MPSI 1

Mathématiques DS 03

Samedi 8 novembre – 8h-12h

- Durée : 4 heures :
 - Prenez **10 minutes** pour lire le sujet en entier et décider de la stratégie que vous adopterez.
 - Prenez **10 minutes** au moins à la fin des 4 heures pour vous relire!
- Toute calculatrice ou appareil électronique est interdit.
- Le sujet est composé de deux problèmes.
- Le sujet est **très long** : il **ne faut pas** essayer de tout faire. Un sujet long vous permet de **choisir** ce qui vous inspire le plus. Repérez les questions indépendantes, les parties indépendantes des autres, etc.
- Encadrez, soulignez vos résultats et numérotez vos pages.
- À tout moment, vous pouvez admettre le résultat d'une question pour pouvoir continuer : il suffit de le préciser clairement sur la copie.
- Si vous voyez ce qui semble être une erreur d'énoncé, indiquez-le sur la copie.
- Essayez de changer de copie, au moins de page, lorsque vous changez d'exercice.
- Laissez de la place dans une marge à gauche pour pouvoir noter plus facilement le devoir.
- Une réponse fausse, si elle ne laisse pas paraître de calculs intermédiaires, compte 0 points; avec calculs intermédiaires elle peut rapporter quelques points.

♪ Bon courage! ♪

Problème 1. Étude du mouvement d'une particule plane

On considère une particule se déplaçant dans un plan, de position décrite par deux fonctions de t, x et y. On note z = x + iy (z est donc une fonction de t).

On suppose qu'il existe une fonction continue $\theta: \mathbb{R}_+ \to \mathbb{R}$, telle que pour tout t dans \mathbb{R} ,

$$x'(t) = \cos(\theta(t))$$
 et $y'(t) = \sin(\theta(t))$.

On suppose de plus que z(0) = 0, c'est-à-dire que la particule se trouve au point (0,0) lorsque t = 0.

Si $t\geqslant 0$, on appelle M(t) le point d'affixe z(t). On appelle $\vec{V}(t)$ le vecteur d'affixe z'(t). On appelle enfin **trajectoire** de la particule l'ensemble $\{M(t),\ t\in\mathbb{R}_+\}$. Par exemple, si pour tout $t\geqslant 0$, x(t)=3t et y(t)=5t, alors pour tout $t\geqslant 0$, $y(t)=\frac{5}{3}x(t)$, donc la trajectoire de

la particule est une demi-droite partant de 0 et de pente $\frac{5}{3}$.

Ainsi, étant donnée les formules précédentes, on a les résultats suivants : pour tout t dans \mathbb{R}_+ ,

$$x(t) = \int_0^t \cos(\theta(u)) du, \ y(t) = \int_0^t \sin(\theta(u)) du, \ z(t) = \int_0^t e^{i\theta(u)} du.$$

A. Un tout premier exemple

Dans cette partie uniquement, on suppose que l'on dispose de $\omega > 0$ tel que pour tout t dans \mathbb{R}_+ , $\theta(t) = \omega t$.

1. Déterminer une expression de x(t) et de y(t).

Correction

On sait alors que pour tout t dans \mathbb{R} ,

$$x(t) = \int_0^t \cos(\omega u) du = \left[\frac{1}{\omega}\sin(\omega u)\right]_0^t = \frac{1}{\omega}\sin(\omega t) \text{ et } y(t) = \int_0^t \sin(\omega u) du = \frac{1}{\omega}(1-\cos(\omega t))$$

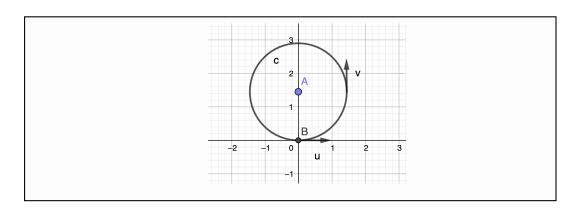
2. Démontrer que la fonction $t \mapsto x(t)^2 + \left(y(t) - \frac{1}{\omega}\right)^2$ est constante. Représenter l'ensemble des valeurs de (x(t), y(t)) pour t variant dans \mathbb{R} . Représenter aussi les vecteurs $\overrightarrow{V}(0)$ et $\overrightarrow{V}\left(\frac{\pi}{2u}\right)$.

Correction

On remarque assez aisément que si $t \in \mathbb{R}$,

$$x(t)^{2} + \left(y(t) - \frac{1}{\omega}\right)^{2} = \frac{1}{\omega^{2}s} \left(\sin(\omega t)^{2} + \cos(\omega t)^{2}\right) = \frac{1}{\omega^{2}}$$

donc le point (x(t), y(t)) appartient au cercle de centre $\left(0, \frac{1}{\omega}\right)$ et de rayon $\frac{1}{\omega}$. On dessine les choses ainsi.



