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Chapitre 7
Nombres réels et suites

1 Nombres réels (rappels)

Nous n'allons pas construire les nombres réels, qui sont beaucoup plus difficiles a construire que
les nombres complexes. Nous allons commencer le cours par une proposition, non pas par une
définition. C'est la propriété importante des nombres réelles, qui n'est pas démontrable puisque
elle dépend de la construction de R.

f—[Remarque 1 (Rappels sur les calculs dans les réels et les relations d’ordre)]ﬁ
e Vx e R, —|x| < x < x|,
e VYxeR, Va>0,

x| <ae —a<x

N

a

et
x| >a< x>aoux< —a,

e pour tout réel x,
x| <x<|x]4+1loux—1<[x]<x
° Vg>0,0<g<s.
e si ACR,
— A est majorée ssi AIM e R, Vx € A, x < M,
— Aest minoréessidmeR, Vx € A, m< x,
— A est bornée ssi 3(m, M) € R?, Vx € A, m
sia € R,

<x<M,

— a=min(A) e acAetVxe A a<x,
—a=max(A) e acAetVx €A x<a
— a=inf(A) & a est un minorant de A et Vb minorant de A, a > b.

< b.

— a=-sup(A) & a est un majorant de A et Vb majorant de A, a

Proposition 2

Soit A C R, soit B = {|x|,x € A}. Alors A est bornée si et seulement si B est majorée.

Démonstration

Si A est borné, on dispose de (m, M) € R? tels que
VxeA m<x< M.

Posons S = max(|M|, |m|). Alors
— S>|m| > —-—m, donc =S <m,
— S=[M[ =M.
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En particulier S > 0. Et, pour tout x de A,
—s<m<x<MKLKS,
i.e. pour tout x dans A, |x] < S.

Donc, pour tout y dans B, y < S. Donc B est majorée.

Si B est majorée, on dispose de M € R tel que Vy € B, y < M. Donc, pour tout x dans A,
|x| < M, donc
Vx €A —M<x <M,

donc A est bornée.

[Proposition 3 (Borne supérieure)]

Toute partie non vide majorée de R admet une borne supérieure.

Corollaire 4

Toute partie non vide minorée de R admet une borne inférieure.

Démonstration

| Les deux démonstrations sont a revoir a I'occasion! W

[Proposition 5 (Une définition alternative de la borne supérieure)]

Soit A C R, non vide. Soit M € R. Les assertions suivantes sont équivalentes
(i) M =sup(A),
(i) Vx€ A, x< MAVe>0,dac A M—e<as M,

(i) Vx€ A, x< MAVe>0,Jac A [M—a|<e.

Remarque 6

Les deux derniéres propositions sont presque les mémes, le résultat important est I'équivalence

(i) & (ii).

Démonstration

On va démontrer (i)<(ii) et (ii)<(iii) (pour bien mettre en avant le fait que c'est la premiere
implication qui est fondamentale.

o | (i)=(ii) | Supposons que M = sup(A).

. Déja, M majore A.
. Ensuite, soit € > 0. Si on avait

Vx €A M—¢e>x,

alors M — € serait un majorant de A strictement supérieur a M, absurde! Donc on dispose
de ac Atel que M —e < a.
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Mais a € A donc a < M, donc, finalement,

M—-—e<as< M.

o | (ii)=(i) | Supposons (ii).

. Déja, M est un majorant de AcarVx € A, x < M.

. Ensuite, soit N un autre majorant de A. Si on avait N < M, alors en notant € =

e>0et N=M-—-2e< M —c¢.

Mais alors, par (ii), on dispose de x € A tel que M — ¢ < x, donc N < x, absurde !
Donc N > M.
Donc M est bien la borne supérieure de A.

Démontrons alors I'autre équivalence.

o | (ii)=(iii) | Supposons (ii).

. Déja, M est un majorant de A doncon abienVx e A, x < M.
. Ensuite, soit € > 0. Alors on dispose de x € A tel que

M—-—e<x<M<M+e,

donc |x — M| < e.

° (iii)_:>(ii) Supposon§ (iii). _
. Déja, M est un majorant de A donc on a bien ¥x € A, x < M.
. Ensuite, soit € > 0. Alors on dispose de x € A tel que |[x — M| < €. Alors

M—-—e<x< M+e,

Mais M majore A donc x < M. D'ou (ii).

[Proposition 7 (Une définition alternative de la borne inférieure)]

Soit A C R, non vide. Soit m € R. Les assertions suivantes sont équivalentes
(i) m=inf(A),
(i) Vvxe A, x<mAVe>0,Ja€ A m—e<asm,
<

(iii) Vx € A, x< mAVe>0,3a€ A |m—a| <e.

Exemple 8
1
Soit A= o nE N*}. Démontrons que 0 = inf(A).

Déja, pour tout a dans A, 0 < A.
Ensuite, soit € > 0.

e broullon.. |

1 .
On cherche n tel que — > ¢, i.e. n >
n

™| =
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1
€

1
donc 0 < —
n

1
Posons n = LJ + 1. Alors n > <e.

Donc 0 = inf(A).

On rappelle que I'on a vu 9 types d'intervalles dans R :

R, | — o0, b], | — o0, b], [a,+oo], ]a,+oo], ]a, bl, ]a, b], [a, b[, [a b].

f_| Définition 9 Y

Un ensemble T de R est un intervalle si et seulement s'il vérifie la propriété suivante :

Vix,y)€I?, (x<y)= ([x.y] CI).

Remarque 10 )

Cela veut dire que I'ensemble est « sans trou ».

(. J

[Proposition 11 (Précision de la proposition précédente)

Soit T une partie R, non vide, vérifiant V(x,y) € I?, (x <y) = ([x,y] CI).
(i) si I n'est ni majoré, ni minoré, alors I = R.
(i) si I est majoré, non minoré, soit b = sup(I)
esibel, I=]—o0,b],
esib¢l I1=]— oo, bl

(i) si I est minoré, non majoré, soit a = inf(I),
esiacl I=][a +o0],
esiagl I=]a +oof

(iv) si I est borné, soit a = inf(I) et b = sup(I).
esiacletbel I=]a b,
esiad¢letbel I=]a, b,
esiacletbel I=]a b,
esiad¢letbd¢l I=]a, b

Démonstration

(i) si I n’est ni majoré, ni minoré, démontrons que I = R. Déja, I est clairement inclus dans R.
Ensuite, soit x € R. Comme I n'est pas majoré ni minoré par x, on dispose de o € I tel que
a< xetdeBeltel que x <.

Mais comme I est un intervalle, o, 3] C I, donc x € L.
Donc, par double inclusion, I = R.

(ii) si I est majoré, non minoré, soit b = sup(I)

e si b eI, montrons que I =] — oo, b).
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— déja, pour tout x dans I, x < b, donc I C] — o0, b].
— ensuite, soit x €] — oo, b]. Alors comme I n'est pas minoré, on dispose de o € 1
tel que a < x. Mais comme « et b sont dans I, [a, b] C 1, donc x € 1.
Donc, par double inclusion, T =] — oo, b].
e si b ¢ 1, montrons que I =] — oo, b|.
— déja, pour tout x dans I, x < b, et x # bcar b ¢ I, donc x < b, donc I C]—o0, b|.
— ensuite, soit x €] — oo, b].

Alors comme I n'est pas minoré, on dispose de a € I tel que o < x.
De plus, si I'on note € = b — x, par définition de b = sup(I), on dispose de B € 1

telque b—e<B < b, ie. x<B.
Mais comme o et 3 sont dans I, [, 8] C I, donc x € L.

Donc, par double inclusion, I =] — oo, b].
(i) si I est minoré, non majoré, soit a = inf(I),
e si a1, montrons que I = [a, +oo],
— déja, pour tout x dans I, x > a, donc I C [a, +o0l.
— ensuite, soit x € [a, +00[. Alors comme I n’est pas majoré, on dispose de 8 € 1
tel que B > x. Mais comme a et 3 sont dans I, [a,6] C I, donc x € L.
Donc, par double inclusion, T = [a, +oc].
e si a ¢ 1, montrons que I =]a, +o0l.
— déja, pour tout x dans I, x > a, et x # acar a ¢ I, donc x > a, donc I C]a, +ocl.

— ensuite, soit x €]a, +ool.
Alors comme I n'est pas majoré, on dispose de B €I tel que B > x.
De plus, si I'on note € = x — a, par définition de a = inf(I), on dispose de a € 1

telquea<a<a+te ie a<x.
Mais comme « et B sont dans I, [o, 8] C I, donc x € 1.
Donc, par double inclusion, I =]a, +o0.
(iv) si I est borné, soit a = inf(I) et b = sup(I).
esiacletbel,
— déja, par définition d'un intervalle, [a, b] C L.
— mais comme I est minoré par a et majoré par b, I C [a, b].
Donc I = [a, b]
esiad¢letbel 1=]a, b,
— D¢ja, pour tout x dans I, a < x < b car a minore I mais a ¢ I, et b majore L.
— Ensuite, si x €]a, b], si I'on note € = x — a, par définition de a = inf(T), on dispose

deaecltelquea<a<a+e, ie a<x.
Donc a < x < b. Comme I est un intervalle, [o, b] C I, donc x € 1.

