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Chapitre 7
Nombres réels et suites

1 Nombres réels (rappels)
Nous n’allons pas construire les nombres réels, qui sont beaucoup plus difficiles à construire que
les nombres complexes. Nous allons commencer le cours par une proposition, non pas par une
définition. C’est la propriété importante des nombres réelles, qui n’est pas démontrable puisque
elle dépend de la construction de R.

Remarque 1 (Rappels sur les calculs dans les réels et les relations d’ordre)

• ∀x ∈ R, −|x | 6 x 6 |x |,
• ∀x ∈ R, ∀a > 0,

|x | 6 a⇔ −a 6 x 6 a

et
|x | > a⇔ x > a ou x 6 −a,

• pour tout réel x ,
bxc 6 x < bxc+ 1 ou x − 1 < bxc 6 x.

• ∀ε > 0, 0 <
ε

2
< ε,

• si A ⊂ R,
— A est majorée ssi ∃M ∈ R, ∀x ∈ A, x 6 M,

— A est minorée ssi ∃m ∈ R, ∀x ∈ A, m 6 x ,
— A est bornée ssi ∃(m,M) ∈ R2, ∀x ∈ A, m 6 x 6 M,

si a ∈ R,
— a = min(A)⇔ a ∈ A et ∀x ∈ A, a 6 x ,
— a = max(A)⇔ a ∈ A et ∀x ∈ A, x 6 a,
— a = inf(A)⇔ a est un minorant de A et ∀b minorant de A, a > b.

— a = sup(A)⇔ a est un majorant de A et ∀b majorant de A, a 6 b.

Proposition 2
Soit A ⊂ R, soit B = {|x |, x ∈ A}. Alors A est bornée si et seulement si B est majorée.

Démonstration

⇒ Si A est borné, on dispose de (m,M) ∈ R2 tels que

∀x ∈ A, m 6 x 6 M.

Posons S = max(|M|, |m|). Alors
— S > |m| > −m, donc −S 6 m,

— S > |M| > M.
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En particulier S > 0. Et, pour tout x de A,

−s 6 m 6 x 6 M 6 S,

i.e. pour tout x dans A, |x | 6 S.
Donc, pour tout y dans B, y 6 S. Donc B est majorée.

⇐ Si B est majorée, on dispose de M ∈ R tel que ∀y ∈ B, y 6 M. Donc, pour tout x dans A,
|x | 6 M, donc

∀x ∈ A, −M 6 x 6 M,

donc A est bornée.

�

Proposition 3 (Borne supérieure)
Toute partie non vide majorée de R admet une borne supérieure.

Corollaire 4
Toute partie non vide minorée de R admet une borne inférieure.

Démonstration

Les deux démonstrations sont à revoir à l’occasion ! �

Proposition 5 (Une définition alternative de la borne supérieure)
Soit A ⊂ R, non vide. Soit M ∈ R. Les assertions suivantes sont équivalentes
(i) M = sup(A),

(ii) ∀x ∈ A, x 6 M ∧ ∀ε > 0,∃a ∈ A, M − ε 6 a 6 M,

(iii) ∀x ∈ A, x 6 M ∧ ∀ε > 0,∃a ∈ A, |M − a| 6 ε.

Remarque 6
Les deux dernières propositions sont presque les mêmes, le résultat important est l’équivalence
(i)⇔ (i i).

Démonstration

On va démontrer (i)⇔(ii) et (ii)⇔(iii) (pour bien mettre en avant le fait que c’est la première
implication qui est fondamentale.

• (i)⇒(ii) Supposons que M = sup(A).
. Déjà, M majore A.
. Ensuite, soit ε > 0. Si on avait

∀x ∈ A, M − ε > x,

alors M − ε serait un majorant de A strictement supérieur à M, absurde ! Donc on dispose
de a ∈ A tel que M − ε 6 a.
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Mais a ∈ A donc a 6 M, donc, finalement,

M − ε 6 a 6 M.

• (ii)⇒(i) Supposons (ii).
. Déjà, M est un majorant de A car ∀x ∈ A, x 6 M.

. Ensuite, soit N un autre majorant de A. Si on avait N < M, alors en notant ε =
M − N
2

,

ε > 0 et N = M − 2ε < M − ε.

Mais alors, par (ii), on dispose de x ∈ A tel que M − ε 6 x , donc N < x , absurde !
Donc N > M.
Donc M est bien la borne supérieure de A.

Démontrons alors l’autre équivalence.

• (ii)⇒(iii) Supposons (ii).
. Déjà, M est un majorant de A donc on a bien ∀x ∈ A, x 6 M.
. Ensuite, soit ε > 0. Alors on dispose de x ∈ A tel que

M − ε 6 x 6 M 6 M + ε,

donc |x −M| 6 ε.

• (iii)⇒(ii) Supposons (iii).
. Déjà, M est un majorant de A donc on a bien ∀x ∈ A, x 6 M.
. Ensuite, soit ε > 0. Alors on dispose de x ∈ A tel que |x −M| 6 ε. Alors

M − ε 6 x 6 M + ε,

Mais M majore A donc x 6 M. D’où (ii).

�

Proposition 7 (Une définition alternative de la borne inférieure)
Soit A ⊂ R, non vide. Soit m ∈ R. Les assertions suivantes sont équivalentes
(i) m = inf(A),

(ii) ∀x ∈ A, x 6 m ∧ ∀ε > 0,∃a ∈ A, m − ε 6 a 6 m,

(iii) ∀x ∈ A, x 6 m ∧ ∀ε > 0,∃a ∈ A, |m − a| 6 ε.

Exemple 8

Soit A =
{
1

n
, n ∈ N∗

}
. Démontrons que 0 = inf(A).

Déjà, pour tout a dans A, 0 6 A.
Ensuite, soit ε > 0.

...`a˚uffl ˜b˘r`o˘u˚i˜l¨l´o“nffl...
On cherche n tel que

1

n
> ε, i.e. n >

1

ε
.
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Posons n =
⌊
1

ε

⌋
+ 1. Alors n >

1

ε
donc 0 6

1

n
6 ε.

Donc 0 = inf(A).

On rappelle que l’on a vu 9 types d’intervalles dans R :

R, ]−∞, b], ]−∞, b[, [a,+∞[, ]a,+∞[, ]a, b[, ]a, b], [a, b[, [a, b].

Définition 9
Un ensemble I de R est un intervalle si et seulement s’il vérifie la propriété suivante :

∀(x, y) ∈ I2, (x 6 y)⇒ ([x, y ] ⊂ I).

Remarque 10
Cela veut dire que l’ensemble est « sans trou ».

Proposition 11 (Précision de la proposition précédente)
Soit I une partie R, non vide, vérifiant ∀(x, y) ∈ I2, (x 6 y)⇒ ([x, y ] ⊂ I).

(i) si I n’est ni majoré, ni minoré, alors I = R.
(ii) si I est majoré, non minoré, soit b = sup(I)

• si b ∈ I, I =]−∞, b],
• si b /∈ I, I =]−∞, b[.

(iii) si I est minoré, non majoré, soit a = inf(I),

• si a ∈ I, I = [a,+∞[,
• si a /∈ I, I =]a,+∞[.

(iv) si I est borné, soit a = inf(I) et b = sup(I).

• si a ∈ I et b ∈ I, I = [a, b],

• si a /∈ I et b ∈ I, I =]a, b],

• si a ∈ I et b /∈ I, I = [a, b[,

• si a /∈ I et b /∈ I, I =]a, b[.

Démonstration

(i) si I n’est ni majoré, ni minoré, démontrons que I = R. Déjà, I est clairement inclus dans R.
Ensuite, soit x ∈ R. Comme I n’est pas majoré ni minoré par x , on dispose de α ∈ I tel que
α 6 x et de β ∈ I tel que x 6 β.
Mais comme I est un intervalle, [α, β] ⊂ I, donc x ∈ I.
Donc, par double inclusion, I = R.

(ii) si I est majoré, non minoré, soit b = sup(I)

• si b ∈ I, montrons que I =]−∞, b].
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— déjà, pour tout x dans I, x 6 b, donc I ⊂]−∞, b].
— ensuite, soit x ∈] −∞, b]. Alors comme I n’est pas minoré, on dispose de α ∈ I

tel que α 6 x . Mais comme α et b sont dans I, [α, b] ⊂ I, donc x ∈ I.

Donc, par double inclusion, I =]−∞, b].
• si b /∈ I, montrons que I =]−∞, b[.

— déjà, pour tout x dans I, x 6 b, et x 6= b car b /∈ I, donc x < b, donc I ⊂]−∞, b[.
— ensuite, soit x ∈]−∞, b[.

Alors comme I n’est pas minoré, on dispose de α ∈ I tel que α 6 x .
De plus, si l’on note ε = b − x , par définition de b = sup(I), on dispose de β ∈ I
tel que b − ε 6 β 6 b, i.e. x 6 β.
Mais comme α et β sont dans I, [α, β] ⊂ I, donc x ∈ I.

Donc, par double inclusion, I =]−∞, b[.
(iii) si I est minoré, non majoré, soit a = inf(I),

• si a ∈ I, montrons que I = [a,+∞[,
— déjà, pour tout x dans I, x > a, donc I ⊂ [a,+∞[.
— ensuite, soit x ∈ [a,+∞[. Alors comme I n’est pas majoré, on dispose de β ∈ I

tel que β > x . Mais comme a et β sont dans I, [a, β] ⊂ I, donc x ∈ I.

Donc, par double inclusion, I = [a,+∞[.
• si a /∈ I, montrons que I =]a,+∞[.

— déjà, pour tout x dans I, x > a, et x 6= a car a /∈ I, donc x > a, donc I ⊂]a,+∞[.
— ensuite, soit x ∈]a,+∞[.

Alors comme I n’est pas majoré, on dispose de β ∈ I tel que β > x .
De plus, si l’on note ε = x − a, par définition de a = inf(I), on dispose de α ∈ I
tel que a 6 α 6 a + ε, i.e. α 6 x .
Mais comme α et β sont dans I, [α, β] ⊂ I, donc x ∈ I.

