie**, k est un entier naturel non nul fixé.

- **4.** Démontrer que φ_k est impaire.
- **5.** On admet la dérivabilité de φ_k . Calculer, pour tout x de \mathbb{R} , $\varphi'_k(x)$ et en déduire le sens de variation de φ_k sur \mathbb{R} . En déduire son signe sur \mathbb{R} .
- **6.** Démontrer que φ_1 et φ_2 ont des limites en $+\infty$, et les déterminer.
- **7.** En utilisant la question 2., démontrer que pour tout k dans \mathbb{N}^* , $\varphi_k(x)$ admet une limite quand x tend vers $+\infty$.

On note, pour tout k dans \mathbb{N}^* , $\mathrm{I}_k = \lim_{x \to +\infty} \varphi_k(x)$.

- **8.** Toujours en utilisant la question 2., démontrer que pour tout k dans \mathbb{N}^* , $I_{k+2} = \frac{k}{k+1}I_k$.
- **9.** Soit la suite $(a_k)_{k \in \mathbb{N}^*}$ définie par : $\forall k \in \mathbb{N}^*$, $a_k = k \mathbf{I}_k \mathbf{I}_{k+1}$. Démontrer que $(a_k)_{k \in \mathbb{N}^*}$ est constante et préciser la valeur de cette constante.
- **10.** Déterminer, pour tout $k \ge 1$, les valeurs de I_{2k} et I_{2k+1} .

Exercice 14. $\bullet \bullet \bigcirc$ Notre but est de calculer l'intégrale suivante : $I = \int_0^{\frac{\pi}{8}} \frac{\cos^2(t)}{\cos(2t)} dt$

1. Montrer que cette intégrale est positive.

On pose $J = \int_0^{\frac{\pi}{8}} \frac{\sin^2(t)}{\cos(2t)} dt$.

- **2.** Calculer I J.
- **3.** Calculer I + J.
- 4. En déduire la valeur de I.

Exercice 15. $\bullet \bullet \bigcirc$ Soit $\omega = a + ib$ un complexe, (a, b réels). Déterminer une primitive de

$$t\mapsto \frac{1}{t-\omega}$$
.

Exercice 16. Lemme de Riemann-Lebesgue. $\bullet \bullet \bullet$ Soient a et b deux réels, $f:[a,b] \to \mathbb{C}$ une fonction dérivable, de dérivée continue. Montrer que

$$\lim_{\lambda \to \infty} \left| \int_a^b f(t) e^{i\lambda t} dt \right| = 0.$$

On pourra effectuer une intégration par parties.

Indications. Pour cette feuille de TD, quelques indications, mais surtout, ensuite, les réponses brutes des calculs d'intégrale!

- 8 Voici des changements de variables à poser :
 - **1.** $s = \sqrt{t}$
 - **2.** $u = \sqrt{x-1}$
 - **3.** $s = e^t$
 - **4.** $\theta = \sin(x)$

5. Poser $u = \tan(t/2)$ et remarquer que

$$\frac{1}{1+2u-u^2} = -\frac{1}{\left(u-1-\sqrt{2}\right)\left(u-1+\sqrt{2}\right)} = \frac{1}{2\sqrt{2}}\left(\frac{1}{u-1+\sqrt{2}} - \frac{1}{u-1-\sqrt{2}}\right),$$

(passage délicat)

9 Linéariser le produit de sinus.

10 1

2. Effectuer le changement de variables y = a + b - x.

3.

12 Poser $u(x) = x^n$ et $v'(x) = \sqrt{1-x}$.

14 1. Utiliser la propriété du cours qui parle d'intégrales positives.

2. Développer cos(2t).

3. Poser $s = \tan(t)$.

4. Remarquer que $I = \frac{I - J + I + J}{2}$

15 Utiliser la quantité conjuguée au dénominateur, puis faire apparaître ou bien du ln, ou bien de l'arctangente. Attention! Une primitive de $t\mapsto \frac{1}{t+i}$ n'est pas $t\mapsto \ln|t+i|!$

16 Effectuer une intégration par parties, avec u(t) = f(t) et $v'(t) = e^{it\lambda}$.

Réponses brutes.

6 1.
$$\frac{175}{6}$$

2.
$$\frac{1}{6} - \frac{1}{6e^{12}}$$

3.
$$-\frac{1}{t}$$

4.
$$2 \ln(2)^2$$

5.
$$\ln |\ln(t)|$$

7 1.
$$e^2 + 1$$

2.
$$2(e^t - 1)$$

3.
$$\frac{\pi}{\sqrt{3}} - \ln(2)$$
.

6.
$$\frac{1}{2} - \frac{1}{\sqrt{2}}$$

7.
$$-\frac{1}{8}$$

9.
$$tan(t) - t$$

4.
$$x sh(x) - ch(x)$$
.

5.
$$x Arcsin(x) + \sqrt{1-x^2}$$

8 1. Arctan
$$(\sqrt{e^3-1})$$
 – Arctan $(\sqrt{e-1})$

2.
$$\frac{\sqrt{y-1}^3}{3} + \sqrt{y-1} - \left(\frac{1}{3} + 1\right)$$

3.
$$2Arctan(e^y) - 2Arctan(e)$$

4.
$$\frac{\pi}{8}$$

5.
$$\frac{1}{\sqrt{2}} \ln \left(\frac{\sqrt{2}+1}{\sqrt{2}-1} \right)$$

10
$$\int_0^{\pi} \frac{x \sin(x)}{1 + \cos^2(x)} dx = \frac{\pi^2}{4}$$
.

12
$$I_n = \frac{2n(2n-2)\dots 2}{(2n+3)(2n+1)\dots 5}I_0 = \frac{2^n n!}{(2n+3)(2n+1)\dots 3}$$

14 I =
$$\frac{\pi}{16} + \frac{\ln(2)}{4}$$