DM 04+

Treillis et théorème de Cantor-Bernstein

A. Notion de treillis

Soit (E, \preceq) un ensemble muni d'une relation d'ordre. On dit que E est un treillis si pour tous x et y de E, l'ensemble $\{x,y\}$ possède une borne supérieure et une borne inférieure. On notera alors $x \wedge y = \inf\{x,y\}$ et $x \vee y = \sup\{x,y\}$. On remarque qu'alors $x \wedge y = y \wedge x$ et que $w \vee y = y \vee x$. Ainsi, \mathbb{N}^* muni de la relation de divisibilité | est un treillis : si a et b sont dans \mathbb{N}^* , $a \wedge b$ est le pgcd de a et b et $a \vee b$ leur ppcm.

1. Montrer que si la relation \leq sur E est totale, alors (E, \leq) est un treillis.

Correction

Si la relation d'ordre est totale, et si x et y sont dans E, alors $x \leq y$ et $y \leq x$, donc $\{x,y\}$ possède un plus petit et un plus grand élément, donc une borne inférieure et une borne supérieure. DOnc E est un treillis.

2. $(\mathcal{P}(E), \subset)$ est-il un treillis? Si oui, le justifier en précisant, pour A et B dans $\mathcal{P}(E)$, $A \wedge B$ et $A \vee B$.

Correction

Soient A et B deux éléments de $\mathcal{P}(E)$. Alors $A \cup B = \sup(A, B)$ (en effet, c'est un majorant de A et B et si C est un majorant de A et B, alors il contient A et B, donc il contient $A \cup B$). Donc $A \vee B = A \cup B$. De même, $A \wedge B = A \cap B$.

Un treillis est dit **borné** s'il admet un plus petit élément, noté 0, et un plus grand élément, noté 1.

Un treillis (E, \preceq) est dit **complémenté** si pour tout x dans E, il existe un élément x' dans E, appelé **un** complémentaire de x dans E, tel que $x \wedge x' = 0$ et $x \vee x' = 1$. Un treillis (E, \preceq) est dit **distributif** si pour tous x, y et z de E,

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$
 et $x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$.

(autrement dit \land est distributive sur \lor et \lor est distributive sur \land)

3. Montrer que $(\mathcal{P}(E), \subset)$ est un treillis complémenté distributif borné.

Correction

 $(\mathcal{P}(E), \subset)$ est un treillis. On sait que $\forall A \in \mathcal{P}(E), \emptyset \subset A$ donc \emptyset est le plus petit élément de E. De même, $A \subset E$ donc E est le plus grand élément de $\mathcal{P}(E)$. Donc le treillis est borné.

Si $A \in \mathcal{P}(E)$ et B = A, alors $A \cup B = E$ et $A \cap B = \emptyset$ donc le treillis est complémenté. Enfin, il est distributif par distributivité de la réunion sur l'intersection et de l'intersection sur la réunion.

- **4.** Soit (E, \preceq) un treillis borné, complémenté, distributif.
 - (a) Soit x dans E. Que vaut $x \wedge 0$, $x \vee 0$, $x \wedge 1$, $x \vee 1$?

0 est le plus petit élément de E donc $x \wedge 0 = 0$ et $x \vee 0 = x$. De même, 1 est le plus grand élément de E donc $x \wedge 1 = x$ et $x \vee 1 = 1$.

(b) Montrer que \wedge est associatif, i.e.

$$\forall (x, y, z) \in E^3, \ x \land (y \land z) = (x \land y) \land z.$$

De même, on peut montrer que ∨ est associatif.

Correction

Soient x, y et z dans E. Posons $a = x \land (y \land z) = \inf(x, \inf(y, z))$ et $b = (x \land y) \land z$. Par définition de a, $a \preceq x$ et $a \preceq y \land z = \inf(y, z)$. Or $y \land z \preceq y$ et $y \land z \preceq z$, donc $a \preceq y$ et $a \preceq z$. Donc $a \preceq x$ et $a \preceq y$, i.e. a est un minorant de $\{x, y\}$ donc $a \preceq x \land y$ par définition de la borne inférieure. Donc $a \preceq x \land y$ et $a \preceq z$ donc, par définition de la borne inférieure, $a \preceq (x \land y) \land z = b$. Par le même type de raisonnement $b \preceq a$. Donc a = b.

(c) Si x est dans E, montrer qu'il y a unicité du complémentaire de x. (prendre x' et x'' deux complémentaires de x dans E, considérer $y = x' \land (x \lor x'')$). On notera alors **le** complémentaire de x dans E \overline{x} .

Correction

Soit x dans E, soient x' et x'' deux complémentaires de x. Soit $y = x' \land (x \lor x'')$. Alors $y = x' \land 1 = x'$. De même, par associativité, $y = (x' \land x) \lor x'' = 0 \lor x'' = x''$. Donc x' = x''.