Donc, par double inclusion, I =]a,+∞[.
(iv) si I est borné, soit a = inf(I) et b = sup(I).

• si a ∈ I et b ∈ I,

— déjà, par définition d’un intervalle, [a, b] ⊂ I.

— mais comme I est minoré par a et majoré par b, I ⊂ [a, b].
Donc I = [a, b]

• si a /∈ I et b ∈ I, I =]a, b],

— Déjà, pour tout x dans I, a < x 6 b car a minore I mais a /∈ I, et b majore I.

— Ensuite, si x ∈]a, b], si l’on note ε = x−a, par définition de a = inf(I), on dispose
de α ∈ I tel que a 6 α 6 a + ε, i.e. α 6 x .
Donc α 6 x 6 b. Comme I est un intervalle, [α, b] ⊂ I, donc x ∈ I.

D’où, par double inclusion, I =]a, b].

• si a ∈ I et b /∈ I, I = [a, b[,

— Déjà, pour tout x dans I, a 6 x < b car b majore I mais b /∈ I, et a minore I.

— Ensuite, si x ∈]a, b], si l’on note ε = b−x , par définition de b = sup(I), on dispose
de β ∈ I tel que b − ε 6 β 6 b, i.e. x 6 β.
Donc a 6 x 6 β. Comme I est un intervalle, [a, β] ⊂ I, donc x ∈ I.

D’où I = [a, b[ par double inclusion.
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• si a /∈ I et b /∈ I, I =]a, b[.

— Déjà, pour tout x dans I, a < x < b car a minore I mais a /∈ I, et b majore I mais
b /∈ I.

— Ensuite, soit x ∈]a, b[.
Si l’on note ε = x − a, par définition de a = inf(I), on dispose de α ∈ I tel que
a 6 α 6 a + ε, i.e. α 6 x .
Si l’on note ε′ = b − x , par définition de b = sup(I), on dispose de β ∈ I tel que
b − ε′ 6 β 6 b, i.e. x 6 β.
Donc α 6 x 6 β. Comme I est un intervalle, [α, β] ⊂ I, donc x ∈ I.

�

Définition 12
On appelle intervalle ouvert de R tout intervalle d’une des formes suivantes

R, ]−∞, b[, ]a,+∞[, ]a, b[.

Proposition 13 (Une propriété des intervalles ouverts)
Soit I un intervalle ouvert de R. Alors

∀x ∈ I, ∃η > 0, [x − η, x + η] ⊂ I.

Démonstration

• si I = R, c’est évident.

• si I =] − ∞, b[ avec b ∈ R, soit x ∈ I. Notons ε = b − x . Alors en posant η =
ε

2
,

x + η < x + ε = b, donc [x − η, x + η] ⊂ I.

• si I =]a,+∞[, avec a ∈ R, soit x ∈ I. Notons ε = x − a > 0. Alors, en posant η =
ε

2
,

a = x − ε < x − η, donc [x − η, x + η] ⊂ I.

• si I =]a, b[, soit x ∈ I.
Notons ε = x − a > 0 et ε′ = b − x > 0.
Posons η =

1

2
min(ε, ε′). Alors

a = x − ε < x − η et x + η < x + ε = b.

Donc [x − η, x + η] ⊂ I.

�

Proposition 14
Soit A ⊂ R. Les assertions suivantes sont équivalentes
(i) Pour tout intervalle I non vide de R ouvert, I ∩ A 6= ∅.
(ii) ∀x ∈ R, ∀ε > 0, ∃a ∈ A, |x − a| 6 ε.
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Définition 15
Lorsque l’une des propositions précédentes est vérifiée, on dit que A est dense dans R.

Démonstration

⇒ On suppose la première proposition. Soit x ∈ R, soit ε > 0.
Notons I =]x − ε, x + ε[.
I 6= ∅ donc, par (i), I ∩ A 6= ∅, donc on dispose de a ∈ A tel que a ∈ I, i.e.

x − ε < a < x + ε.

Donc |a − x | < ε donc |a − x | 6 ε, d’où (ii)

⇐ On suppose (ii)
Soit I un intervalle ouvert non vide de R.
Soit x ∈ I. On dispose de η > 0 tel que [x − η, x + η] ⊂ I.
Par (ii), on dispose de a ∈ A tel que |x − a| 6 η.
Mais alors a ∈ [x − η, x + η] ⊂ I, donc a ∈ I.
Donc I ∩ A 6= ∅.

�

Notre but est alors de démontrer que Q et R \Q sont denses dans R.

Définition 16
Un nombre réel d est dit décimal s’il existe n dans N tel que 10nd soit entier. On note D
l’ensemble des décimaux :

D =
{ p

10n
, p ∈ Z, n ∈ N

}
.

Si x ∈ R, l’approximation décimale par défaut de x à 10−n près est la quantité
b10nxc
10n

.

Exemple 17

Proposition 18
Les nombres rationnels, ainsi que les nombres irrationnels, sont denses dans R.

Pour démontrer cette propriété, on va avoir besoin de deux lemmes.

Lemme 19
Soit x ∈ R, N ∈ N. Alors 10nx − 1 6 b10nxc 6 10nx ,

donc x −
1

10n
6
b10nxc
10n

6 x ,

donc −
1

10n
6
b10nxc
10n

6 x ,

Donc ∣∣∣∣x − b10nxc10n

∣∣∣∣ 6 1

10n
.
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Démonstration

La preuve est déjà dans l’énoncé ! �

Lemme 20
Soit a ∈ Q, b ∈ R \Q. Alors

• a + b ∈ R \Q,
• si a 6= 0, ab ∈ R \Q.

Démonstration

Notons c = a + b et d = ab.

• si c était dans Q, alors b = c − a serait dans Q, absurde !

• si d était dans Q et a 6= 0, alors b =
d

a
serait dans Q, absurde !

�

Passons alors à la démonstration de la proposition.
Démonstration

(i) Soit x ∈ R et ε > 0.

...`a˚uffl ˜b˘r`o˘u˚i˜l¨l´o“nffl...
On va utiliser l’approximation décimale : on sait que∣∣∣∣x − b10nxc10n

∣∣∣∣ 6 1

10n

On veut donc avoir
1

10n
6 ε, i.e. n > log10

(
1

ε

)
.

Posons n = b− log10(ε)c+ 1. Alors n > − log10(ε), donc 10n >
1

ε
, donc 10−n 6 ε.

Notons q =
b10nxc
10n

. Alors q ∈ Q et

|x − q| 6
1

10n
6 ε.

Donc Q est dense dans R.
(ii) Soit x ∈ R et ε > 0

• si x ∈ R \Q, on pose y = x . Alors y ∈ R \Q et |x − y | = 0 6 ε.
• si x ∈ Q,

...`a˚uffl ˜b˘r`o˘u˚i˜l¨l´o“nffl...
Idée :

√
2 ∈ R \Q. On va ajouter

√
2

n
à x , avec n assez grand, de sorte que

√
2

n
6 ε, i.e. n >

√
2

ε
.
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Posons n =
⌊√
2

ε

⌋
+ 1. Alors n >

√
2

ε
, i.e.

√
2

n
6 ε.

Posons y = x +

√
2

n
. Alors

√
2

n
/∈ Q et donc y /∈ Q, et

|y − x | =
√
2

n
6 ε.

Donc R \Q est dense dans R.
�

Remarque 21
Remarquons que l’on a en fait démontré que D était dense dans R. Mais on a la propriété
(simple à démontrer) suivante : si A ⊂ B et A est dense dans R, B est dense dans R.

2 Suites et convergence

2.1 Généralités

Définition 22

(i) Une suite réelle est une application de N dans R. On note leur ensemble RN.
(ii) Si u ∈ RN, on note u = (un)n∈N.

Remarque 23

(i) On peut considérer des suites définies sur N∗, sur N \ {0, 1}, etc. Exemple :
(
1

n

)
n∈N∗

,

(ln(ln(n)))n∈N\{0,1}, etc.

(ii)� (un)n∈N est une suite, la variable n est muette. On peut écrire (un)n∈N = (up)p∈N.
En revanche, un est un réel. La variable n est libre, elle a dû être déclarée auparavant.

Remarque 24 (Remarque importante)
Une suite peut être définie de plusieurs manières :

• de manière explicite, en donnant, pour tout n, une formule. Exemple :

Soit (un)n∈N la suite réelle définie par : ∀n ∈ N, un =
n!√

2πn
(
n
e

)n .
• de manière implicite, le terme un étant l’unique solution d’une équation dépendant
d’un paramètre n. Exemple :

Soit, pour tout n dans N, xn l’unique solution positive de l’équation xn + nx = 1.

(question : pourquoi a-t-on existence et unicité d’un tel réel ?)
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• par récurrence. C’est une des manières fondamentales de définir une suite réelle. On
peut définir une suite par récurrence (simple/double/forte). Exemple :

Soit (un)n∈N la suite définie par u0 = 1 et, pour tout entier naturel n, un+1 =
1

1 + un
.

ou bien

Soit (Fn)n∈N la suite définie par F0 = 0, F1 = 1 et, pour tout entier naturel n,
Fn+2 = Fn+1 + Fn.

2.2 Suites majorées, minorées

Définition 25
Soit (un)n∈N ∈ RN, A l’ensemble des termes de la suite : A = {un, n ∈ N}.
(i) (un)n∈N est dite majorée si A est majorée, i.e. ssi

∃M ∈ R, ∀n ∈ N, un 6 M.

(ii) (un)n∈N est dite minorée si A est minorée, i.e. ssi

∃m ∈ R, ∀n ∈ N, m 6 un.

(iii) (un)n∈N est dite bornée si elle est majorée et minorée.

Proposition 26
Soit (un)n∈N une suite réelle. Alors (un)n∈N est bornée si et seulement si (|un|)n∈N est majorée.

Définition 27
Soit (un)n∈N une suite réelle. La suite (un)n∈N est dite croissante (resp. décroissante) si

∀(m, n) ∈ N2, (m 6 n)⇒ um 6 un (resp um 6 un).

Dans le cas d’inégalités stricte, la suite est dite strictement croissante (ou strictement dé-
croissante).
Si une suite est (strictement) croissante ou décroissante, on dit que la suite est (strictement)
monotone.