D’ou, par double inclusion, T =]a, b].
esiacletb¢l I=]a b,
— D¢ja, pour tout x dans I, a < x < b car b majore I mais b ¢ I, et a minore 1.
— Ensuite, si x €]a, b], si I'on note € = b—x, par définition de b = sup(I), on dispose

deBeltelque b—e<B<b ie x<p.
Donc a < x < 8. Comme I est un intervalle, [a,8] C 1, donc x € 1.

D'oti I = [a, b[ par double inclusion.
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esia¢letbd¢l I=]a bl

— D¢ja, pour tout x dans I, a < x < b car a minore I mais a ¢ I, et b majore I mais
bé¢l

— Ensuite, soit x €]a, b|.
Si I'on note € = x — a, par définition de a = inf(I), on dispose de a € I tel que
a<a<a+te ie a<x.
Si I'on note & = b — x, par définition de b = sup(I), on dispose de 8 € I tel que
b—e <B<b ie x<p.
Donc a < x < 8. Comme I est un intervalle, [a, 8] C I, donc x € 1.

Définition 12
On appelle intervalle ouvert de R tout intervalle d'une des formes suivantes

R, ] — oo, b[, ]a, +oo[, ]a, b].

[Proposition 13 (Une propriété des intervalles ouverts)}

Soit I un intervalle ouvert de R. Alors

vxel In>0, [x—nx+nCL

Démonstration

e si]l =R, c'est évident.

e sil =] —oo, bl avec b € R, soit x € 1. Notons € = b — x. Alors en posant n =
x+nm<x+e=b,donc[x—nx+n CL

N| ™

. . €
e si I =]a, oo, avec a € R, soit x € I. Notons € = x —a > 0. Alors, en posant n = >
a=x—g<x-—m,donc[x—mx+n CL

e sil=]a b[, soit xel
Notonse=x—a>0ete =b—x>0.

1 .
Posons n = Emm(s,s’). Alors
a=x—e<x—netx+n<x+e=b>b.

Donc [x —m,x+n] CL

Proposition 14

Soit A C R. Les assertions suivantes sont équivalentes
(i) Pour tout intervalle T non vide de R ouvert, IN A # (.
(i) VxeR, Ve >0, dJa€ A, |[x—a|]<e.
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Définition 15

Lorsque I'une des propositions précédentes est vérifiée, on dit que A est dense dans R.

Démonstration

On suppose la premiére proposition. Soit x € R, soit € > 0.
Notons I =]x — ¢, x + ¢[.

1+ () donc, parm INA#0, doncon dispose de a € Atel que a€l, ie.
X—e<a<x-+e.

Donc |a — x| < € donc |a — x| < g, d’ou [(ii)]
On suppose@l

Soit I un intervalle ouvert non vide de R.

Soit x € I. On dispose de 7 > 0 tel que [x —n,x+n] C L.
Par[(i0)] on dispose de a € A tel que [x — a| < 7.

Mais alors a € [x —n,x+mn] C1, donc a € L.

Donc IN A # 0.

Notre but est alors de démontrer que Q et R\ Q sont denses dans R.

s Définition 16 )
Un nombre réel d est dit décimal s'il existe n dans N tel que 10"d soit entier. On note D
I'ensemble des décimaux :

D={; p€Z neN}.

|10"x]
107 -

Si x € R, I'approximation décimale par défaut de x & 10™" prés est la quantité

Exemple 17

Proposition 18

Les nombres rationnels, ainsi que les nombres irrationnels, sont denses dans R.

Pour démontrer cette propriété, on va avoir besoin de deux lemmes.

Soit x € R, N € N. Alors 10"x — 1 < |10"x] < 10"x,

|10"x|
- g L2 ¢
donc x 110” \Llonloj” <X
X
- < <
donc o7 S 100 <X
Donc
[10"x| 1
X — < )
107 10”7
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Démonstration

| La preuve est déja dans I'énoncé! B

Soitae Q, be R\ Q. Alors
e a+beR\Q,
esia#0, abeR\Q.

Démonstration
Notons c = a+ b et d = ab.

e si c était dans QQ, alors b = ¢ — a serait dans Q, absurde!

d
e si d était dans Q et a # 0, alors b = 3 serait dans Q, absurde!
|

Pacennc alare 3 |3 démonstration de la proposition.
Démonstration

(i) Soit xeRete>0.

On va utiliser I'approximation décimale : on sait que

|10"x] 1
X — S
10”7 107
1 , 1
On veut donc avoir Ton < e, i.e. n>logqg z )
1
Posons n = |—logy(€)| + 1. Alors n > —log;,(€), donc 10" > - donc 107" < €.
[10"x]
Notons g = o Alors g € Q et
< L <
|X - CJ| X 10n K €.

Donc Q est dense dans R.
(i) Soit x e Rete >0

e sixeR\Q, onposey=x.Alorsy e R\Qet|x—y|l=0<e.
e sixeqQ,




MPSI 1 Pasteur 2025-2026 N. Laillet

Réels et suites nlaillet.math@gmail.com

2 2 2

Posons n = LIJ + 1. Alors n > £ I.e. £ <e.
€ € n

2 2
Posons y = x + % Alors % ¢ Qetdoncy ¢Q, et

2

ly — x| = % <e.

Donc R\ Q est dense dans R.

Remarque 21

Remarquons que I'on a en fait démontré que D était dense dans R. Mais on a la propriété
(simple a démontrer) suivante : si A C B et A est dense dans R, B est dense dans R.

2 Suites et convergence

2.1 Généralités

Définition 22

(i) Une suite réelle est une application de N dans R. On note leur ensemble RY.
(i) SiucRY, on note u= (u,)nen-

,—‘ Remarque 23 D

. . . 1
(i) On peut considérer des suites définies sur N*, sur N\ {0, 1}, etc. Exemple : <> ,
neN*
(In(In(n))) nenfo.13, €te.
(ii) (un)nen est une suite, la variable n est muette. On peut écrire (Un)nen = (Up) pen-
En revanche, u, est un réel. La variable n est libre, elle a di étre déclarée auparavant.

,—[Remarque 24 (Remarque importante)}

Une suite peut étre définie de plusieurs maniéres :

e de maniére explicite, en donnant, pour tout n, une formule. Exemple :

n!
27N (ﬂ)n'

€

Soit (up)nen la suite réelle définie par : Vn € N, u, =

e de maniére implicite, le terme v, étant I'unique solution d'une équation dépendant
d'un paramétre n. Exemple :

Soit, pour tout n dans N, x, I"'unique solution positive de I'équation x"” + nx = 1.

(question : pourquoi a-t-on existence et unicité d'un tel réel ?)
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|
e par récurrence. C'est une des maniéres fondamentales de définir une suite réelle. On
peut définir une suite par récurrence (simple/double/forte). Exemple :

1
1+u,

Soit (Un)nen la suite définie par ug = 1 et, pour tout entier naturel n, upy1 =

ou bien

Soit (Fp)nen la suite définie par Fo = 0, F; = 1 et, pour tout entier naturel n,
Fn+2:Fn+1+Fn-

(. J

2.2 Suites majorées, minorées

f_| Définition 25 Y

Soit (Up)nen € RY, A I'ensemble des termes de la suite : A= {u,, n € N}.

(i) (un)nen est dite majorée si A est majorée, i.e. ssi

IMeR, VheN, u, <M.

(ii) (un)nen est dite minorée si A est minorée, i.e. ssi

dneR, VneN, m< u,.

(iii) (up)nen est dite bornée si elle est majorée et minorée.

Proposition 26

Soit (un)nen une suite réelle. Alors (uy,)nen est bornée si et seulement si (|uy|)nen est majorée.

s Définition 27 )

Soit (un)nen une suite réelle. La suite (u,)nen est dite croissante (resp. décroissante) si
Y(m,n) € N2, (m < n) =ty <, (resp um < up).

Dans le cas d'inégalités stricte, la suite est dite strictement croissante (ou strictement dé-

croissante).
Si une suite est (strictement) croissante ou décroissante, on dit que la suite est (strictement)

monotone.

Proposition 28

Soit (Un)nen une suite réelle. La suite (up)nen est croissante (resp. décroissante) ssi Vn €
N, Unr1 = u, (resp. Vn €N, upp1 < up).
La proposition s'adapte a la stricte croissance ou a la stricte décroissance.
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Démonstration

C'est simplement une récurrence. B

Remarque 29

Attention, ceci est trés faux pour des fonctions réelles! Si f : x — sin(27x) 4+ x, f n'est pas
. 1 5 3 1

croissante (on peut remarquer que f <4) =7 alors que f (4) = _Z) alors que pour tout

x, f(x+1)> f(x).