(d) Montrer alors les lois de Morgan :

$$\forall (x,y) \in E^2, \ \overline{x \wedge y} = \overline{x} \vee \overline{y} \text{ et } \overline{x \vee y} = \overline{x} \wedge \overline{y}.$$

Correction

Soient x et y dans E Alors (comme on a de l'associativité, on écrira $a \wedge (b \wedge c) = a \wedge b \wedge c$).

$$(x \wedge y) \wedge (\overline{x} \vee \overline{y}) = ((x \wedge y) \wedge \overline{x}) \vee ((x \wedge y) \wedge \overline{y})$$

$$= (x \wedge y \wedge \overline{x}) \vee (x \wedge y \wedge \overline{y})$$

$$= (y \wedge x \wedge \overline{x}) \vee (x \wedge 0)$$

$$= (y \wedge 0) \vee 0 = 0 \vee 0 = 0.$$

De même,

$$(x \wedge y) \vee (\overline{x} \vee \overline{y}) = (x \vee \overline{x} \vee \overline{y}) \wedge (y \vee \overline{x} \vee \overline{y})$$
$$= (1 \vee \overline{y}) \wedge (1 \vee \overline{x}) = 1 \wedge 1 = 1.$$

D'où le résultat. On admet la deuxième loi de Morgan parce que bon...voilà...

5. Montrer par récurrence sur le nombre d'éléments que toute partie finie d'un treillis est bornée (attention, ici « bornée » est à prendre au sens de « partie bornée » comme dans le cours).

Montrons par récurrence sur n que toute partie à n éléments est admet un majorant et un minorant.

L'initialisation est évidente car toute partie à 1 élément est bornée par cet élément. Ensuite, on suppose que pour un certain n, toute partie à n éléments admet un sup et un inf. Soit A une partie à n+1 éléments. Soit $x\in A$. Alors $A\setminus\{x\}$ possède n éléments, donc A admet une majorant M et un minorant m. Maintenant, $\{x,M\}$ est une partie à deux éléments d'un treillis, donc il admet une borne supérieure $x\vee M$. De même, $\{m,x\}$ admet une borne inférieure $m\wedge x$. Donc A est majorée par $M\vee x$ et est minorée par $m\wedge x$. D'où l'hérédité.

D'où le résultat par récurrence!

Dernière définition, un treillis est dit **complet** (attention, rien à voir avec « complémenté ») si toute partie de ce treillis admet une borne supérieure.

6. Démontrer que si *E* est un treillis complet, alors il possède un plus grand et un plus petit élément.

Correction

J'ai rajouté cette question pour mieux éclairer le problème. Si E est un treillis complet,

- *E* admet une borne supérieure. Cette borne supérieure appartenant à *E*, il s'agit du plus grand élément de *E*.
- ∅ admet une borne supérieure, donc l'ensemble de ses majorants admet un plus petit élément. Or, tout élément de E est un majorant de ∅ (la proposition ∀x ∈ ∅, ... étant toujours vraie), donc E est l'ensemble des majorants de ∅, et admet donc un plus petit élément.
- **7.** Démontrer que si *E* est un treillis complet, alors toute partie de *E* admet une borne inférieure.

Correction

Soit E un treillis complet, A une partie de E. Soit B l'ensemble des minorants de E. Alors B admet une borne supérieure par la propriété de complétude du treillis. Nommons-la μ .

On va démontrer que $\mu = \inf(A)$.

 déjà, μ est un minorant de A : soit x ∈ A. Alors x est un majorant de B car B est l'ensemble des minorants de A. Donc μ ≤ x car μ est le plus petit des majorants de B.

Donc μ est un minorant de A.

• ensuite, si m est un autre minorant de A, alors $m \in B$. Donc, comme μ est un majorant de B, $\mu \geqslant m$.

Donc μ est le plus grand des minorants de A, donc $\mu = \inf(A)$.

8. Démontrer que $(\mathbb{Q} \cap [0, 2], \leq)$ est un treillis borné mais qu'il n'est pas complet. Cela montre que le caractère complet est + fort que le caractère borné!

Correction

Comme l'ordre \leqslant est total, $(\mathbb{Q} \cap [0,2], \leqslant)$ est un treillis, clairement borné. Montrons qu'il n'est pas complet.

Soit $A = \mathbb{Q} \cap [0, \sqrt{2}]$. A est une partie de $\mathbb{Q} \cap [0, 2]$. Montrons que A n'admet pas de borne supérieure.

Supposons, par l'absurde, que A en admette une : soit m cette borne supérieure. Alors m est rationnel. Donc $m \neq \sqrt{2}$.

- si $m < \sqrt{2}$, notons $\varepsilon = \sqrt{2} m > 0$. Soit a un rationnel tel que $0 < a < \varepsilon$ (il suffit de prendre $a = \frac{1}{10^n}$ pour n assez grand). Donc m + a est un rationnel de $[0, \sqrt{2}]$ et m + a > m, absurde!
- si $m > \sqrt{2}$, notons $\varepsilon = -\sqrt{2} + m > 0$. Soit a un rationnel tel que $0 < a < \varepsilon$ (il suffit de prendre $a = \frac{1}{10^n}$ pour n assez grand). Donc m a est supérieur à tous les éléments de $\mathbb{Q} \cap [0, \sqrt{2}]$.