Proposition 28
Soit (un)n∈N une suite réelle. La suite (un)n∈N est croissante (resp. décroissante) ssi ∀n ∈
N, un+1 > un (resp. ∀n ∈ N, un+1 6 un).
La proposition s’adapte à la stricte croissance ou à la stricte décroissance.
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Démonstration

C’est simplement une récurrence. �

Remarque 29
Attention, ceci est très faux pour des fonctions réelles ! Si f : x 7→ sin(2πx) + x , f n’est pas

croissante (on peut remarquer que f
(
1

4

)
=
5

4
alors que f

(
3

4

)
= −
1

4
) alors que pour tout

x , f (x + 1) > f (x).

Point de méthode 30
Pour vérifier la monotonie d’une suite, il y a essentiellement quatre possibilités :

(i) La suite (un)n∈N est définie par un = f (n), et on connaît les variations de f .
Exemple : étudier les variations de un = en

2−n.

(ii) On étudie le signe de un+1 − un.

(iii) Si pour tout entier n, un 6= 0, on compare
un+1
un

.

Exemple : étudier les variations de un =
(
2n

n

)
.

� Il faut faire attention au signe de la suite !

(iv) Si la suite (un)n∈N est définie par une relation de récurrence un+1 = g(un), on peut
utiliser une des deux techniques précédentes (on verra cela plus en détail par la suite).

Définition 31
Soit une propriété P(n) indexée sur les entiers naturels. P est dite vraie à partir d’un certain
rang (et on notera apcr) si

∃N > 0,∀n > N,P(n) est vraie.

Remarque 32
Il faut toujours pouvoir expliciter ce que signifie « à.p.c.r. » et notamment pouvoir déclarer
un rang à partir duquel telle propriété est vraie.

Définition 33
Une suite réelle (un)n∈N est dite stationnaire si elle est constante à partir d’un certain rang,
i.e. si

∃K ∈ R, ∃N ∈ N, ∀n > N, un = K.

Exemple 34

Montrer que la suite
(⌊
3

n

⌋)
n∈N

est stationnaire.



MPSI 1 Pasteur 2025-2026
Réels et suites

N. Laillet
nlaillet.math@gmail.com

2.3 Limites de suites

Définition 35

(i) Une suite de réels (un)n∈N converge s’il existe un réel ` tel que

∀ε > 0,∃N ∈ N,∀n > N, |un − `| 6 ε.

Dans ce cas, on dit que un tend vers ` quand n tend vers +∞, ou bien que ` est une
limite de (un)n∈N et on note un −→

n→+∞
`.

(ii) Une suite de réels (un)n∈N diverge vers +∞ si

∀M ∈ R,∃N ∈ N, ∀n > N, un > M.

Dans ce cas, on dit que un tend vers +∞ quand n tend vers +∞, ou bien que +∞ est
une limite de (un)n∈N et on note un −→

n→+∞
+∞.

(iii) Une suite de réels (un)n∈N diverge vers −∞ si

∀m ∈ R,∃N ∈ N,∀n > N, un 6 m.

Dans ce cas, on dit que un tend vers −∞ quand n tend vers +∞, ou bien que −∞ est
une limite de (un)n∈N et on note un −→

n→+∞
−∞.

Remarque 36

(i) On rappelle que dans les propositions précédentes, ∀n > N cache une implication :
∀n ∈ N, n > N ⇒...

(ii) Ces notions font naturellement intervenir la notion de « proposition vraie à partir d’un
certain rang » : dire que un −→

n→+∞
` signifie que

∀ε > 0, |un − `| 6 ε à partir d’un certain rang

(iii) On peut, sans perte de généralité ou restriction supplémentaire, remplacer

• « ∀ε > 0 » par « ∀ε ∈]0, 1[ » ,

• « ∀M ∈ R » par « ∀M > 0 » ,

• « ∀m ∈ R » par « ∀m < 0 » .

On peut démontrer facilement les équivalences entre les propositions à chaque fois.

Exemple 37

(i) Démontrons que 2n2 + 3 −→
n→+∞

+∞.

Soit M ∈ R.
Alors on a les équivalences suivantes

2n2 + 3 > M ⇔ n2 >
M − 3
2

.
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Posons alors M ′ = max
(
M − 3
2

, 0

)
et N =

⌊√
N ′
⌋
+ 1.

Soit n > N. Alors n2 >
M − 3
2

donc 2n2 + 3 > M.

Donc 2n + 3 −→
n→+∞

+∞.

(ii) Démontrons que
1

1 + en
−→
n→+∞

0.

Soit ε > 0.

...`a˚uffl ˜b˘r`o˘u˚i˜l¨l´o“nffl...
Plutôt que de faire des équivalences comme ci-dessus, on peut aussi rechercher
au brouillon. On a

1

1 + en
6 ε⇔ 1 + en >

1

ε
⇔ en >

1

ε
− 1«⇔ n > ln

(
1

ε
− 1
)
»

La dernière équivalence n’étant pas tout à fait vraie car on ne sait pas si ce
qu’il y a dans la parenthèse est > 0.

Posons A = max
(
1

ε
− 1, 1

)
. Posons alors N = bln(A)c+ 1. Soit n > N.

Alors n > ln(A), donc en > A >
1

ε
− 1.

Donc
1

1 + en
6 ε.

Donc
1

1 + en
−→
n→+∞

0.

(iii) (+ dur, mais méthode intéressante !) Démontrons que (un)n∈N = ((−1)n)n∈N n’a pas
de limite.

• déjà, ((−1)n)n∈N ne diverge pas vers + ou −∞. En effet, on écrit déjà la négation
de « un −→

n→+∞
+∞ » :

∃M ∈ R, ∀N ∈ N, ∃n > N, un < M.

Posons M = 2. Alors |f oral lN ∈ N, uN < 2, donc (un)n∈N ne tend pas vers +∞.
De même, (un)n∈N ne tend pas vers −∞.

• ensuite, démontrons que ((−1)n)n∈N ne tend pas vers une limite réelle. Supposons,
par l’absurde, que cela soit le cas. Alors on dispose de ` ∈ R telle que :

∀ε > 0, ∃N ∈ N, ∀n > N, |un − `| 6 ε.

L’idée est alors de se dire que si (un)n∈N converge, alors un+1 − un tend vers 0.

Posons ε =
1

2
. Alors on dispose de N ∈ N tel que ∀n > N, |un − `| 6 ε.

En particulier,

|uN+1 − uN | = |uN+1 − `+ `− uN | 6 |uN+1 − `|+ |`− uN | 6 ε+ ε = 1.

Or,
|uN+1 − uN | = |(−1)N+1 − (−1)N | = 2,

ce qui est absurde ! Donc la suite ne converge pas.
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Définition 38
On appelle R la droite réelle achevée, i.e. R = R ∪ {−∞} ∪ {+∞}.

Proposition 39
Soit (un)n∈N ∈ RN, ` ∈ R telle que un −→

n→+∞
`.

Si `′ ∈ R vérifie un −→
n→+∞

`′, alors ` = `′.

Définition 40
On dit alors que ` est LA limite de (un)n∈N et on note lim

n→+∞
un = `.

Démonstration

Supposons que ` 6= `′ et aboutissons à une absurdité.

• Cas où ` et `′ sont réelles. Comme ` 6= `′, on peut supposer, sans perte de généralité,
que ` < `′.
On sait, par convergence de (un)n∈N vers ` et `′, que

∀ε > 0, ∃N ∈ N, ∀n > N, |un − `| 6 ε,
∀ε > 0, ∃N ∈ N, ∀n > N, |un − `′| 6 ε.

L’idée est alors de faire en sorte que un soit, pour n assez grand, dans deux zones disjointes.

Posons ε =
`′ − `
3

. Alors `+ ε < `′ − ε.
(en effet, `′ − ε− `− ε = ε > 0)
Par convergence de (un)n∈N vers `, on dispose de N ∈ N tel que ∀n > N, |un − `| 6 ε.
Par convergence de (un)n∈N vers `′, on dispose de N ′ ∈ N tel que ∀n > N ′, |un − `′| 6 ε.
Posons N ′′ = max(N,N ′). Alors si n > N ′′,

|un − `| 6 ε et |un − `′| 6 ε,

donc, en particulier, un 6 `+ ε et `′ − ε 6 un, donc

un 6 `+ ε < `− ε 6 un,

donc un < un, absurde ! D’où le résultat.

• Si ` ∈ R et `′ = +∞, alors

∀ε > 0, ∃N ∈ N, ∀n > N, |un − `| 6 ε,
∀M ∈ R, ∃N ∈ N, ∀n > N, un > M.

Prenons ε = 1 et M = |`|+ 2. Alors on dispose de N ∈ N tel que

∀n > N, |un − `| 6 ε,

et de N ′ ∈ N tel que
∀n > N ′, un > M.

Posons N ′′ = max(N,N ′) et prenons n > N ′′. Alors

|un| = |un − `+ `| 6 |un − `|+ |`| 6 1 + |`|.

Donc un 6 1 + |`|. Mais en même temps, un > M = 2 + |`|, absurde !
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• Si ` ∈ R et `′ = −∞, on fait de même.

• Si ` = −∞ et `′ = +∞, on fait de même, en prenant m = −1 et M = 1.
�

Remarque 41

(i)� Ne JAMAIS DIRE « La limite de (un)n∈N tend vers ` » , mais dire

« La limite de (un)n∈N est ` »
ou

« (un)n∈N tend vers ` »

(ii) Dans lim
n→+∞

un, n est muette.

(iii)� Ne JAMAIS ÉCRIRE lim
n→+∞

un = vn ou un −→
n→+∞

vn. La chose vers laquelle on tend

doit être indépendante de n.

Proposition 42
Soit (un)n∈N une suite de réels, ` un réel. Les ASSE

(i) lim
n→+∞

un = `

(ii) lim
n→+∞

|un − `| = 0.