[Point de méthode 30]
Pour vérifier la monotonie d'une suite, il y a essentiellement quatre possibilités :

(i) La suite (up)nen est définie par u, = f(n), et on connait les variations de f.
o o o 2
Exemple : étudier les variations de u, = ™ ~".

(i) On étudie le signe de upr1 — Up.

ey . u
(iii) Si pour tout entier n, u, # 0, on compare ntl
u

. o 2n
Exemple : étudier les variations de u, = ( )
@ Il faut faire attention au signe de la suite?

(iv) Si la suite (up)nen est définie par une relation de récurrence up+1 = g(u,), on peut
utiliser une des deux techniques précédentes (on verra cela plus en détail par la suite).

. Définition 31 )
Soit une propriété Z2(n) indexée sur les entiers naturels. &2 est dite vraie a partir d'un certain
rang (et on notera apcr) si

N > 0,Vn = N, Z(n) est vraie.

Remarque 32

Il faut toujours pouvoir expliciter ce que signifie « a.p.c.r. » et notamment pouvoir déclarer
un rang a partir duquel telle propriété est vraie.

Définition 33

Une suite réelle (u,)nen est dite stationnaire si elle est constante a partir d'un certain rang,
i.e. si
dJK eR, INeN, Vn> N, u, = K.

Exemple 34
. 3 . .
Montrer que la suite — est stationnaire.
n neN
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2.3 Limites de suites

f Définition 35 \

(i) Une suite de réels (up)nen converge s'il existe un réel £ tel que

Ve > 0,IN € N,Vn > N,

u, — £ < e.

Dans ce cas, on dit que u, tend vers £ quand n tend vers +oo, ou bien que £ est une

limite de (up)nen et on note u, — 4.
n—-+oo

(ii) Une suite de réels (u,)nen diverge vers 400 si
YMeR INeN V=N, u, > M.

Dans ce cas, on dit que u, tend vers +oo quand n tend vers +oo, ou bien que +oo est

une limite de (un)nen €t on note u, — +o0.
n—+oo

(iii) Une suite de réels (u,)nen diverge vers —oo si
VmeR, AN eN,Vn> N, u, < m.

Dans ce cas, on dit que u, tend vers —oo quand n tend vers +oo, ou bien que —oo est

une limite de (u,)nen €t on note u, —> —oo.
n—-+oo

,—‘ Remarque 36 )

(i) On rappelle que dans les propositions précédentes, Vn > N cache une implication :
VneN, n>N=..

(ii) Ces notions font naturellement intervenir la notion de « proposition vraie a partir d'un
certain rang » : dire que u, — £ signifie que
n—-+o0o

Ve > 0, |u, — £] < € a partir d'un certain rang

(iii) On peut, sans perte de généralité ou restriction supplémentaire, remplacer
e «Ve>0»par «Ve €]0,1]» ,
o «VYMeR» par « VM >0» ,
o «VmeR» par « Vm < 0» .

On peut démontrer facilement les équivalences entre les propositions a chaque fois.

Exemple 37

(i) Démontrons que 2n> +3 — +4o0.

n—+oo
Soit M € R.
Alors on a les équivalences suivantes

M -3

2P +3>Men? > >
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M -3
Posons alors M’ = max <2,0> et N = {\/ N’J +1.

M—-3
Soit n > N. Alors n? > donc 2n®> +3 > M.

Donc2n+3 — +4o0.

n—-+o0

(ii) Démontrons que
Soit € > 0.

7 o boullon..|

Plutét que de faire des équivalences comme ci-dessus, on peut aussi rechercher
au brouillon. On a

—
1+e" n=doo

no 1
<e&sl+te 25

1L 4@

¢>e”>11«<$>n>ln<11> »
“ € - €

La derniére équivalence n'étant pas tout a fait vraie car on ne sait pas si ce
qu'il y a dans la parenthese est > 0.

1
Posons A = max (e -1, 1>. Posons alors N = [In(A)| + 1. Soit n > N.

1
Alors n > In(A), donce”" > A > P 1.
Donc <e.
14en
Donc

—
1+ e n—too
(iii) (+ dur, mais méthode intéressante!) Démontrons que (Up)pen = ((—1)")pen n'a pas
de limite.

e déja, ((—1)")en ne diverge pas vers + ou —co. En effet, on écrit déja la négation
de «u, — +oo»:
n—-+o00

IMeR, VNeN, d3n=2 N, u, < M.

Posons M = 2. Alors |foralIN € N, uy < 2, donc (u,)nen Ne tend pas vers +oo.
De méme, (u,)nen Ne tend pas vers —oo.

e ensuite, démontrons que ((—1)"),en ne tend pas vers une limite réelle. Supposons,
par I'absurde, que cela soit le cas. Alors on dispose de £ € R telle que :

Ve>0, ANEN, Vn> N, |u, — £ <e.

L'idée est alors de se dire que si (u,)nen cOnverge, alors u,11 — U, tend vers 0.

1 :
Posons ¢ = 5 Alors on dispose de N € N tel que Vn > N, |u, — 4] < €.
En particulier,

luysr — un] = luys1 — 24+ L€ —un| < |luys1 — 4+ 16— uy| <e+e=1.

Or,
lunsr — un| = \(—1)N+1 - (_1)N| =2,

ce qui est absurde! Donc la suite ne converge pas.
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Définition 38
On appelle R la droite réelle achevée, i.e. R = RU {—oo} U {+oc}.

Proposition 39
Soit (Up)nen € RY, £ € R telle que u, — 4.
n—+

oo

Si ¢ € R vérifie u, — ¢, alorsf=1¢".
n—-+oo

Définition 40

On dit alors que £ est LA limite de (un)nen €t on note lim wu, = £.
—+00

n—+

Démonstration

Supposons que £ # £ et aboutissons a une absurdité.

e Cas ou £ et ¢ sont réelles. Comme £ # ¢, on peut supposer, sans perte de généralité,
que < ¢
On sait, par convergence de (u,)qen vers £ et £, que

Ve>0, ANeN, Vn2 N, |u,— ¥ < ¢,
Ve>0, ANeN, Vn= N, |u, —¥|<c¢

L'idée est alors de faire en sorte que u, soit, pour n assez grand, dans deux zones disjointes.
/

Alorsl+e<l —e.
(eneffet, £/ —e—£L—e=¢>0)
Par convergence de (un)nen vers £, on dispose de N € N tel que Vn = N, |u, — €] < €.

Par convergence de (u,)nen vers £, on dispose de N’ € N tel que Vn > N/, |u, — ¥'| < €.
Posons N = max(N, N'). Alors si n > N”,

Posons € =

lup — £ < € et |u, — £ <,
donc, en particulier, u, <£+¢eetd —e < u,, donc
up <€b4+e<l—e< uy,

donc u, < u,, absurde! D'ou le résultat.
e SilcRetd =400, alors

Ve>0, ANEN, Vn= N, |u,— ¥ < ¢,
YVMeR, ANeN, Vn= N, u, > M.
Prenons € =1 et M = |[£| 4+ 2. Alors on dispose de N € N tel que
vn>= N, |u, — £ <e,

et de N € N tel que
Vo= N, up > M

>
Posons N’ = max(N, N') et prenons n > N”. Alors

lupl = up — L4+ 8] < Ju, — 2|+ 18 <1+ 4.

Donc u, < 1+ [£]. Mais en méme temps, u, > M = 2 + |£], absurde !
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o SilcRetd =—co, on fait de méme.
e Sil=—o00 et { = +o0, on fait de méme, en prenant m= —1et M = 1.
|

,—‘ Remarque 41 N

@ (i) Ne JAMAIS DIRE « La limite de (u,)nen tend vers £» , mais dire

« La limite de (up)nen est £ »
ou
« (Un)nen tend vers £ »

(i) Dans lim wup, n est muette.
n—-+oo

@ (i) Ne JAMAIS ECRIRE Iirr Up = Vp OU Up —+> vp. La chose vers laquelle on tend
n——+oo n——+oo
doit étre indépendante de n.

Proposition 42

Soit (Un)nen une suite de réels, £ un réel. Les ASSE
(i) lim u,=1¢

n—+oo

(ii) nﬂrroo |u, — €| = 0.

Démonstration

On va raisonner par équivalences! On a les équivalences

im up=£<VYe>0, INEN, Vn= N, |u,— £ <e

n—-+00
oVe>0, INEN, Vn> N, ‘|un—£\—0‘<£

lim |u, —£] =0.
n——+oo

Corollaire 43

Soit (Up)nen Une suite de réels. Alors u, — 0 si, et seulement si |u,] — 0.
n—-+oo n—+oo

Proposition 44

Toute suite convergente est bornée.

Démonstration

Soit (up)nen une suite réelle convergente, £ sa limite. Alors

Ve>0, ANEN, Vn> N, |u, — £ <e.
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e Prenons € = 1. Alors on dispose de N € N tel que Vn > N, |u, — 4| < €.
Alors, sin> N,

[up| = |up — L+ 2| < |up— €|+ €] =14+ .