On conclut que A n'a pas de borne supérieure! Donc $\mathbb{Q} \cap [0, 2]$ n'est pas complet.

9. Justifier que $(\mathcal{P}(E), \subset)$ est un treillis complet. (on précisera, si \mathcal{A} est une partie de $\mathcal{P}(E)$, la borne supérieure et la borne inférieure de \mathcal{A}).

Correction

Si A est une partie de $\mathcal{P}(E)$,

$$\bigcup_{F \in A} F = \sup(A) \text{ et } \bigcap_{F \in A} F = \inf(A).$$

B. Théorème de Knaster-Tarski

Soit (T, \preceq) un treillis complet, f une application croissante de T dans T. On veut montrer que f admet un point fixe (théorème de Knaster-Tarski). Soit $S = \{x \in T, \ f(x) \leq x\}$.

10. Justifier que S admet une borne inférieure m.

Correction

S est une partie de T, treillis complet, donc S admet une borne inférieure.

11. Démontrer que f(m) = m.

Correction

- $m = \inf(S)$ donc pour tout x dans S, $m \le x$. Donc $f(m) \le f(x)$ par croissance de f, donc $f(m) \le x$ car $x \in S$. Mais comme m est le plus grand des minorants de S et que f(m) est un minorant de S, $f(m) \le m$.
- mais par croissance de f, $f(f(m)) \leq f(m)$, donc $f(m) \in S$. Mais comme m est un minorant de S, $m \leq f(m)$.

Par antisymétrie de la relation d'ordre, f(m) = m.

12. Démontrer qu'en fait, l'ensemble $\{x \in T, f(x) = x\}$ est un treillis complet.

Déjà, cet ensemble (notons-le U) est non vide. Ensuite, si A est une partie de U, on considère $S_A = \{x \in T, x \text{ majore } A \text{ et } f(x) \leq x\}$.

Alors cette partie admet une borne inférieure m. Montrons que $m = \sup(A)$.

- si $a \in A$, alors a minore S_A . Donc, comme $m = \inf(S_A)$, $a \leq m$.
- ensuite, on montre que f(m) = m par la même méthode que précédemment.

Donc, si b est un majorant de A (dans U), alors $b \in S_A$, donc $m \leq b$. Donc $m = \sup(A)$.

C. Application au théorème de Cantor-Bernstein

On applique dans cette partie le théorème de Knaster-Tarski à une preuve du théorème de Cantor-Bernstein. Soient E et F deux ensembles, tels qu'il existe une injection f de E dans F et une injection g de F dans E. On veut montrer qu'il existe une bijection de E dans F.

On définit l'application $\Psi: \mathcal{P}(E) \to \mathcal{P}(E)$ par

$$\forall A \in \mathcal{P}(E), \ \Psi(A) = E \setminus g(F \setminus f(A)).$$

13. Démontrer que Ψ est **croissante** de $(\mathcal{P}(E), \subset)$ dans $(\mathcal{P}(E), \subset)$.

Correction

Soient A et B deux éléments de $\mathcal{P}(E)$ tels que $A \subset B$.

Alors $f(A) \subset f(B)$.

Donc $F \setminus f(B) \subset F \setminus f(A)$.

Donc $g(F \setminus f(B)) \subset g(F \setminus f(A))$.

Donc $\Psi(A) \subset \Psi(B)$.

14. En déduire qu'il existe $M \subset E$ tel que $\Psi(M) = M$.

Correction

Comme $(\mathcal{P}(E), \subset)$ est un treillis complet et que Ψ est croissante sur ce treillis, il existe, par le théorème de Knaster-Tarski, $M \subset E$ tel que $\Psi(M) = M$.

15. Si $N = F \setminus f(M)$, démontrer que $g(N) = E \setminus M$.

Correction

On sait que $E \setminus g(N) = M$ donc $g(N) = E \setminus M$.

On définit alors

$$\alpha: \begin{vmatrix} M \to f(M) \\ x \mapsto f(x) \end{vmatrix}, \beta: \begin{vmatrix} F \setminus f(M) \to E \setminus M \\ x \mapsto g(x) \end{vmatrix}$$

16. Démontrer que α et β sont bijectives.

- ullet lpha :
 - soient x et x' tels que $\alpha(x) = \alpha(x')$. Alors f(x) = f(x') donc par injectivité de f, x = x'.
 - soit y dans f(M). Alors on dispose de x dans M tel que y = f(x).

D'où la bijectivité de α .

- β:
 - l'injectivité est aussi évidente.
 - la surjectivité vient du fait que $E \setminus M = g(F \setminus f(M))$.
- 17. Démontrer alors qu'il existe une bijection h de E dans F.

Correction

Il suffit alors de poser

$$h: x \mapsto \begin{cases} \alpha(x) \text{ si } x \in M \\ \beta^{-1}(x) \text{ si } x \in E \setminus M. \end{cases}$$