Démonstration

On va raisonner par équivalences ! On a les équivalences

lim
n→+∞

un = `⇔ ∀ε > 0, ∃N ∈ N, ∀n > N, |un − `| 6 ε

⇔ ∀ε > 0, ∃N ∈ N, ∀n > N,
∣∣∣|un − `| − 0∣∣∣ 6 ε

lim
n→+∞

|un − `| = 0.

�

Corollaire 43
Soit (un)n∈N une suite de réels. Alors un −→

n→+∞
0 si, et seulement si |un| −→

n→+∞
0.

Proposition 44
Toute suite convergente est bornée.

Démonstration

Soit (un)n∈N une suite réelle convergente, ` sa limite. Alors

∀ε > 0, ∃N ∈ N, ∀n > N, |un − `| 6 ε.
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• Prenons ε = 1. Alors on dispose de N ∈ N tel que ∀n > N, |un − `| 6 ε.
Alors, si n > N,

|un| = |un − `+ `| 6 |un − `|+ |`| = 1 + |`|.

Problème, on n’a pas majoré tous les termes de la suite, mais seulement ceux après le rang
N.

• L’ensemble {un, n ∈ J0, N − 1K} est une partie finie de R donc est borné. Donc on dispose
de M > 0 tel que pour tout n dans J0, N − 1K, |un| 6 M.

• Posons M ′ = max(M, 1 + |`|). Soit n ∈ N.
— si n 6 N − 1, alors |un| 6 M 6 M ′,
— si n > N, alors |un| 6 1 + |`| 6 M ′.

Donc (un)n∈N est bornée par M ′.

�

Exercice 45
Montrer que la suite (−1)n.n ne converge pas.

Remarque 46
Attention ! La réciproque est fausse ! Par exemple (−1)n.

Proposition 47
Soit (un)n∈N une suite convergeant vers un réel `, et a tel que ` < a. Alors un < a apcr.

Démonstration

Supposons ` > a.

Prenons ε =
`− a
2

.

Alors on dispose de N ∈ N tel que ∀n > N, |un − `| 6 ε.
Soit alors n > N. Alors `− ε 6 un 6 `+ ε.
Donc

un > `− ε = `−
`− a
2
=
`+ a

2
>
a + a

2
= a,

donc ∀n > N, un > a.
Donc un > a à partir d’un certain rang. �

Corollaire 48
Soit (un)n∈N une suite de réels qui converge vers un réel `.

• si ` > 0, alors un > 0 àpcr,

• si ` < 0, alors un < 0 àpcr.
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Remarque 49
� Il faut avoir des inégalités strictes. Par exemple, si un =

(
−1
2

)n
, alors un −→

n→+∞
0 mais

(un)n∈N n’est pas de signe constant.

Corollaire 50
Soit (un)n∈N une suite convergente, ` sa limite. Alors |un| −→

n→+∞
|`|.

Démonstration

• si ` = 0, alors on a déjà démontré que |un| −→
n→+∞

0.

• si ` > 0, alors, par la proposition précédente, on dispose de N ∈ N tel que pour tout n > N,
un > 0.
Soit ε > 0. Alors on dispose de N ′ tel que pour tout n > N ′, |un − `| 6 ε.
Notons N ′′ = max(N,N ′). Soit n > N ′′. Alors, comme un > 0 et ` > 0,∣∣∣|un| − |`|∣∣∣ = |un − `| 6 ε.
Donc |un| −→

n→+∞
|`|.

• si ` < 0, alors, par la proposition précédente, on dispose de N ∈ N tel que pour tout n > N,
un < 0.
Soit ε > 0. Alors on dispose de N ′ tel que pour tout n > N ′, |un − `| 6 ε.
Notons N ′′ = max(N,N ′). Soit n > N ′′. Alors, comme un > 0 et ` > 0,∣∣∣|un| − |`|∣∣∣ = | − un + `| = |un − `| 6 ε.
Donc |un| −→

n→+∞
|`|.

�

Exercice 51
Soit (un)n∈N ∈ ZN. On suppose de (un)n∈N converge. Montrer que (un)n∈N est stationnaire.

3 Méthodes de détermination de limites

3.1 Opérations sur les limites

Proposition 52 (Opérations sur les limites finies)
Soient (un)n∈N et (vn)n∈N deux suites convergentes, ` et `′ leurs limites respectives, λ et µ
deux réels.

(i) La suite (λun + µvn)n∈N est convergente et lim
n→+∞

(λun + µvn) = λ`+ µ`
′.

(ii) La suite (unvn)n∈N est convergente et lim
n→+∞

(unvn) = ``
′.

(iii) Si ` 6= 0 alors on dispose de N dans N tel que ∀n >, un 6= 0, la suite
(
1

un

)
n>N

est
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convergente et lim
n→+∞

1

un
=
1

`
.

Démonstration

L’idée de ces preuves sera toujours la même : on essaie de d’abord faire des majorations en
fonction de |un − `| et |vn − `|, puis on choisit notre N en fonction de la majoration que l’on a
faite.

(i) On va séparer ce résultat en deux :

• convergence de (un + vn)n∈N. Soit ε > 0. Soit n ∈ N. Alors

|un + vn − (`+ `′)| = |un − `+ vn − `′|
6 |un − `|+ |vn − `′|.

Donc si on fait en sorte que |un − `| et |vn − `| soient inférieurs ou égaux à ε′, on aura
gagné !
Prenons ε′ =

ε

2
.

Par convergence de (un)n∈N vers `, on dispose de N ∈ N tel que pour tout n > N,
|un − `| 6 ε′.
Par convergence de (vn)n∈N vers `′, on dispose de N ′ ∈ N tel que pour tout n > N ′,
|vn − `′| 6 ε′.
Posons N ′′ = max(N,N ′).
Soit n > N ′′. Alors

|(un + vn)− (`+ `′)| 6 |un − `|+ |vn − `′| 6 ε′ + ε′ = 2
ε

2
= ε.

Donc un + vn −→
n→+∞

`+ `′.

• convergence de (λvn)n∈N. Déjà, si λ = 0, la convergence est évidente. Ensuite, si
λ 6= 0, on remarque que

|λun − λ`| = |λ|.|un − `|

Soit ε > 0. Posons ε′ =
ε

|λ| . Alors par convergence de (un)n∈N vers `, on dispose de

N ∈ N tel que pour tout n > N, |un − `| 6 ε′.
Soit n > N. Alors

|λun − λ`| = |λ||un − `| = |λ|ε′ = ε.

D’où la convergence de (λun)n∈N vers λ`.

Donc, en combinant les deux résultats précédents, (λun +µvn)n∈N converge bien vers λ`+
µ`′.

(ii) Soit ε > 0. Soit n ∈ N.

|unvn − ``′| = |unvn − `vn + `vn − ``′|
6 |unvn − `vn|+ |`vn − ``′|
6 |vn|.|un − `|+ |`|.|vn − `′|.

Or, (vn)n∈N est convergente, donc (|vn|)n∈N est bornée par un réel M. Posons alors M ′ =
max(M, |`|) + 1. Alors M ′ > 0, |`| 6 M ′ et pour tout n dans N, |vn| 6 M ′.
Donc, pour tout n dans N,

|unvn − ``′| 6 M ′.|un − `|+M ′.|vn − `′|.
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Posons alors ε′ =
ε

2M
.

Par convergence de (un)n∈N vers `, on dispose de N ∈ N tel que pour tout n > N, |un−`| 6
ε′.
Par convergence de (vn)n∈N vers `′, on dispose de N ′ ∈ N tel que pour tout n > N ′,
|vn − `′| 6 ε′.
Posons N ′′ = max(N,N ′). Soit n > N ′′. Alors

|unvn − ``′| 6 M ′.ε′ +M ′.ε′ = ε,

d’où la convergence de (unvn)n∈N vers ``′.

(iii) Comme un −→
n→+∞

` 6= 0, un 6= 0 à partir d’un certain rang, notons-le N.

Soit n > N. Alors ∣∣∣∣ 1un − 1`
∣∣∣∣ = |`− un||un|.|`|

.

Or, un −→
n→+∞

` donc |un| −→
n→+∞

|`| > 0.

|`| >
|`|
2

donc on dispose de N ′ ∈ N tel que ∀n > N ′, |un| >
|`|
2
. Alors, pour tout

n > max(N,N ′), ∣∣∣∣ 1un − 1`
∣∣∣∣ = |`− un||`|.|un|

6 2
|`− un|
|`|2 .

Posons ε′ =
ε|`|2

2
.

Alors on dispose de N ′′ ∈ N tel que ∀n > N ′′, |un − `| 6 ε′.
Posons N ′′′ = max(N,N ′, N ′′). Soit n > N ′′′. Alors

∣∣∣∣ 1un − 1`
∣∣∣∣ = 2|`− un||`|2 car n > N ′

6
2ε′

|`|2 6 ε.

D"où la convergence de
(
1

un

)
n∈N

vers
1

`
.

�

Remarque 53
Attention, les réciproques des propositions précédentes sont fausses ! Par exemple, si pour
tout n dans N, un = (−1)n et vn = (−1)n, alors (un − vn)n∈N converge (elle est constante
égale à 0) mais aucune des deux suites ne converge.

Exercice 54
Soit (un) et (vn) deux suites réelles telles que (un + vn) et (un − vn) convergent.
Montrer que (un) et (vn) convergent.
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Proposition 55 (Règles de manipulation avec des limites infinies.)
Soient (un)n∈N et (vn)n∈N deux suites réelles. Alors on a le tableau de convergence suivant

(i) somme :

H
HHHHvn

un
` ∈ R +∞ −∞

`′ ∈ R `+ `′ +∞ −∞
+∞ +∞ +∞ F.I.
−∞ −∞ F.I. −∞

(ii) produit :

HH
HHHvn

un
` ∈ R∗+ ` ∈ R∗− 0 +∞ −∞

`′ ∈ R∗+ ``′ ``′ 0 +∞ −∞
`′ ∈ R∗− ``′ ``′ 0 −∞ +∞
0 0 0 0 F.I. F.I.
+∞ +∞ −∞ F.I. +∞ −∞
−∞ −∞ +∞ F.I. −∞ +∞

(iii) inverse :
un ` ∈ R∗ 0 +∞ −∞

1/` F.I. 0 0

Dans cette proposition le symbole F.I. signifie « Forme indéterminée » , c’est-à-dire que’on
ne peut pas appliquer directement les règles classiques d’opérations sur les limites.