Probleme, on n'a pas majoré tous les termes de la suite, mais seulement ceux apreés le rang
N.

o L'ensemble {u,, n € [0, N — 1]} est une partie finie de R donc est borné. Donc on dispose
de M > 0 tel que pour tout n dans [0, N — 1], |u,| < M.

e Posons M’ = max(M, 1+ |£]). Soit n € N.
— sin< N—1, alors |up| < MK M,
— sin> N, alors |uy| <1+ 4 <M.

Donc (Un)nen est bornée par M'.

Exercice 45

Montrer que la suite (—1)".n ne converge pas. ]

Remarque 46

Attention! La réciproque est fausse! Par exemple (—1)". ]

Proposition 47

Soit (us)nen Une suite convergeant vers un réel £, et a tel que £ < a. Alors u, < a apcr.

Démonstration

Supposons £ > a.
{—a
Prenons € =

Alors on dispose de N € N tel que Vn > N, |u, — 4| < €.

Soit alors n > N. Alors £ —e < u, <l +e¢.

Donc

f—a (L+a ata

zl—e=4—
un£5£2 2>2

doncVn>= N, u, > a.
Donc u, > a a partir d'un certain rang. B

Corollaire 48

Soit (up)nen Une suite de réels qui converge vers un réel £.
e si ¢ >0, alors u, > 0 apcr,

e si{ <0, alors u, <0 apcr.
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Remarque 49

: = s . . -1\" .
Il faut avoir des inégalités strictes. Par exemple, si u, = (2 , alors uj, —+> 0 mais
n——+oo

(Un)nen Nn'est pas de signe constant.

Corollaire 50

Soit (up)nen Une suite convergente, £ sa limite. Alors |u,| — |4].
n—-+oo

Démonstration

e si £ =0, alors on a déja démontré que |u,] — 0.
n—-+o00

e si >0, alors, par la proposition précédente, on dispose de N € N tel que pour tout n > N,
up, > 0.
Soit € > 0. Alors on dispose de N’ tel que pour tout n > N', |u, — £] < €.
Notons N = max(N, N). Soit n > N”. Alors, comme u, > 0 et £ > 0,

[lunl = 18l] = lua — ] <ce.

Donc |uy| 2 |2].
n oo

e si £ < 0, alors, par la proposition précédente, on dispose de N € N tel que pour tout n > N,
u, < 0.
Soit € > 0. Alors on dispose de N’ tel que pour tout n > N', |u, — ¢ < €.
Notons N = max(N, N). Soit n > N”. Alors, comme u, > 0 et £ > 0,

[lon] = 1] =1 = v+ 8] = |y — £ <.

Donc |up| — |4].
n—-+oo

Exercice 51

Soit (Up)nen € ZY. On suppose de (u,)nen converge. Montrer que (u,)qen est stationnaire. ]

3 Meéthodes de détermination de limites

3.1 Opérations sur les limites

[Proposition 52 (Opérations sur les limites finies)j

Soient (un)nen et (va)nen deux suites convergentes, £ et £ leurs limites respectives, A et
deux réels.

(i) La suite (Au, + wvy)nen est convergente et Iirr (Aup + wvy) = M+ ul.
n——+oo

(ii) La suite (u,va)nen est convergente et lim (u,v,) = 24
n—-+oo

. . ) 1
(iii) Si £ # 0 alors on dispose de N dans N tel que Vn >, u, # 0, la suite (u) est
n>N

n
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. 1 1
convergente et lim — = —.
n—+oo Up

Démonstration

L’idée de ces preuves sera toujours la méme : on essaie de d'abord faire des majorations en
fonction de |u, — £| et |v, — £|, puis on choisit notre N en fonction de la majoration que I'on a
faite.

(i) On va séparer ce résultat en deux :

e convergence de (up + Vp)nen. Soit € > 0. Soit n € N. Alors

lun+va— @+ 2)] = |ug— L+ v, — €]
<up =4 + v — 2.

Donc si on fait en sorte que |u, — £| et |v, — £| soient inférieurs ou égaux a €’, on aura
gagné!
, €
Prenons €' = —.
Par convergence de (up)nen vers £, on dispose de N € N tel que pour tout n > N,

|u, — € < €.
Par convergence de (v,)qen vers £, on dispose de N/ € N tel que pour tout n > N/,
v, — 2| < €.

Posons N’ = max(N, N').
Soit n > N”. Alors

£
[(tn+v0) = €+ ) < Jun =)+ |vo = & <& +€ =25 =e.

Donc u, +v, — £+Z¢.
n—+oo

e convergence de (Avy)nen. Déja, si A = 0, la convergence est évidente. Ensuite, si
A # 0, on remarque que
[Aup — M| = |A].|up — £
. € .
Soit € > 0. Posons &' = m Alors par convergence de (u,)nen Vers £, on dispose de
N € N tel que pour tout n > N,
Soit n > N. Alors

u, — 4 < €.

Atn — M| = |M|up, — £ = [N = €.
D'oll la convergence de (Au,)nen vers AL.
Donc, en combinant les deux résultats précédents, (Au, + pv,)nen converge bien vers A+
wl.
(ii) Soit € > 0. Soit n € N.
[Unvin — 28| = upvy — Lvy + Ly, — 22|

< |tnvy — Lvp| + |8y, — £2']

< |Vn|-|un - e| + ‘eHVn - £/|
Or, (Vn)nen est convergente, donc (|v,|)nen est bornée par un réel M. Posons alors M’ =

max(M, |£]) + 1. Alors M" > 0, |£] < M’ et pour tout n dans N, |v,| < M.
Donc, pour tout n dans N,

|uavn — 28] < M |up — & + M v, — 2'].
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(iif)

)

2M°
Par convergence de (u,)nen Vvers £, on dispose de N € N tel que pour tout n > N, |u,—£] <
/
e.
Par convergence de (V,)nen vers £, on dispose de N € N tel que pour tout n > N,
lv, — €] < €.
Posons N = max(N, N'). Soit n > N”. Alors

Posons alors &' =

lugv, — | < M e + M € =€,

d'ou la convergence de (upVp)nen vers £4.

Comme u, —> £#0, u, # 0 a partir d'un certain rang, notons-le N.
Soit n > N. Alors

1 1‘_|€un|

ur L uallel
Or, up, el £ donc |u,7| |£| > 0.
g > |2| donc on dispose de N’ € N tel que Vn > N, |u,| > U Alors, pour tout
> max(N, N'),
1_1‘ _ 1€ — uy| < 1€ — uy|
up L] [l unl T (e
EZ
Posons &' = ﬂ

Alors on dispose de N” € N tel que Vn > N”, |u, — £| <
Posons N = max(N, N', N"). Soit n > N"’. Alors

carn> N

1 1’_2(Zun|

u L e[
2¢’

g@ﬁ&.

1 1
D"ou la convergence de () vers —.
Un neN £

Remarque 53

Attention, les réciproques des propositions précédentes sont fausses! Par exemple, si pour
tout ndans N, u, = (=1)" et v, = (—=1)", alors (u, — vs)nen converge (elle est constante
égale a 0) mais aucune des deux suites ne converge.

Exercice 54

Soit (up) et (v,) deux suites réelles telles que (u, + v,) et (u, — v,,) convergent.
Montrer que (u,) et (v,) convergent.
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[Proposition 55 (Régles de manipulation avec des limites infinies.)]

Soient (Uy)nen €t (Va)nen deux suites réelles. Alors on a le tableau de convergence suivant

1 geR | 4o 0
Vi
(i) somme:| ¢ €R L+ 4 +00 —00
400 400 400 F.l.
—00 —00 F.l. —00
Up * *
y LeR] | LeRD 0 +00 —00
n
¢ eRY o 17 0 +00 —00
(ii) produit :| £ € R* o o0 0 —00 +00
0 0 0 0 F.l. F.l
+o00 400 —00 F.l. +00 —00
—00 —00 +00 F.l. —00 +00
(i) inverse : ly | EGIR 0 o0 >
1/¢ F.l. 0 0

Dans cette proposition le symbole F.l. signifie « Forme indéterminée » , c'est-a-dire que’on
ne peut pas appliquer directement les regles classiques d'opérations sur les limites.

Démonstration
On ne va faire que quelques preuves.

(i) Siu, — £€Retv, — +oo0, montrons que u, +v, —> -+oo.
n—-+oo n—-+4o0

n——+oo
Soit M € R.
(un)nen converge donc est bornée, et, en particulier, est minorée. Soit o un minorant de
(Un)nGN-

Alors pour tout ndans N, u, + v, > o+ v,.
Prenons M' = M — a. v, T, TR donc on dispose de N € N tel que Vn > N, v, > M'.
Soit n > N.
Alorsu,+ vy, 2 a+M=a+M—-a= M.
Donc u, +v, — +o0.
n—-+oo

(ii) Siu, — +ooetv, — £<0, démontrons que u,v, — —o0.
) n—-+o00 n—-+oo n—-+o0o
Soit m < 0.

