DM 04+

Treillis et théorème de Cantor-Bernstein

A. Notion de treillis

Soit (E, \preceq) un ensemble muni d'une relation d'ordre. On dit que E est un treillis si pour tous x et y de E, l'ensemble $\{x,y\}$ possède une borne supérieure et une borne inférieure. On notera alors $x \wedge y = \inf\{x,y\}$ et $x \vee y = \sup\{x,y\}$. On remarque qu'alors $x \wedge y = y \wedge x$ et que $w \vee y = y \vee x$. Ainsi, \mathbb{N}^* muni de la relation de divisibilité | est un treillis : si a et b sont dans \mathbb{N}^* , $a \wedge b$ est le pgcd de a et b et $a \vee b$ leur ppcm.

- **1.** Montrer que si la relation \leq sur E est totale, alors (E, \leq) est un treillis.
- **2.** $(\mathcal{P}(E), \subset)$ est-il un treillis? Si oui, le justifier en précisant, pour A et B dans $\mathcal{P}(E)$, $A \wedge B$ et $A \vee B$.

Un treillis est dit **borné** s'il admet un plus petit élément, noté 0, et un plus grand élément, noté 1

Un treillis (E, \preceq) est dit **complémenté** si pour tout x dans E, il existe un élément x' dans E, appelé **un** complémentaire de x dans E, tel que $x \wedge x' = 0$ et $x \vee x' = 1$. Un treillis (E, \preceq) est dit **distributif** si pour tous x, y et z de E,

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$
 et $x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$.

(autrement dit \land est distributive sur \lor et \lor est distributive sur \land)

- **3.** Montrer que $(\mathcal{P}(E), \subset)$ est un treillis complémenté distributif borné.
- **4.** Soit (E, \preceq) un treillis borné, complémenté, distributif.
 - (a) Soit x dans E. Que vaut $x \wedge 0$, $x \vee 0$, $x \wedge 1$, $x \vee 1$?
 - (b) Montrer que ∧ est associatif, i.e.

$$\forall (x, y, z) \in E^3, \ x \wedge (y \wedge z) = (x \wedge y) \wedge z.$$

De même, on peut montrer que ∨ est associatif.

- (c) Si x est dans E, montrer qu'il y a unicité du complémentaire de x. (prendre x' et x'' deux complémentaires de x dans E, considérer $y = x' \land (x \lor x'')$). On notera alors **le** complémentaire de x dans E \overline{x} .
- (d) Montrer alors les lois de Morgan :

$$\forall (x,y) \in E^2, \ \overline{x \wedge y} = \overline{x} \vee \overline{y} \text{ et } \overline{x \vee y} = \overline{x} \wedge \overline{y}.$$

5. Montrer par récurrence sur le nombre d'éléments que toute partie finie d'un treillis est bornée (attention, ici « bornée » est à prendre au sens de « partie bornée » comme dans le cours).

Dernière définition, un treillis est dit **complet** (attention, rien à voir avec « complémenté ») si toute partie de ce treillis admet une borne supérieure.

- **6.** Démontrer que si *E* est un treillis complet, alors il possède un plus grand et un plus petit élément.
- 7. Démontrer que si *E* est un treillis complet, alors toute partie de *E* admet une borne inférieure
- **8.** Démontrer que $(\mathbb{Q} \cap [0,2], \leqslant)$ est un treillis borné mais qu'il n'est pas complet. Cela montre que le caractère complet est + fort que le caractère borné!
- **9.** Justifier que $(\mathcal{P}(E), \subset)$ est un treillis complet. (on précisera, si \mathcal{A} est une partie de $\mathcal{P}(E)$, la borne supérieure et la borne inférieure de \mathcal{A}).

B. Théorème de Knaster-Tarski

Soit (T, \preceq) un treillis complet, f une application croissante de T dans T. On veut montrer que f admet un point fixe (théorème de Knaster-Tarski).

Soit $S = \{x \in T, f(x) \leq x\}.$

- **10.** Justifier que S admet une borne inférieure m.
- **11.** Démontrer que f(m) = m.
- **12.** Démontrer qu'en fait, l'ensemble $\{x \in T, f(x) = x\}$ est un treillis complet.

C. Application au théorème de Cantor-Bernstein

On applique dans cette partie le théorème de Knaster-Tarski à une preuve du théorème de Cantor-Bernstein. Soient E et F deux ensembles, tels qu'il existe une injection f de E dans F et une injection g de F dans E. On veut montrer qu'il existe une bijection de E dans F.

On définit l'application $\Psi: \mathcal{P}(E) \to \mathcal{P}(E)$ par

$$\forall A \in \mathcal{P}(E), \ \Psi(A) = E \setminus g(F \setminus f(A)).$$

- **13.** Démontrer que Ψ est **croissante** de $(\mathcal{P}(E), \subset)$ dans $(\mathcal{P}(E), \subset)$.
- **14.** En déduire qu'il existe $M \subset E$ tel que $\Psi(M) = M$.
- **15.** Si $N = F \setminus f(M)$, démontrer que $g(N) = E \setminus M$.

On définit alors

$$\alpha: \begin{vmatrix} M \to f(M) \\ x \mapsto f(x) \end{vmatrix}, \beta: \begin{vmatrix} F \setminus f(M) \to E \setminus M \\ x \mapsto g(x) \end{vmatrix}$$

- **16.** Démontrer que α et β sont bijectives.
- 17. Démontrer alors qu'il existe une bijection h de E dans F.