Démonstration

On ne va faire que quelques preuves.

(i) Si un −→
n→+∞

` ∈ R et vn −→
n→+∞

+∞, montrons que un + vn −→
n→+∞

+∞.

Soit M ∈ R.
(un)n∈N converge donc est bornée, et, en particulier, est minorée. Soit α un minorant de
(un)n∈N.
Alors pour tout n dans N, un + vn > α+ vn.
Prenons M ′ = M − α. vn −→

n→+∞
−∞ donc on dispose de N ∈ N tel que ∀n > N, vn > M ′.

Soit n > N.
Alors un + vn > α+M ′ = α+M − α = M.
Donc un + vn −→

n→+∞
+∞.

(ii) Si un −→
n→+∞

+∞ et vn −→
n→+∞

` < 0, démontrons que unvn −→
n→+∞

−∞.

Soit m < 0.

` < 0 donc
`

2
> `, donc, comme vn −→

n→+∞
`, on dispose de N ∈ N tel que pour tout n > N,

vn <
`

2
.

...`a˚uffl ˜b˘r`o˘u˚i˜l¨l´o“nffl...
L’idée est alors que si un > M, unvn 6

M`

2
. il faut donc

M`

2
6 m, i.e. M >

m2

`
.

Posons M =
2m

`
> 0. Alors, par divergence vers +∞ de (un)n∈N, on dispose de N ′ ∈ N tel

que pour tout n > N, un > M.
Posons N ′′ = max(N,N ′).
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Soit n > N ′′. Alors un > M ′ et vn <
`

2
< 0. Alors

unvn <
M`

2
= m.

donc unvn −→
n→+∞

−∞.

�

Proposition 56
Soit (un)n∈N ∈ RN une suite bornée et (vn)n∈N ∈ RN de limite nulle. Alors

unvn −→
n→+∞

0.

Démonstration

(un)n∈N est bornée donc on dispose de A > 0 tel que ∀n ∈ N, |un| 6 A.
Soit ε > 0. Pour tout n ∈ N, |unvn| 6 A.|vn|.
Posons ε′ =

ε

A
.

Alors on dispose de N ∈ N tel que ∀n ∈ N, |vn| 6 ε′.
Alors ∀n > N, |unvn| 6 Aε′ = ε.
D’où le résultat. �

Proposition 57 (Limites et inverse)
Soit (un)n∈N une suite de réels non nuls tendant vers 0.

(i) si un est de signe constant apcr,
(
1

un

)
n∈N

tend vers +∞ ou −∞, suivant le signe.

(ii) sinon,
(
1

un

)
n∈N

n’a pas de limite lorsque n tend vers +∞.

Exemple 58(
1

2n

)
−→
n→+∞

0 mais (−2)n n’a pas de limite en +∞.

Une question naturelle est alors de savoir comment « déterminer » les formes indéterminées, qui
sont au nombre de trois (ou cinq, selon qu’on met ensemble ou pas trois FI équivalentes) :∞−∞,
∞
∞ (équivalent à

0

0
et 0×∞), et 1∞.

Point de méthode 59
Quelques méthodes de déterminations de limites de formes indéterminées.
(i) Limites des suites géométriques. Si ρ ∈ R,

ρn −→
n→+∞


+∞ si ρ > 1

1 si ρ = 1

0 si |ρ| < 1
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Si ρ < −1, (ρn)n∈N n’a pas de limite et n’est pas bornée. Si ρ = −1, (ρn)n∈N n’a pas
de limite mais est bornée.

(ii) Limite d’un polynôme : la limite d’un polynôme en +∞ ou −∞ est égale à la limite de
son coefficient dominant.

Exemple : déterminer lim
n→−∞

n − n2 − 2n3

n3 + 4n + 2
.

(iii) Limites incluant des racines carrées : penser à utiliser la quantité conjuguée.
Exemple : déterminer lim

n→+∞

√
n + 1−

√
n.

(iv) Penser à reconnaître des taux de variation, et donc des dérivées.

Exemple : déterminer lim
n→+∞

n sin

(
1

n

)
.

(v) Cas 1∞ : penser à écrire ab = eb ln(a), et utiliser la proposition qui suit.

Exemple : limite de
(
1 +
1

n

)n
, de

(
1 +

x

n

)n
.

La proposition suivante ne sera pas prouvée car on n’a pas encore parlé de limites de fonctions
(on peut toutefois un peu deviner à quoi cela va correspondre).

Proposition 60 (Limites et composition de fonctions)
Soit (un)n∈N une suite convergeant vers une limite ` de R, f une fonction telle que

lim
x→`

f (x) = `′, `′ ∈ R.

Alors la suite (f (un))n∈N converge vers `′.

3.2 Limites et inégalités

Proposition 61 (Passage à la limite dans les inégalités)
Soient (un)n∈N et (vn)n∈N deux suites réelles convergeant respectivement vers des réels ` et
`′.
Si un 6 vn à partir d’un certain rang, alors ` 6 `′.

Démonstration

Soit N tel que pour tout n > N, un 6 vn.
Si on avait ` > `′.

Prenons ε =
`− `′

3
. Alors, en particulier, `′ + ε < `− ε.

Comme un −→
n→+∞

`, on dispose de N ′ ∈ N tel que pour tout n > N ′, `− ε 6 un 6 `+ ε.
Comme vn −→

n→+∞
`′, on dispose de N ′′ ∈ N tel que pour tout n > N ′′, `′ − ε 6 un 6 `′ + ε.

Soit n > max(N,N ′, N ′′). Alors

un > `− ε > `′ + ε > vn.

Donc ∀n > max(N,N ′, N ′′), un > vn, ce qui contredit le fait que un 6 vn à partir d’un certain
rang. Absurde, donc ` 6 `′. �
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Remarque 62

(i)� Attention, les inégalités strictes ne passent pas à la limite ! Exemple de 1−
1

n
et 1+

1

n
.

(ii) Attention, la réciproque de l’inégalité précédente est fausse ! Si lim
n→+∞

un 6 lim
n→+∞

vn,

on n’a pas la garantie que un 6 vn àpcr.

Proposition 63
Soient (un)n∈N, (vn)n∈N et (wn)n∈N des suites réelles.

(i) (Théorème de majoration) Si un 6 vn à partir d’un certain rang et vn −→
n→+∞

−∞, alors
un −→

n→+∞
−∞.

(ii) (Théorème de majoration) Si un 6 vn à partir d’un certain rang et un −→
n→+∞

+∞, alors
vn −→

n→+∞
+∞.

(iii) (Théorème d’encadrement) Si un 6 vn 6 wn à partir d’un certain rang, si ` ∈ R, si
un −→

n→+∞
` et wn −→

n→+∞
`, alors (vn)n∈N converge et vn −→

n→+∞
`.

Démonstration

(i) Soit N ∈ N tel que pour tout n > N, un 6 vn.
Soit m ∈ R. On dispose de N ′ ∈ N tel que pour tout n > N ′, vn 6 m.
Alors si N ′′ = max(N,N ′), pour tout n > N ′′, un 6 vn 6 m.
Donc un −→

n→+∞
−∞.

(ii) Soit N ∈ N tel que pour tout n > N, un 6 vn.
Soit M ∈ R. On dispose de N ′ ∈ N tel que pour tout n > N ′, un > M.
Alors si N ′′ = max(N,N ′), pour tout n > N ′′, vn > un > M.
Donc vn −→

n→+∞
+∞.

(iii) Soit N ∈ N tel que pour tout n > N,

un 6 vn 6 wn.

Soit ε > 0.
Comme un −→

n→+∞
`, on dispose de N ′ ∈ N tel que : ∀n > N ′, `− ε 6 un 6 `+ ε.

Comme wn −→
n→+∞

`, on dispose de N ′′ ∈ N tel que : ∀n > N ′′, `− ε 6 wn 6 `+ ε.
Posons N ′′′ = max(N,N ′, N ′′). Soit n > N ′′′. Alors

`− ε 6 un 6 vn 6 wn 6 `+ ε,

donc `− ε 6 wn 6 `+ ε, i.e. |wn − `| 6 ε.
Donc wn −→

n→+∞
`.

�

Remarque 64

(i) On utilise souvent implicitement le théorème d’encadrement pour montrer qu’une suite
(un)n∈N tend vers 0, en écrivant |un| 6 vn −→

n→+∞
0.
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(ii) Plus généralement, pour montrer que un −→
n→+∞

`, on montre, par majoration de |un−`|,
que |un − `| → 0.

(iii) La meilleure manière, en termes de rédaction, d’utiliser les théorèmes précédents est
d’écrire « par majoration » , « par minoration » ou « par encadrement ». Éviter d’écrire
le « théorème de l’encadrement », qui n’est pas très élégant.

Exemple 65 (Une limite très importante !)

Soit x ∈ R. Démontrer que
xn

n!
−→
n→+∞

0.

Exercice 66

Démontrer que
1

ln(n)

n∑
k=1

1

k
−→
n→+∞

1.

3.3 Monotonie et limites

Proposition 67
Soit (un)n∈N ∈ RN une suite convergente, ` sa limite.

(i) si (un)n∈N est croissante, alors ∀n ∈ N, un 6 `.
(ii) si (un)n∈N est décroissante, alors ∀n ∈ N, un > `.

Démonstration

On ne montre que le premier point ! Par l’absurde, si ∃N ∈ N tel que uN > `, alors pour tout
n > N, un − ` > uN − ` > 0.
En faisant tendre n vers +∞, on obtient 0 6 uN − ` > 0, absurde ! �

Proposition 68 (Théorème de la limite monotone)

(i) Soit (un)n∈N une suite monotone. Alors (un)n∈N admet une limite (finie ou pas).

(ii) Soit (un)n∈N une suite croissante. Alors

• ou bien (un)n∈N est majorée et alors (un)n∈N converge vers une limite finie.

• ou bien (un)n∈N n’est pas majorée et alors lim
n→+∞

un = +∞.