¢ < 0 donc 5 > £, donc, comme v, —+> £, on dispose de N € N tel que pour tout n > N,
n—-+oo

vy, <

5.

. . , MZ i m?2
L’idée est alors que si up, > M, upv, < - il faut donc — < m, i.e. M > i

2m
Posons M = — > 0. Alors, par divergence vers +oo de (U,)nen, on dispose de N’ € N tel
que pour tout n > N, up, > M.
Posons N = max(N, N').
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. L
Soit n > N”. Alors u, > M et v, < 5 < 0. Alors

Me
UpVp < 7 =m.

donc u,v, — —o0.
n—-+00

Proposition 56
Soit (Up)nen € RY une suite bornée et (v,)qen € RY de limite nulle. Alors

upv, — 0.
n—+oo

Démonstration

(Un)nen est bornée donc on dispose de A > 0 tel que Vn € N, |u,| < A.
Soit € > 0. Pour tout n € N, |u,v,| < A.|v,l.

Posons &' = %

Alors on dispose de N € N tel que Vn € N, |v,| < €.

Alors Vn > N, |u,v,| < A’ = €.
D'ou le résultat. A

Proposition 57 (Limites et inverse)]

Soit (Un)nen une suite de réels non nuls tendant vers 0.

. . 1 . .
(i) si u, est de signe constant apcr, (u) tend vers +0o0 ou —oo, suivant le signe.
n/ neN

: 1 o
(i) sinon, () n'a pas de limite lorsque n tend vers 4oco.
Un neN

Exemple 58
1
<> — 0 mais (—2)" n'a pas de limite en 0.

2N | p—s4oo

Une question naturelle est alors de savoir comment « déterminer » les formes indéterminées, qui
sont au nombre de trois (ou cing, selon qu’on met ensemble ou pas trois F| équivalentes) : co— oo,

: 0
> (équivalent a = et 0 x c0), et 1*°.
00 0

[Point de méthode 59}
Quelques méthodes de déterminations de limites de formes indéterminées.
(i) Limites des suites géométriques. Si p € R,

+oosip>1
— lsip=1
Osilpl <1
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Sip< —1, (0")nen n'a pas de limite et n'est pas bornée. Si p = —1, (p")nen n'a pas
de limite mais est bornée.
(ii) Limite d'un polynéme : la limite d'un polynéme en +o00 ou —oo est égale a la limite de

son coefficient dominant. )

) . . n—n*-=2n
Exemple : déterminer lim -
n——oco N3+ 4n+2
(iii) Limites incluant des racines carrées : penser a utiliser la quantité conjuguée.
Exemple : déterminer lim +vn+1—+/n.
n—-+o0o
(iv) Penser a reconnaitre des taux de variation, et donc des dérivées.

. . at
Exemple : déterminer lim nsin ()

n—-+oo n
(v) Cas 1% : penser a écrire a® = ™3 et utiliser la proposition qui suit.

o 1\" X\ "
Exemple : limite de (1 + n) , de (1 + E) .

La proposition suivante ne sera pas prouvée car on n'a pas encore parlé de limites de fonctions
(on peut toutefois un peu deviner a quoi cela va correspondre).

[Proposition 60 (Limites et composition de fonctions)]

Soit (un)nen Une suite convergeant vers une limite £ de R, f une fonction telle que

limf(x)=1¢, ¢ eR.

xX—

Alors la suite (f(un))nen converge vers £

3.2 Limites et inégalités

[Proposition 61 (Passage a la limite dans les inégalités)]

Soient (Un)nen €t (Va)nen deux suites réelles convergeant respectivement vers des réels £ et
e/
Si u, < v, a partir d'un certain rang, alors £ < ¢'.

Démonstration

Soit N tel que pour tout n > N, u, < v,.
Sion avait £ > 2. )

Prenons ¢ = —3 Alors, en particulier, £ +¢ < ¢ —¢.

n—+oo

Comme v, - 2, on dispose de N” € N tel que pour tout n > N, ¢ —
n——+oo

Soit n = max(N, N', N"). Alors

Comme u, — £, on dispose de N/ € N tel que pour tout n > N, £ — € <
€

Upz2l—e>l+e>v,.

Donc Vn = max(N, N', N"), u, > v,, ce qui contredit le fait que u, < v, a partir d’un certain
rang. Absurde, donc £< ¢. I
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Remarque 62

. . : : . 1 1
@ (i) Attention, les inégalités strictes ne passent pas a la limite ! Exemple de 1 — - et 1+ e
(ii) Attention, la réciproque de l'inégalité précédente est fausse! Si lim wu, < lim v,

n—+oo n—+o00

on n'a pas la garantie que u, < v, apcr.

Proposition 63
Soient (Un)nen, (Va)nen €t (Wh)nen des suites réelles.
(i) (Théoréme de majoration) Si u, < v, a partir d'un certain rang et v, — —o0, alors
n

—+00
u, —— —0Q.
n—-+o00

(ii) (Théoréme de majoration) Si u, < v, a partir d'un certain rang et u, — o0, alors

n—+oo
Vp, — —+o00.
n—-+oo

(iii) (Théoreme d'encadrement) Si u, < v, < w, a partir d'un certain rang, si £ € R, si

u, — Letw, — £ alors (v,)nen converge et v, — £.
n—-+oo n—-+oo n—-+oo

Démonstration

(i) Soit N € N tel que pour tout n = N, u, < v,,.
Soit m € R. On dispose de N’ € N tel que pour tout n > N', v,, < m.
Alors si N = max(N, N'), pour tout n > N”, u, < v, < m.

Donc u, — —oo.
n—+oo

(ii) Soit N € N tel que pour tout n > N, u, < v,,.
Soit M € R. On dispose de N € N tel que pour tout n > N’, u, > M.
Alors si N = max(N, N'), pour tout n > N", v, > u, > M.

Donc v, — +oo0.
n—-+o00

(iii) Soit N € N tel que pour tout n > N,
Up < Vp < Wy

Soit € > 0.

Comme u, - £, on dispose de N' € Ntel que :Vn> N, £ —e<u, <L +e.
n—-—+oo

Comme w, = £, on dispose de N" ¢ Ntel que :vn>N" £ —e<w,<{l+e.
n—-+o0o

Posons N = max(N, N, N"). Soit n > N". Alors

L—e<u, <V <w, <l+e,

doncl—e<w,<Ll+¢g e |w,— £ <e.
Doncw, — £.
n—-+o0o

Remarque 64

(i) On utilise souvent implicitement le théoréme d’encadrement pour montrer qu’une suite

(Un)nen tend vers 0, en écrivant |u,| < v, — 0.
n—-+oo
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4 N\

(ii) Plus généralement, pour montrer que u, — £, on montre, par majoration de |u,—#|,
n—-+o00

que |u, — £ — 0.

(iii) La meilleure maniére, en termes de rédaction, d'utiliser les théorémes précédents est
d'écrire « par majoration » , « par minoration » ou « par encadrement ». Eviter d'écrire
le « théoréeme de I'encadrement », qui n'est pas trés élégant.

Exemple 65 (Une limite trés importante !)
n

. 3 X
Soit x € R. Démontrer que — — 0.
n!' n—+oc

Exercice 66

1 1
Démontrer que —— - — 1
g In(n) ; k n—+oco

3.3 Monotonie et limites

Proposition 67
Soit (tp)nen € RY une suite convergente, £ sa limite.
(i) si (un)nen est croissante, alors Vn € N, u, < £.

(ii) si (un)nen est décroissante, alors Vn € N, u, > £.

Démonstration

On ne montre que le premier point! Par I'absurde, si 3N € N tel que uy > £, alors pour tout
n=N, u,—€4>uy—£>0.
En faisant tendre n vers +oo, on obtient 0 < uy — £ > 0, absurde! B

[Proposition 68 (Théoréme de la limite monotone)j

(i) Soit (uy)nen une suite monotone. Alors (up)neny @admet une limite (finie ou pas).
(ii) Soit (u,)nen une suite croissante. Alors
e ou bien (un)nen est majorée et alors (up)nen converge vers une limite finie.

® ou bien (up)pen N'est pas majorée et alors  lim v, = +oo0.
n—-+o00

(i) Soit (up)nen une suite décroissante. Alors
® ou bien (un)nen est minorée et alors (up)neny converge vers une limite finie.

® ou bien (up)pen N'est pas minorée et alors lim u, = —oc.
n—-+oo
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Démonstration

On se place dans le cas ol (u,)nen €st croissante.

® si (Up)pen N'est pas majorée, soit M € R. Comme (up)neny N'est pas majorée, on dispose
de N € N tel que uy > M.
Soit n > N. Par croissance de (Up)nen, Un = Uy = M.
Donc u, — +oc.
n—+oo

® si (Uy)nen est majorée, soit A= {u,, n € N}. Alors A est une partie non vide de R, majorée,
donc elle admet une borne supérieure. Notons-la |e//.
Soit € > 0.
Comme £ = sup(A), on dispose de x € A tel que £ —e < x < 4.
Donc on dispose de N € Ntel que £ — e < uy < £
Soit n > N. Par croissance de (Ux)ken, Up = Uy = £ — €.
Mais comme u, € A, u, < £, donc

L—e<uy<L<l+te, ie |u,— 4L <e.