(iii) Soit (un)n∈N une suite décroissante. Alors

• ou bien (un)n∈N est minorée et alors (un)n∈N converge vers une limite finie.

• ou bien (un)n∈N n’est pas minorée et alors lim
n→+∞

un = −∞.
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Démonstration

On se place dans le cas où (un)n∈N est croissante.

• si (un)n∈N n’est pas majorée, soit M ∈ R. Comme (un)n∈N n’est pas majorée, on dispose
de N ∈ N tel que uN > M.
Soit n > N. Par croissance de (un)n∈N, un > uN > M.
Donc un −→

n→+∞
+∞.

• si (un)n∈N est majorée, soit A = {un, n ∈ N}. Alors A est une partie non vide de R, majorée,
donc elle admet une borne supérieure. Notons-la |el l .
Soit ε > 0.
Comme ` = sup(A), on dispose de x ∈ A tel que `− ε 6 x 6 `.
Donc on dispose de N ∈ N tel que `− ε 6 uN 6 `.
Soit n > N. Par croissance de (uk)k∈N, un > uN > `− ε.
Mais comme un ∈ A, un 6 `, donc

`− ε 6 uN 6 ` 6 `+ ε, i.e. |un − `| 6 ε.

Donc un −→
n→+∞

`.

�

Remarque 69
� Ne jamais dire que, si (un)n∈N est croissante majorée, elle tend vers « son » majorant : cela ne

veut rien dire ! Ainsi,
(
1−
1

n

)
n∈N

est croissante, majorée par 21324π+2e, mais ne converge

pas vers 21324π + 2e.

Exemple 70

(i) Étude de suites récurrentes. Soit (un)n∈N une suite réelle définie par u0 > 0 et pour
tout n dans N, un+1 = un + u2n . Démontrer que un −→

n→+∞
+∞.

Démonstration

Pour tout n dans N, un+1 − un = u2n > 0, donc (un)n∈N est croissante.
Donc, par le théorème de la limite monotone, un −→

n→+∞
` ∈ R ou un −→

n→+∞
+∞.

Supposons que un −→
n→+∞

` ∈ R.

Alors un+1 −→
n→+∞

` et un + u2n −→
n→+∞

` + `2. Mais, comme pour tout n dans N,

un+1 = un + u
2
n , on en déduit, par unicité de la limite, que ` = ` + `2, donc `2 = 0,

donc ` = 0. Ceci est absurde car u0 > 0 et (un)n∈N est croissante.
Donc un −→

n→+∞
+∞. �

(ii) Démontrer que si α > 1 et n > 2,
1

nα
6

1

α− 1

(
1

(n − 1)α−1 −
1

nα−1

)
, et en déduire

que

(
n∑
k=1

1

nα

)
n∈N

converge.

• Déjà, comme t 7→
1

tα
est décroissante, pour tout n > 2, pour tout t dans

[n − 1, n],
1

nα
6
1

tα
. Donc, en intégrant l’inégalité précédente entre n − 1 et n,

ˆ n

n−1

1

n
dt 6

ˆ n

n−1

1

tα
dt,
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donc
1

nα
6

1

α− 1

(
1

(n − 1)α−1 −
1

nα−1

)
.

• On note, pour tout n dans N∗, Sn =
n∑
k=1

1

kα
.

— pour tout n dans N∗, Sn+1−Sn =
1

(n + 1)α
> 0, donc (Sn)n∈N est croissante.

— soit n ∈ N∗. On sait que

Sn =

n∑
k=1

1

kα

= 1 +

n∑
k=2

1

kα

6 1 +
n∑
k=2

1

α− 1

(
1

(k − 1)α−1 −
1

kα−1

)
6 1 +

1

α− 1
∑ 1

(k − 1)α−1 −
1

kα−1

6 1 +
1

α− 1

(
1

1α−1
−
1

nα−1

)
6 1 +

1

α− 1 .

Donc (Sn)n∈N est croissante et majorée : elle converge donc.
� Sa limite n’est pas 1 +

1

α− 1 . Par exemple,
n∑
k=1

1

k2
−→
n→+∞

π2

6
6= 2.

Exercice 71
Soit (un)n∈N une suite d’entiers monotone. Discuter de la convergence ou pas de (un).

Définition 72
Deux suites (un)n∈N et (vn)n∈N sont dites adjacentes si l’une est croissante, l’autre est
décroissante, et lim

n→+∞
|un − vn| = 0.

Proposition 73
Deux suites adjacentes convergent vers la même limite.

Démonstration

Soit (un)n∈N une suite croissante et (vn)n∈N décroissante telle que un − vn −→
n→+∞

0.

(i) On montre que pour tout n dans N, un 6 vn. Si ce n’était pas le cas, on disposerait de
N ∈ N tel que uN > vN . Alors, par croissance de (un)n∈N et par décroissance de (vn)n∈N,
pour tout n > N,

un − vn > uN − vN > 0,
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contradiction avec le fait que un − vn −→
n→+∞

0.

Donc, pour tout n dans N, un 6 vn.
(ii) (un)n∈N est croissante et pour tout n dans N, un 6 vn 6 v0, donc (un)n∈N est majorée par

v0.
Donc, par le théorème de la limite monotone, (un)n∈N converge vers un réel `.

(iii) (vn)n∈N est décroissante et pour tout n dans N, vn > un 6 u0, donc (vn)n∈N est minorée
par u0.
Donc, par le théorème de la limite monotone, (vn)n∈N converge vers un réel `′.

(iv) Enfin, un − vn −→
n→+∞

`− `′ donc, par unicité de la limite `− `′ = 0, i.e. ` = `′.

�

Exemple 74

(i) On pose, pour tout n > 1, Sn =
n∑
k=1

1

k2
et Tn = Sn +

1

n
. Montrer que (Sn)n∈N et

(Tn)n∈N convergent vers la même limite.

• pour tout n dans N, Sn+1 − Sn =
1

(n + 1)2
> 0, donc (Sn)n∈N est croissante,

• soit n ∈ N∗.

Tn+1 − Tn = Sn+1 +
1

n + 1
−
(
Sn +

1

n

)
=

1

(n + 1)2
+

1

n + 1
−
1

n

=
1

(n + 1)2
−

1

n(n + 1)

=
1

n + 1

(
1

n + 1
−
1

n

)
6 0,

donc (Tn)n∈N est décroissante.

• pour tout n dans N∗, Tn − Sn =
1

n
−→
n→+∞

0,

donc (Sn) et (Tn)n∈N sont adjacentes, donc elles convergent vers une même limite.

(ii) Soit (un) une suite de réels décroissante et de limite nulle.
Pour tout n ∈ N, on pose

Sn =

n∑
k=0

(−1)kuk .

Montrer que les suites extraites (S2n) et (S2n+1) sont adjacentes.

3.4 Brève extension au monde complexe

Définition 75
Soit (un)n∈N ∈ CN, ` ∈ C. On dit que un −→

n→+∞
` si |un − `| −→

n→+∞
0.

Ceci revient à dire que Re(un) −→
n→+∞→Re

(`) et Im(un) −→
n→+∞

Im(`).
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Remarque 76

(i) Cela n’a pas de sens de parler de limite infinie pour des suites complexes.

(ii) Toutes les propriétés qui n’ont pas besoin de relation d’ordre sont vraies dans C.
(iii) En revanche, les questions de monotonie, d’encadrement, n’ont pas de sens.

Exemple 77

Ainsi,
jn

n + 2 + i
−→
n→+∞

0 car∣∣∣∣ jn

n + 2 + i

∣∣∣∣ = 1√
(n + 2)2 + 1

−→
n→+∞

0.

4 Suites extraites

Dans l’exemple 74-(ii), on n’a pas réussi à conclure... que manquait-il ? L’étude des suites dites
extraites

Définition 78

(i) Une extractrice/extraction est une application de N dans N strictement croissante.

(ii) Soit (un)n∈N ∈ KN. Une suite extraite ou sous-suite de (un)n∈N est une suite (vn)n∈N
telle que ∃ϕ : N→ N extraction telle que ∀n ∈ N, vn = uϕ(n).

Exemple 79

(i) Si (un)n∈N ∈ KN, alors
• (un+1)n∈N est une suite extraite de (un)n∈N,

• (u2n)n∈N est une suite extraite de (un)n∈N,

• si ∀n ∈ N, vn = u0, (vn)n∈N n’est pas une suite extraite de (un)n∈N.

(ii) si un = jn, alors (u3n)n∈N est une suite extraite de (un)n∈N, constante, égale à 1.

Remarque 80 (Remarque importante !)
Soit (un)n∈N ∈ KN et (vn)n∈N une suite extraite de (un)n∈N. Alors (vn)n∈N = (uϕ(n))n∈N avec
ϕ extraction.
Si (wn)n∈N est une suite extraite de (vn)n∈N, alors

(wn)n∈N = (vψ(n))n∈N

avec ψ extraction. Donc pour tout n dans N,

wn = vψ(n) = uϕ◦ψ(n),

et ϕ ◦ ψ est une extraction donc (wn)n∈N est extraite de (un)n∈N.
� Attention notamment à l’ordrte de composition des extractions.
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Lemme 81
Soit ϕ : N→ N une extraction. Alors ∀n ∈ N, ϕ(n) > n.

Démonstration

On le démontre par récurrence. L’initialisation est immédiate puisque ϕ(0) > 0.
L’hérédité aussi car si ϕ(n) > n, ϕ(n+1) > ϕ(n) > n, donc ϕ(n+1) > n donc ϕ(n+1) > n+1.
�

Proposition 82
Soit (un)n∈N ∈ RN, ` ∈ R telle que un −→

n→+∞
`.

Alors toute suite extraite de (un)n∈N a pour limite `.
La propriété s’étend aux suites complexes pour des limites finies.

Démonstration

On ne fait que le cas où ` ∈ R, les autres cas s’adaptent.
Soit (vn)n∈N une suite extraite de (un)n∈N, ϕ une extraction telle que

∀n ∈ N, vn = uϕ(n).

Soit ε > 0. On dispose alors de N ∈ N tel que

∀n > N, |un − `| 6 ε.

Soit n > N. Alors, par le lemme, ϕ(n) > n > N, donc

|uϕ(n) − `| 6 ε, i.e. |vn − `| 6 ε.

Donc vn −→
n→+∞

`. �

Point de méthode 83
Pour montrer qu’une suite n’a pas de limite, il suffit de trouver deux sous-suites de cette
suite qui ont des limites différentes (ou une sous-suite qui n’a pas de limite).
Par exemple si pour tout n, un = (−1)n, alors u2n = 1 −→

n→+∞
1 et u2n+1 = −1 −→

n→+∞
1, donc

(un)n∈N n’a pas de limite.

Proposition 84
Soit (un) une suite telle que les suites (u2n) et (u2n+1) tendent vers la même limite `. Alors
(un) tend vers `.

Remarque 85
On peut étendre cette propriété à toute partition de N en un nombre fini de parties infinies.
Par exemple, si (u3n)n∈N, (u3n+1)n∈N et (u3n+2)n∈N tendent vers la même limite `, alors
(un)n∈N aussi.
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Démonstration

On ne s’intéresse qu’au cas convergent, les autres s’adaptent.
Soit ε > 0.
u2n −→

n→+∞
` donc on dispose de N ∈ N tel que ∀n > N, |u2n − `| 6 ε

u2n+1 −→
n→+∞

` donc on dispose de N ′ ∈ N tel que ∀n > N ′, |u2n+1 − `| 6 ε
Posons N ′′ = max(2N, 2N ′ + 1).
Soit n > N ′′

• si n est pair, alors n > 2N, et n = 2p avec p ∈ N. Alors p > N donc |u2p − `| 6 ε. donc
|un − `| 6 ε.

• si n est impair, alors n > 2N ′+1, et n = 2p+1 avec p ∈ N. Alors p > N ′ donc |u2p+1−`| 6 ε.
donc |un − `| 6 ε.

Donc un −→
n→+∞

`. �

Exemple 86
On peut alors finir l’exercice sur les séries alternées !

Point de méthode 87 (Construction d’extractions)
Soit (un)n∈N ne convergeant pas vers `. Démontrer qu’il existe ε > 0 et une suite extraite
de (un)n∈N, notée (vn)n∈N, telle que pour tout n dans N, |vn − `| > ε.
On commence par nier la convergence :

∃ε > 0, ∀N ∈ N, ∃n > N, |un − `| > ε.

Il faut alors construire une extraction ϕ, par récurrence.

• En prenant N = 0, on dispose de n > N tel que |un − `| > ε. On pose ϕ(0) = n.

• Supposons ϕ(0), . . . , ϕ(k) construits pour un certain k .
En prenant N = ϕ(k) + 1, on dispose de n > ϕ(k) + 1 tel que |un − `| > ε. On pose
alors ϕ(k + 1) = n.

On a alors construit ϕ une extraction (strictement croissante par construction) telle que
pour tout n dans N, |uϕ(n) − `| > ε.

Exercice 88
Soit (un)n∈N une suite non majorée. Démontrer que

∀M ∈ R, ∀N ∈ N, ∃k > N, uk > M.

puis qu’il existe une suite extraite de (un)n∈N tendant vers +∞.

Théorème 89 (Bolzano-Weierstrass)
Toute suite réelle bornée admet une suite extraite convergente.
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Démonstration

Soit (un)n∈N ∈ RN une suite bornée, a et b un minorant et un majorant de (un)n∈N. On construit
par récurrence une suite de segments [an, bn] qui vont tous contenir une infinité de termes de la
suite (un)n∈N. La construction se fera par dichotomie.

• On pose a0 = a et b0 = b. Alors [a0, b0] contient une infinité de termes de la suite.

• Soient n ∈ N tel que (an, bn) soient construits et tel que [an, bn] contienne une infinité de

termes de la suite (un)n∈N. On pose cn =
an + bn
2

. Alors

— ou bien [an, cn] contient une infinité de termes de la suite (un)n∈N, et on pose an+1 = an,
bn+1 = cn,

— ou bien ]cn, bn] contient une infinité de termes de la suite (un)n∈N, et on pose an+1 = cn,
bn+1 = bn.

On a donc construit (an+1, bn+1) tels que [an+1, bn+1] contienne une infinité de termes de
la suite (un)n∈N.

On remarque que (an)n∈N est croissante, que (bn)n∈N est décroissante et que bn − an =
b − a
2n

−→
n→+∞

0, donc (an)n∈N et (bn)n∈N sont adjacentes, et convergent vers la même limite

`.
On construit alors ϕ ainsi :

• ϕ(0) = 0, i.e. uϕ(0) = u0,

• si n ∈ N, et si ϕ(n) a été construit, on remarque que l’ensemble

An = {k ∈ N, k > ϕ(n) et uk ∈ [an+1, bn+1]}

est infini (sinon, s’il était fini, [an+1, bn+1] contiendrait un nombre fini de termes de la suite
(un)n∈N, absurde. On prend ϕ(n + 1) ∈ An.

On a alors construit une extractrice ϕ telle que pour tout n dans N, an 6 uϕ(n) 6 bn.
Donc, par encadrement, uϕ(n) −→

n→+∞
`. �

Exercice 90 (Difficile mais joli)
Démontrer que de toute suite réelle on peut extraire une sous-suite convergente. En déduire
une autre preuve du théorème de Bolzano-Weierstrass.

Remarque 91
On peut aussi énoncer ce théorème comme « Toute suite réelle bornée admet une valeur
d’adhérence » , une valeur d’adhérence étant définie comme la limite d’une suite extraite.

Proposition 92
Toute suite complexe (zn)n∈N telle que (|zn|)n∈N est bornée. Alors (zn)n∈N admet une suite
extraite convergente.

Démonstration

Notons, pour tout n dans N, an = Re(un) et bn = Im(un). Soit n ∈ N. Alors

|an| 6 |un| et |bn| 6 |un|
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Donc (an)n∈N et (bn)n∈N sont bornées.
� On ne va pas extraire séparément des suites convergentes, mais extraire une suite de (an)n∈N,

puis de (bn)n∈N.
(an)n∈N est bornée donc, par le théorème de Bolzano-Weierstrass, on dispose de ϕ : N → N
extraction, de ` ∈ R telle que aϕ(n) −→

n→+∞
`.

(bϕ(n))n∈N est bornée, donc par le théorème de Bolzano-Weierstrass, on dispose de ψ : N→ N
extraction, de `′ ∈ R telle que bϕ◦ψ(n) −→

n→+∞
`′.

Mais (aϕ◦ψ(n))n∈N est extraite de (aϕ(n))n∈N donc converge vers `.
Donc

uϕ◦ψ(n) −→
n→+∞

`+ i `′.

Donc (uϕ◦ψ(n))n∈N est une suite extraite de (un)n∈N qui converge. �

Exercice 93
Soit (un)n∈N une suite bornée n’ayant qu’une valeur d’adhérence. Montrer que (un)n∈N
converge.

5 Caractérisation séquentielle des propriétés de R.
Maintenant que nous avons bien manipulé les suites, il est très utile de voir comment les propriétés
de R peuvent être vues à l’aides de ces suites.

Proposition 94
Soit A ⊂ R. Alors A est majorée si et seulement si

∀(un)n∈N ∈ AN, (un)n∈N est majorée.

La proposition fonctionne de la même manière dans les cas minoré et borné.

Remarque 95
On utilise souvent la contraposée : A n’est pas majoré si et seulement s’il existe une suite
(un)n∈N ∈ A N telle que (un)n∈N n’est pas majorée.

Démonstration

La démonstration est intéressante en ce sens qu’elle fait construire une suite.

⇒ Si A est majorée, prenons M un majorant de A. Soit (un)n∈N ∈ AN.
Alors ∀n ∈ N, un ∈ A, donc ∀n ∈ N, un 6 M.
Donc (un)n∈N est majorée par M.

⇐ Si A n’est pas majorée, alors

∀M ∈ R, ∃a ∈ A, a > M.

Soit n ∈ N. Dans la proposition précédentes, prenons M = n.
Alors on dispose de a ∈ A tel que a > M. Notons un = a.
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On a donc construit une suite (un)n∈N telle que

∀n ∈ N, un ∈ A et un > n.

Donc (un)n∈N est une suite de AN non majorée. D’où l’implication réciproque par contra-
posée.

�

Remarque 96
En fait, on a démontré que si A n’était pas majorée, alors il existait une suite d’éléments de
A tendant vers +∞.

Proposition 97
Soit A ⊂ R, M ∈ R.
(i) M est la borne supérieure de A si et seulement si

∀x ∈ A, x 6 M ET ∃(un)n∈N ∈ AN t.q. un −→
n→+∞

M.

(ii) M est la borne inférieure de A si et seulement si

∀x ∈ A, x > M ET ∃(un)n∈N ∈ AN t.q. un −→
n→+∞

M.

Démonstration

(i) On utilise la caractérisation suivante de M = sup(A) :

∀x ∈ A, x 6 M et ∀ε > 0, ∃a ∈ A, |a −M| 6 ε.

• On suppose que M = sup(A). Alors déjà, ∀x ∈ A, x 6 M.
Ensuite, on construit une suite (un)n∈N d’éléments de A qui converge vers M.

Soit n ∈ N. Prenons ε =
1

2n
(peu importe ce que l’on prend, l’important est que la

quantité tende vers 0 quand n tend vers +∞).

Alors on dispose de a ∈ A, DÉPENDANT DE n tel que |a −M| 6 ε.

Posons un = a. Alors |un −M| 6
1

2n
.

On a donc défini une suite (un)n∈N ∈ A N telle que

∀n ∈ N, |un −M| 6
1

2n
−→
n→+∞

0.

Donc |un −M| −→
n→+∞

0 donc un −→
n→+∞

M.

• Supposons maintenant que ∀x ∈ A, M 6 x et que l’on dispose de (un)n∈N ∈ A N tel
que un −→

n→+∞
M.

Soit ε > 0. un −→
n→+∞

M donc on dispose de N ∈ N tel que ∀n > N, |un −M| 6 ε.
Posons A = uN . Alors a ∈ A et |a −M| 6 ε.
D’où l’implication réciproque et l’équivalence.