Donc u, — 4.
n—-+oo

Remarque 69
Ne jamais dire que, si (U,)nen €St croissante majorée, elle tend vers « son» majorant : cela ne
veut rien dire ! Ainsi, (1 - — est croissante, majorée par 2132471+ 2e, mais ne converge
n
neEN

pas vers 213241 + 2e.

Exemple 70

(i) Etude de suites récurrentes. Soit (u,),en Une suite réelle définie par ug > 0 et pour
tout ndans N, up11 = U, + uﬁ. Démontrer que u, —+> +00.
n—-+o0

Démonstration

Pour tout n dans N, t,y1 — t, = 12 > 0, donc (u,)nen est croissante.
Donc, par le théoréme de la limite monotone, u, — £€Rou u, — +oo.
n—-+oo n—-+o0o

Supposons que u, — £ €R.
n—-+oo
Alors tpyy — L et u, +u2 — £+ £2 Mais, comme pour tout n dans N,
n—-+o0o n—-+oo

Upy1 = Up + U2, on en déduit, par unicité de la limite, que £ = £+ £2, donc £° = 0,
donc £ = 0. Ceci est absurde car ug > 0 et (up)nen est croissante.
Donc u, — 4oco. R

n—-+4o00

1 1 1 1
ii) Démontrer quesia>1letn>2, — < — , et en déduire
(i) g - n"‘\oz—1<(n—1)°‘1 n"‘l)
1
que (E na> converge.
k=1 neN

. 1 .
e Déja, comme t — = est décroissante, pour tout n > 2, pour tout t dans

[n—1,n], — < = Donc, en intégrant I'inégalité précédente entre n — 1 et n,
n

"1 "ol
[ la<[ La
n=1" nflt
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donc

1 - 1 1 1
n S a—1\(n—1)t pal )’

n
1
e On note, pour tout n dans N*, S, = Z e
k=1

1

— pour tout ndans N*, S, 1—S, = m

> 0, donc (S,) nen est croissante.

— soit n € N*. On sait que
n
1
Sn=) ta
k=1
"1
=1+>
k=2
- o1 1 1
\1+Za—l (k_l)a—l_ka—l
k=2

1 1 1
< -
\1+a—1z(k—1)°‘—1 ka—1

<14+ L L ! <1+ L
= a—1\1e"1 pa-1l) = a—1"
Donc (Sp)nen est croissanfle et majorée : elle gonverge don%Q
g% Sa limite n’est pas 1 + T Par exemple, 2 P i £2.
Exercice 71
Soit (up)nen Une suite d'entiers monotone. Discuter de la convergence ou pas de (up). ]

Définition 72
Deux suites (Un)nen €t (Vp)nen sont dites adjacentes si I'une est croissante, |'autre est
décroissante, et lim |u, — v,| = 0.

n—-+oo

Proposition 73

Deux suites adjacentes convergent vers la méme limite.

Démonstration
Soit (un)nen une suite croissante et (v,)qen décroissante telle que u, — v, —+> 0.
n——+oo
(i) On montre que pour tout n dans N, u, < v,. Si ce n'était pas le cas, on disposerait de
N € N tel que uy > vy. Alors, par croissance de (u,)qen et par décroissance de (v,)nen,
pour tout n > N,
Upn— Vp 2 Uy — vy >0,
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contradiction avec le fait que u, — v, — O.
n——+oo
Donc, pour tout n dans N, u, < v,.

(ii) (un)nen est croissante et pour tout n dans N, u, < v, < v, donc (u,)nen est majorée par
V0.
Donc, par le théoréeme de la limite monotone, (u,)nen converge vers un réel £.

(iii) (vn)nen est décroissante et pour tout n dans N, v, > u, < g, donc (V,)nen st minorée
par up.
Donc, par le théoréeme de la limite monotone, (v,)qen converge vers un réel £

(iv) Enfin, u, — v, = £ — ¢ donc, par unicité de la limite £ — ¢ =0, ie. £ =21
n o0

Exemple 74

n
1 1
(i) On pose, pour tout n > 1, S, = Zﬁ et T, =5,+ o Montrer que (S,)nen et

k=1
(Th)nen convergent vers la méme limite.

1 .
e pour tout ndans N, S,,; — S, = m >0, donc (Sp)nen est croissante,
e soit n € N*,
1 1
Tn+1_Tn:Sn+1+m_ Sn"’E
_ .t
 (n+1)2 n+1 n
1 1

T (12 nln+1)
- (= -H<o
n+1\n+1 n

donc (T,)nen est décroissante.

e pour tout ndans N*, T, — S, =—- — 0,

n—-+o00

1
n

donc (S,) et (T,)nen sont adjacentes, donc elles convergent vers une méme limite.

(ii) Soit (u,) une suite de réels décroissante et de limite nulle.
Pour tout n € N, on pose

Sn = Z (—1)kuk.
k=0

Montrer que les suites extraites (Sap) et (Sapt1) sont adjacentes.

3.4 Breéve extension au monde complexe

Définition 75
Soit (Up)nen € CY, £ € C. On dit que u, j £si|lu,—4 — 0.
n o0

n—-+o0
Ceci revient a dire que Re(u,) —  (£) et Tm(u,) — Tm(L).
n—+oo—NRe n—+o00
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Remarque 76

(i) Cela n'a pas de sens de parler de limite infinie pour des suites complexes.
(ii) Toutes les propriétés qui n'ont pas besoin de relation d’ordre sont vraies dans C.

(iii) En revanche, les questions de monotonie, d'encadrement, n'ont pas de sens.

Exemple 77
jn
Ainsi, ———— — 0 car
n+2+4+1 no+oo
" 1
J 3| = — 0
n+2+41 1/(n_|_2)2_i'_]_ n—+o0

4 Suites extraites

Dans I'exemple [74}{(ii)} on n'a pas réussi a conclure... que manquait-il ? L'étude des suites dites
extraites

Définition 78

(i) Une extractrice/extraction est une application de N dans N strictement croissante.

(i) Soit (tp)nen € K. Une suite extraite ou sous-suite de (u,)nen est une suite (vj)nen
telle que Jp : N — N extraction telle que Vn € N, v; = ty(n)-

Exemple 79

(i) Si (un)nen € K", alors
o (Ups1)nen €st une suite extraite de (uUp)nen,
® (Ubop)nen €st une suite extraite de (up)pen,
e sivVneEN, v, = uy, (V,)neny N'est pas une suite extraite de (u,)nen.

(i) si u, =", alors (u3n)nen est une suite extraite de (u,)qen, constante, égale a 1.

Remarque 80 (Remarque importante !)} N

Soit (Un)nen € KN et (V,)nen Une suite extraite de (un)nen. Alors (Vy)pen = (Ug(n))nen avec
 extraction.
Si (W) nen est une suite extraite de (v,)qen, alors

(Wn)neN = (Vw(n))neN
avec 9 extraction. Donc pour tout n dans N,

Wi = Vyy(n) = Ugorp(n),

et ¢ o 1P est une extraction donc (Wj,)qen est extraite de (un)pen.
Attention notamment a I'ordrte de composition des extractions.
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Soit ¢ : N — N une extraction. Alors Vn € N, ¢(n) > n.

Démonstration

On le démontre par récurrence. L'initialisation est immédiate puisque ¢(0) = 0.
L'hérédité aussi car si @(n) = n, o(n+1) > @(n) = n, donc (n+1) > ndonc w(n+1) = n+1.
|

Proposition 82
Soit (Up)nen € RY, £ € R telle que u, — £.
n—-+o0o

Alors toute suite extraite de (u,)nen @ pour limite £.
La propriété s'étend aux suites complexes pour des limites finies.

Démonstration

On ne fait que le cas ot £ € R, les autres cas s'adaptent.
Soit (Vp)nen une suite extraite de (uU,)nen, @ Une extraction telle que

Vn €N, vy = Uy
Soit € > 0. On dispose alors de N € N tel que

Yn>= N, |u, — €] <e.
Soit n = N. Alors, par le lemme, ¢©(n) = n > N, donc

|U<p(n) —Zl <eg, ie. |V,, —Z| <E.

Doncv, — 4.1
n—-+o0o

(Point de méthode 83 )

Pour montrer qu'une suite n'a pas de limite, il suffit de trouver deux sous-suites de cette
suite qui ont des limites différentes (ou une sous-suite qui n'a pas de limite).

Par exemple si pour tout n, u, = (=1)", alors up, =1 — 1let oy =—1 — 1, donc
n—+o0 n—+o00

(Un)nen n'a pas de limite.