�
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Exemple 98
Appliquer la proposition suivante à la détermination de la borne supérieure de

A =

{
q

2p + q
, (p, q) ∈ N2

}
.

Proposition 99
Soit A une partie de R. A est dense dans R si, et seulement si tout réel est la limite d’une
suite d’éléments de A.

Démonstration

⇒ On suppose A dense dans R. Donc

∀x ∈ R, ∀ε > 0, ∃a ∈ A, |x − a| 6 ε.

Soit x ∈ R.
On construit une suite qui converge vers x .
Soit n ∈ N.
Prenons ε =

1

2n
. Alors on dispose de a ∈ A dépendant de ε donc de n tel que |x − a| 6 ε.

Posons un = a.

On a donc construit une suite (un)n∈N ∈ AN telle que pour tout n, |un − x | 6
1

2n
−→
n→+∞

0,

donc un −→
n→+∞

x .

⇐ Soit x dans R. Alors on dispose de (un)n∈N ∈ AN qui converge vers x .
Soit ε > 0. Alors par convergence de (un)n∈N vers x , on dispose de N ∈ N tel que ∀n > N,
|un − x | 6 ε.
Posons a = uN . Alors a ∈ A et |a − x | 6 ε.
Donc A est dense dans R.

D’où l’équivalence désirée. �

Exemple 100
On obtient une nouvelle démonstration de la densité de Q et de R \Q dans R.

• Densité de Q. Soit x ∈ R. Posons, pour tout n dans N∗, un =
bnxc
n

. Alors (un)n∈N ∈
QN et, si n ∈ N∗,

nx − 1 6 bnxc 6 nx,

donc
x −
1

n
6 un 6 x,

donc, par encadrement, un −→
n→+∞

x .

• Densité de R \Q. Soit x ∈ R.
— si x ∈ R \Q, on pose, pour tout n dans N, un = x , donc (un)n∈N ∈ (R \Q)N et

un −→
n→+∞

x .
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— si x ∈ Q, on pose, pour tout n dans N, un = x +
√
2

n
. Alors (un)n∈N ∈ (R \Q)N

et un −→
n→+∞

x .



MPSI 1 Pasteur 2025-2026
Réels et suites

N. Laillet
nlaillet.math@gmail.com

6 Suites récurrentes

6.1 Rappels de Terminale

Définition 101
Une suite (un)n∈N ∈ KN est dite arithmétique s’il existe r dans K tel que : ∀n ∈ N,
un+1 = un + r .
r est appelé raison de la suite (un)n∈N.

Proposition 102
Soit (un)n∈N ∈ KN une suite arithmétique de raison r .

(i) pour tout n dans N, un = u0 + nr .
(ii) pour tous n et p dans N,

p∑
k=n

uk =
(un + up)(p − n + 1)

2
=
(premier terme + dernier terme)× (nb de termes)

2
.

Proposition 103
Soit (un)n∈N ∈ RN une suite arithmétique de raison réelle r .

(i) si r = 0, (un)n∈N est constante et a pour limite u0 (cette partie de la proposiiton
fonctionne aussi avec des suites réelles).

(ii) si r > 0, (un)n∈N est strictement croissante et a pour limite +∞.

(iii) si r < 0, (un)n∈N est strictement décroissante et a pour limite −∞.

Définition 104
Une suite (un)n∈N ∈ KN est dite géométrique s’il existe q dans K tel que : ∀n ∈ N,
un+1 = qun.
q est appelé raison de la suite (un)n∈N.

Proposition 105
Soit (un)n∈N ∈ KN une suite géométrique de raison q.

(i) pour tout n dans N, un = u0 × qn.
(ii) pour tous n et p dans N,

p∑
k=n

uk =


u0 × (p − n + 1) si q = 1

un ×
1− qp−n+1

1− q = (premier terme)×
1− (raison)nombre de termes

1− raison
sinon.
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Proposition 106
Soit (un)n∈N ∈ RN une suite géométrique de premier terme et de raison réelle q.

(i) si u0 = 0, (un)n∈N est nulle.

(ii) si u0 > 0 :
Variations Limite

r > 1 Strictement croissante un −→
n→+∞

+∞
0 < r < 1 Strictement décroissante
r = 0 Constante nulle pour n > 1 un −→

n→+∞
0

−1 < r < 0

Pas monotone : (u2n)n∈N str.
décroissante et (u2n+1)n∈N str.
croissante

r < −1
Pas monotone : (u2n)n∈N str.
croissante et (u2n+1)n∈N str. dé-
croissante

Pas de limite : u2n −→
n→+∞

+∞ et
u2n+1 −→

n→+∞
−∞.

(iii) si u0 < 0 :
Variations Limite

r > 1 Strictement décroissante un −→
n→+∞

−∞
0 < r < 1 Strictement croissante
r = 0 Constante nulle pour n > 1 un −→

n→+∞
0

−1 < r < 0

Pas monotone : (u2n)n∈N str.
croissante et (u2n+1)n∈N str. dé-
croissante

r < −1
Pas monotone : (u2n)n∈N str.
décroissante et (u2n+1)n∈N str.
croissante

Pas de limite : u2n −→
n→+∞

−∞ et
u2n+1 −→

n→+∞
+∞.

Proposition 107
Soit (un)n∈N une suite géométrique complexe de raison q ∈ C.
(i) si |q| < 1, un −→

n→+∞
0.

(ii) si |q| > 1, (un)n∈N n’est pas bornée.

7 Un peu d’asymptotique

7.1 Négligeabilité, domination, équivalences

Définition 108
Soient (un)n∈N et (vn)n∈N deux suites telles que (vn) ne s’annule pas àpcr.

(i) On dit que (un)n∈N est négligeable devant (vn)n∈N, on écrit un =
n→+∞

o(vn) et on lit

« (un)n∈N est un « petit o de » (vn)n∈N » si
un
vn
−→
n→+∞

0.

(ii) On dit que (un)n∈N est dominée par (vn)n∈N, on écrit un =
n→+∞

O(vn) et on lit « (un)n∈N

est un « grand o de » (vn)n∈N » si
un
vn

est bornée.
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(iii) On dit que (un)n∈N est équivalente à (vn)n∈N, on écrit un ∼
n→+∞

o(vn) et on lit « (un)n∈N

est un équivalente à (vn)n∈N » si
un
vn
−→
n→+∞

1.

Exemple 109
n =
n→+∞

o(n2), 1 =
n→+∞

o(n2), n − 1 =
n→+∞

o(n2), ln(n + 1) ∼
n→+∞

ln(n), etc.

Remarque 110
Attention, o(vn) n’est pas un objet à manipuler comme une suite ! Notamment, si un =

n→+∞
o(vn) et rn =

n→+∞
o(vn), un − rn =

n→+∞
o(vn) !

Il faut pouvoir écrire dans un cadre plus général ces définitions

Définition 111
Soient (un)n∈N et (vn)n∈N deux suites réelles.

(i) On dit que (un)n∈N est négligeable devant (vn)n∈N, on écrit un =
n→+∞

o(vn) et on lit

« (un)n∈N est un « petit o de » (vn)n∈N » s’il existe (εn)n∈N de limite nulle telle que
un = εnvn àpcr.

(ii) On dit que (un)n∈N est dominée par (vn)n∈N, on écrit un =
n→+∞

O(vn) et on lit « (un)n∈N
est un « grand o de » (vn)n∈N » s’il existe C > 0 tel que |un| 6 C|vn| à partir d’un
certain rang.

(iii) On dit que (un)n∈N est équivalente à (vn)n∈N, on écrit un ∼
n→+∞

o(vn) et on lit « (un)n∈N
est un équivalente à (vn)n∈N » s’il existe (εn)n∈N de limite égale à 1 telle que un = εnvn
àpcr.

On ne démontrera pas que ces définitions sont équivalentes.
Question : pourquoi introduire ces notions ? Pour la raison fondamentale suivante :

Proposition 112
Soient (un)n∈N et (vn)n∈N deux suites réelles, ` ∈ R. Si un ∼

n→+∞
vn et vn −→

n→+∞
`, alors

un −→
n→+∞

`.

Démonstration

Opérations sur les limites ! �
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Remarque 113

(i) Ainsi, faire des équivalents permet de plus facilement déterminer des limites.

(ii)� La réciproque est très fausse ! Deux suites peuvent avoir la même limite sans être

équivalentes ! Ainsi,
1

n
et
2

n
ont la même limite mais ne sont pas équivalentes.

On a quand même la proposition sympathique suivante

Proposition 114
Soit (un)n∈N une suite réelle, ` ∈ R∗. Alors un −→

n→+∞
` si et seulement si un ∼

n→+∞
`.

Remarque 115
� Que signifie « un ∼

n→+∞
0 » ?

Bon, mais alors, à quoi servent les petits o et les grand O?

Proposition 116
Soient (un)n∈N et (vn)n∈N deux suites réelles. Alors

un ∼
n→+∞

vn ⇔ un = vn + o(vn).

Proposition 117 (Quelques propriétés des équivalents, o, O)

(i) ∼ est une relation d’équivalence.

(ii) o et O sont des relations transitives.

(iii) o ⇒ O et ∼⇒ O

(iv) si un =
n→+∞

o(wn) et vn =
n→+∞

o(wn), alors pour tous λ et µ, λun + µvn =
n→+∞

o(wn).

(v) idem avec O

(vi) si un = o(vn), alors unwn = o(vnwn). Pareil avec O et ∼.
(vii) en particulier, si un ∼ vn et wn ∼ xn, alors unwn ∼ vnxn.

7.2 Relations de comparaison et équivalents célèbres
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Proposition 118

(i) Si (a, b) ∈ R2, avec a < b, na = o(nb).

(ii) Pour tous a et b strictement positifs, na = o(ebn) et ln(n)a = o(nb).

(iii) Pour tout x ∈ R, xn =
n→+∞

o(n!) et n! =
n→+∞

o(nn).

(iv) Plus généralement, si un −→
n→+∞

+∞, uan = o(e
bun) et ln(un)a = o(ubn).
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