Proposition 84

Soit (u,) une suite telle que les suites (uo,) et (thn41) tendent vers la méme limite £. Alors
(un) tend vers £.

Remarque 85
On peut étendre cette propriété a toute partition de N en un nombre fini de parties infinies.
Par exemple, si (U3n)nen, (Usn+1)nen €t (Uspni2)nen tendent vers la méme limite £, alors
(Un)nen aussi.
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Démonstration

On ne s'intéresse qu’au cas convergent, les autres s’adaptent.
Soit € > 0.
oy, — £ donc on dispose de N € N tel que Vn > N, |ty — €| < €

n—-+oo
Uopi1 —+> £ donc on dispose de N’ € N tel que Vn > N', |tppy1 — £ <€
n——+oo
Posons N = max(2N, 2N’ + 1).
Soit n > N”
® si n est pair, alors n > 2N, et n = 2p avec p € N. Alors p > N donc |uzp — £| < €. donc
lup — £ < €.
e sinestimpair, alors n > 2N'+1, et n = 2p+1avec p € N. Alors p > N’ donc |uapr1—£] < €.
donc |u, — £ < €.

Doncu, — 2. 1
n—-+o00

Exemple 86

On peut alors finir I'exercice sur les séries alternées!

[Point de méthode 87 (Construction d'extractions)}

Soit (Up)nen ne convergeant pas vers £. Démontrer qu'il existe € > 0 et une suite extraite
de (Un)nen, notée (Vi)nen, telle que pour tout ndans N, |v, — £| > €.
On commence par nier la convergence :

>0, VNEN, dn= N, |u,—£| > e.

Il faut alors construire une extraction ¢, par récurrence.
e En prenant N =0, on dispose de n > N tel que |u, —£| > €. On pose ©(0) = n.

e Supposons ©(0), ..., @(k) construits pour un certain k.
En prenant N = ¢(k) + 1, on dispose de n > @(k) + 1 tel que |u, — €| > €. On pose
alors p(k +1) = n.

On a alors construit ¢ une extraction (strictement croissante par construction) telle que
pour tout n dans N, |uyy — €| > €.

f_1 Exercice 88 )

Soit (up)nen Une suite non majorée. Démontrer que
VM eR, VNeN, dk >N, u, > M.

puis qu'il existe une suite extraite de (u,)nen tendant vers +oo.

.

Théoréme 89 (Bolzano—Weierstrass)]
Toute suite réelle bornée admet une suite extraite convergente. ]
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Démonstration

Soit (tp)nen € RY une suite bornée, a et b un minorant et un majorant de (u,)nen. On construit
par récurrence une suite de segments [a,, b,] qui vont tous contenir une infinité de termes de la
suite (uy)nen. La construction se fera par dichotomie.

e On pose ag = a et by = b. Alors [ag, bp] contient une infinité de termes de la suite.

e Soient n € N tel que (ap, b,) soient construits et tel que [a,, by] contienne une infinité de

. an+b
termes de la suite (u,)pen. On pose ¢, = % Alors
— ou bien [a,, ¢,] contient une infinité de termes de la suite (u,)pen, €t ON pose anr1 = ap,

bpt1 = cp,
— ou bien]c,, by contient une infinité de termes de la suite (U,)nen, €t ON pose a1 = Cp,
bn+1 = bp.
On a donc construit (ap+1, brt1) tels que [ap+1, bry1] contienne une infinité de termes de
la suite (Un)nen.
On remarque que (an)nen est croissante, que (b,)neny est décroissante et que b, — a, =

b—a . . .
on T 0, donc (ap)nen et (bn)nen sont adjacentes, et convergent vers la méme limite
n—-+o0

L.
On construit alors ¢ ainsi :

e ¢(0) =0, i.e. tye) = lo,
e sin€N, etsip(n) aété construit, on remarque que I'ensemble

A, ={k eN, k> (n) et ux € [ant1, bpr1]}
est infini (sinon, s'il était fini, [a,11, bna1] contiendrait un nombre fini de termes de la suite

(Un)nen, absurde. On prend p(n+ 1) € A,.

On a alors construit une extractrice @ telle que pour tout n dans N, a, < ty(n) < by.

Donc, par encadrement, g,y — £. B
n—-+o0o

Exercice 90 (Difficile mais joli)}

Démontrer que de toute suite réelle on peut extraire une sous-suite convergente. En déduire
une autre preuve du théoréme de Bolzano-Weierstrass.

Remarque 91

On peut aussi énoncer ce théoréme comme « Toute suite réelle bornée admet une valeur
d'adhérence » , une valeur d’adhérence étant définie comme la limite d'une suite extraite.

Proposition 92

Toute suite complexe (z,)nen telle que (]z,])nen est bornée. Alors (z,)nen admet une suite
extraite convergente.

Démonstration

Notons, pour tout n dans N, a, = Re(u,) et b, = Im(u,). Soit n € N. Alors

|an| < [un| et |by] < ugl
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Donc (an)nen et (bn)nen sont bornées.
On ne va pas extraire séparément des suites convergentes, mais extraire une suite de (a,)nen,
puis de (by)nen-
(an)nen est bornée donc, par le théoréme de Bolzano-Weierstrass, on dispose de ¢ : N — N
extraction, de £ € R telle que a — 4.

W(n) n—-+4o00

(by(ny)nen | est bornée, donc par le théoréme de Bolzano-Weierstrass, on dispose de ¢ : N — N
extraction, de £ € R telle que by — £

n—-+o00
Mais (apoy(n))nen est extraite de (ay(n))nen donc converge vers £.

Donc
Ugpor(n) njoo L+ il

Donc (Upoy(n))nen €St une suite extraite de (u,)nen qui converge. I

Exercice 93

Soit (un)nen une suite bornée n'ayant qu'une valeur d'adhérence. Montrer que (Un)nen
converge.

5 Caractérisation séquentielle des propriétés de R.

Maintenant que nous avons bien manipulé les suites, il est trés utile de voir comment les propriétés
de R peuvent étre vues a l'aides de ces suites.

Proposition 94

Soit A C R. Alors A est majorée si et seulement si
Y(tp)nen € AN, (Up)nen st majorée.

La proposition fonctionne de la méme maniére dans les cas minoré et borné.

Remarque 95

On utilise souvent la contraposée : A n'est pas majoré si et seulement s'il existe une suite
(Un)nen € N telle que (U,)nen N'est pas majorée.

Démonstration
La démonstration est intéressante en ce sens qu’elle fait construire une suite.

Si A est majorée, prenons M un majorant de A. Soit (u,)nen € AY.
Alors Vn €N, u, € A, doncVneN, u, < M.
Donc (up)nen est majorée par M.

Si A n'est pas majorée, alors
VM eR, dJac A a> M.

Soit n € N. Dans la proposition précédentes, prenons M = n.
Alors on dispose de a € A tel que a > M. Notons u, = a.
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On a donc construit une suite (u,)pen telle que

VneN, u, € Aet u, > n.

Donc (up)nen est une suite de AN non majorée. D’otl I'implication réciproque par contra-
posée.

Remarque 96

En fait, on a démontré que si A n’était pas majorée, alors il existait une suite d'éléments de
A tendant vers +oo.

Proposition 97

Soit ACR, M eR.

(i) M est la borne supérieure de A si et seulement si

Vx €A x < MET 3(up)nen € AY t.q. u, i M.
n o0

(ii) M est la borne inférieure de A si et seulement si

Vx €A x> MET 3(up)pen € AY t.q. u, — M.

n—-4o00

Démonstration

(i) On utilise la caractérisation suivante de M = sup(A) :
Vx €A x<MetVe>0, Jac A |a—M|<e.

e On suppose que M = sup(A). Alors déja, Vx € A, x < M.
Ensuite, on construit une suite (u,)neny d'éléments de A qui converge vers M.
Soit n € N. Prenons € = on (peu importe ce que I'on prend, I'important est que la
quantité tende vers 0 quand n tend vers +00).

Alors on dispose de a € A, | DEPENDANT DE n| tel que [a— M| < e.

1
Posons u, = a. Alors |u, — M| < o0

On a donc défini une suite (u,)nen € 7 telle que

1
VneEN, |uy— M < — — 0.

2N n—+oco

Donc |u, — M| — 0 donc u, — M.
n—-+oo n—-+oo

e Supposons maintenant que Vx € A, M < x et que I'on dispose de (up)nen € " tel
que u, — M.
n—+oo

Soit € > 0. u, — M donc on dispose de N € N tel que Vvn = N, |u, — M| < e.

n—+oo

Posons A= uy. Alors a€ Aet |a— M| <e.
D'ou I'implication réciproque et I'équivalence.
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Exemple 98

Appliquer la proposition suivante a la détermination de la borne supérieure de

A= {5 o e},

Proposition 99

Soit A une partie de R. A est dense dans R si, et seulement si tout réel est la limite d'une
suite d’éléments de A.

Démonstration

On suppose A dense dans R. Donc

Vxe€R, Ve >0, Jac A, |[x—al<e.
Soit x € R.
On construit une suite qui converge vers X.
Soit n € N.

1 . p
Prenons € = o Alors on dispose de a € A dépendant de € donc de n tel que [x —a| < e.
Posons u, = a.

On a donc construit une suite (u,)nen € A telle que pour tout n, |u, — x| <

2N p—s+4oc0

donc u, — x.
n—+oo

Soit x dans R. Alors on dispose de (u,)nen € AV qui converge vers x.
Soit € > 0. Alors par convergence de (up)nen Vvers x, on dispose de N € N tel que Vn > N,
|u, — x| < €.
Posons a = uy. Alors a€ Aet |a— x| <e.
Donc A est dense dans R.

D’ou I'équivalence désirée. B

Exemple 100
On obtient une nouvelle démonstration de la densité de Q et de R\ Q dans R.

. nx
e Densité de Q. Soit x € R. Posons, pour tout n dans N*, u, = %

QY et, si n e N,

. Alors (Up)nen €

nx —1 < [nx] < nx,

donc

X —

1
- < Up <X,
n

donc, par encadrement, u, — x.

n—+o0

e Densité de R\ Q. Soit x € R.

— six € R\ Q, on pose, pour tout n dans N, u, = x, donc (tp)nen € (R\ Q)" et

u, — X.
n—-+4oo
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2
— si x € Q, on pose, pour tout n dans N, u, = x + % Alors (Un)nen € (R\ Q)N

et u, — x.
n—-+o00
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6 Suites récurrentes

6.1 Rappels de Terminale

Définition 101

Une suite (tp)nen € KY est dite arithmétique s'il existe r dans K tel que : Vn € N,
Upy1 = Uy + .
r est appelé raison de la suite (up)pen-

[Proposition 102]

Soit (Un)nen € K" une suite arithmétique de raison r.

(i) pour tout ndans N, u, = ug + nr.

(ii) pour tous n et p dans N,

i U= (Up+up)(p—n+1) _ (premier terme + dernier terme) X (nb de termes)

2 2
k=n

[Proposition 103]

Soit (Up)nen € RY une suite arithmétique de raison réelle r.

(i) si r = 0, (un)nen est constante et a pour limite ug (cette partie de la proposiiton
fonctionne aussi avec des suites réelles).

(ii) si r > 0, (up)nen est strictement croissante et a pour limite +oo.

(i) si r < 0, (un)nen est strictement décroissante et a pour limite —oo.

Définition 104

Une suite (uy)pen € KV est dite géométrique s'il existe g dans K tel que : Vn € N,

Upy1 = qUp.
q est appelé raison de la suite (Up)pen.

[Proposition 105]

Soit (uUp)nen € K une suite géométrique de raison .

(i) pour tout ndans N, u, = up x q".

(ii) pour tous n et p dans N,

; wx(p—n+1)sig=1
E Uk = 1— qpfnJrl 1— (raison)nombre de termes
—n sinon.

U, X ——— = (premier terme) X
" 1—g¢q (p ) 1 — raison
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[Proposition 106]

Soit (Up)nen € RY une suite géométrique de premier terme et de raison réelle g.

(i) si up =0, (Up)nen est nulle.

(i) si ug > 0:
Variations Limite
r>1 Strictement croissante u, — +oo
n—-+00
0<r<i1 Strictement décroissante
r=20 Constante nulle pour n > 1 u, — 0
n—-+oo

Pas monotone : (Uan)nen Str.
—1 < r <0 | décroissante et (Uzp+1)nen Str.

croissante
Pag monotone : (Uz2n)nen st/r. Pas de limite : o, —> 400 et
r<-1 croissante et (Uopi1)nen Str. dé- n—-00
croissante Y2n+1 e
n—-4o00
(iii) si up < 0 :
Variations Limite
r>1 Strictement décroissante up, —» —o0
n—+oo
0<r<i1 Strictement croissante
r=20 Constante nulle pour n > 1 u, — 0
n—-+o0o

Pas monotone : (Uzp)nen Str.
—1<r <0 | croissante et (Uopi1)nen Str. dé-

croissante
Pas monotone : (u str. .
i (U2n) nen Pas de limite : tp,, —> —o0 et
r<-1 décroissante et (Uop+1)nen Str. N n—-+o0
. u — +o0.
croissante AR e

[Proposition 107]

Soit (up)nen Une suite géométrique complexe de raison g € C.

(i) silgl <1, up s 0.

(i) si |g| > 1, (un)nen n'est pas bornée.

7 Un peu d’asymptotique

7.1 Négligeabilité, domination, équivalences

/—‘ Définition 108 N

Soient (Up)nen €t (Vi)nen deux suites telles que (v,,) ne s'annule pas apcr.

(i) On dit que (un)nen est négligeable devant (v,)aen, On écrit u, = o(vy,) et on lit
n——+oo

. U
« (Up)pen €st un « petit o de» (Vp)pen » Si — — 0.
Vp n—+oo
(i) On dit que (up)nen est dominée par (vj)pen, On écrit u, = O(v,) et on lit « (Up)nen
n——+oo

u )
est un «grand o de» (V,)nen » Si — est bornée.
Vi
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(iii) On dit que (u,)nen est équivalente a (v,)nen, ON écrit Uy, ~ o(vy) etonlit « (Up)nen
n—-+oo

B N .U
est un equwalente a (vn)neN » SI = — 1.
Vp n—+oo

Exemple 109

_ 2 _ 2N a1 2 N
n n—+o0 Sl L 00 o) D=1 n—+o00 el [n(@=>2) n—-+o0 Ina)s e

Remarque 110

Attention, o(v,) n'est pas un objet & manipuler comme une suite! Notamment, si u, =
n—-+00

= —_ = I
o(vy) et r, e o(Vn), Un— n e o(vp)!

[l faut pouvoir écrire dans un cadre plus général ces définitions

( Définition 111 )

Soient (Up)nen €t (Vn)nen deux suites réelles.

(i) On dit que (un)nen est négligeable devant (v,)aen, On écrit u, = o(v,) et on lit
n——+oo

« (Un)nen €st un « petit o de» (Vp)nen » S'il existe (€,)nen de limite nulle telle que
Un, = EpVp APCI.

(ii) On dit que (up)nen est dominée par (Vj)pen, ON écrit u, = O(vy) et on lit « (Un)nen
n——+0o00

est un «grand o de» (v,)nen » s'il existe C > 0 tel que |up| < Clv,| & partir d'un
certain rang.

(iii) On dit que (u,)nen est équivalente a (v,)nen, ON écrit v, ~ o(v,) eton lit « (Up)nen
n——+oo

est un équivalente a (v,)nen » S'il existe (€,)nen de limite égale a 1 telle que u, = €,v,
apcr.

. J

On ne démontrera pas que ces définitions sont équivalentes.
Question : pourquoi introduire ces notions ? Pour la raison fondamentale suivante :

[Proposition 112]

Soient (Un)nen €t (Vi)nen deux suites réelles, £ € R. Si u, ~ v, etv, — £, alors
n—-+oo n—-+4o0

u, — £.
n—+o0o

Démonstration

Opérations sur les limites! A
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,—‘ Remarque 113 )

(i) Ainsi, faire des équivalents permet de plus facilement déterminer des limites.

(ii) La réciproque est trés fausse! Deux suites peuvent avoir la méme limite sans étre

. 1 2 . . :
équivalentes! Ainsi, — et — ont la méme limite mais ne sont pas équivalentes.
n n

|\ J

On a quand méme la proposition sympathique suivante

[Proposition 114}

Soit (Un)nen une suite réelle, £ € R*. Alors u, — £ si et seulementsi u, ~ £
n—+oo n—+oo

Remarque 115

~ 0»7

Que signifie « u,
n—-+4o0

Bon, mais alors, a quoi servent les petits o et les grand O 7

[Proposition 116}

Soient (Un)nen €t (Vi)nen deux suites réelles. Alors

Uy ~  Vp& Uy = V,+ 0o(Vy).
n—-+oo

[Proposition 117 (Quelques propriétés des équivalents, o, O)j

(i) ~ est une relation d’'équivalence.
(ii) o et O sont des relations transitives.
(iii) o=0et~=0
(iv) si u, e o(w,) et v, e o(w,), alors pour tous A et w, Au, + uv, it o(wy).
(v) idem avec O
(vi) si u, = o(v,), alors uyw, = o(v,w,). Pareil avec O et ~.

(vii) en particulier, si u, ~ v, et w, ~ Xx,, alors upw, ~ vpXx,.

7.2 Relations de comparaison et équivalents célébres
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[Proposition 118]

(i) Si (a, b) € R?, avec a < b, n? = o(n®).
(i) Pour tous a et b strictement positifs, n? = o(e?™) et In(n)? = o(n®).

W = | I = f
(iii) Pour tout x € R, x e o(n!) et n! e o(n™).

(iv) Plus généralement, si u, i +00, u2 = o(eb") et In(u,)? = o(u?).
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