В. Une première fonction θ

Dans cette partie, on suppose que pour tout t dans \mathbb{R}_+ , $\theta(t) = \operatorname{Arctan}(t)$. Ne demandez pas le sens physique de cette propriété (ou demandez-le à M. Lim, mais pas à moi).

3. Représenter le graphe de θ sur \mathbb{R}_+ . Préciser les asymptotes éventuelles et la tangente en

Correction

Je vous avais promis du cours, en voici!

4. Si $t \in \mathbb{R}$, exprimer $\cos(\operatorname{Arctan}(t))$ et $\sin(\operatorname{Arctan}(t))$ en fonction de t.

Correction

C'est un des exercices corrigés en classe! On sait que $\frac{1}{\cos(\operatorname{Arctan}(t))^2} = 1 + \tan(\operatorname{Arctan}(t))^2 = 1 + t^2$, donc

$$\cos(\operatorname{Arctan}(t))^2 = \frac{1}{1+t^2}.$$

Mais Arctan est à valeurs dans $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, donc $\cos(\operatorname{Arctan}(t)) \geqslant 0$. Ainsi,

$$\cos(\operatorname{Arctan}(t)) = \frac{1}{\sqrt{1+t^2}}.$$

On en déduit que

$$\sin(\operatorname{Arctan}(t)) = \cos(\operatorname{Arctan}(t)) \times \tan(\operatorname{Arctan}(t)) = \frac{t}{\sqrt{1+t^2}}.$$

5. Démontrer que la fonction sh est une bijection de $\mathbb R$ dans $\mathbb R$ et donner l'expression, à l'aide des fonctions usuelles, de sa bijection réciproque. On appellera cette bijection réciproque Argsh.

Correction

Là, on ne veut pas juste de théorème de la bijection, mais la résolution d'une équation!

Soit y dans \mathbb{R} et x dans \mathbb{R} . Alors on a les équivalences suivantes :

$$sh(x) = y \Leftrightarrow e^{x} - e^{-x} = 2y$$
$$\Leftrightarrow (e^{x})^{2} - 2ye^{x} - 1 = 0.$$

L'équation $X^2-2yX-1=0$ d'inconnue X admet pour discriminant $4y^2+4$, d'où deux solutions, l'une positive, $y+\sqrt{y^2+1}$, l'autre négative, $y-\sqrt{y^2+1}$. Comme e^x est toujours positive, on a l'équivalence

$$sh(x) = y \Leftrightarrow e^x = y + \sqrt{y^2 + 1}$$

 $\Leftrightarrow x = ln(y + \sqrt{y^2 + 1}).$

Ainsi, sh est bijective de $\mathbb R$ dans $\mathbb R$ et sa bijection réciproque est

$$y \mapsto \ln(y + \sqrt{y^2 + 1}).$$

6. Démontrer que Argsh est dérivable sur $\mathbb R$ et donner une expression de sa dérivée.

Correction

Ou bien on utilise la dérivée d'une réciproque, ou bien on utilise l'expression trouvée. La dérivée de sh, ch, ne s'annule jamais, donc Argsh est dérivable sur \mathbb{R} , de dérivée :

$$\mathsf{Argsh'}: y \mapsto \frac{1}{\mathsf{ch}(\mathsf{Argsh}(y))}$$

Or, si $y \in \mathbb{R}$, ch(Argsh(y)) = $\sqrt{1 + \text{sh}^2(\text{Argsh}(y))} = \sqrt{1 + y^2}$ (car ch est toujours positif). Donc

$$Argsh': y \mapsto \frac{1}{\sqrt{1+y^2}}$$

7. En déduire une expression de x(t) et de y(t) pour tout t dans \mathbb{R}_+ .

Correction

On en déduit que pour t dans \mathbb{R}_+ ,

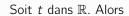
$$x(t) = \int_0^t \cos(\operatorname{Arctan}(u)) du = \int_0^t \frac{1}{\sqrt{1+u^2}} du = \operatorname{Argsh}(t)$$

et

$$y(t) = \int_0^t \frac{u}{\sqrt{1+u^2}} du = \left[\sqrt{1+u^2}\right]_0^t = \boxed{\sqrt{1+t^2}-1}$$

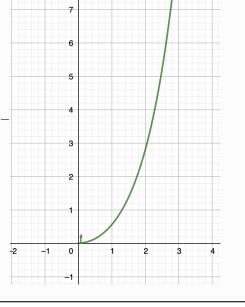
8. Démontrer que pour tout t dans \mathbb{R} , $y(t) = \operatorname{ch}(x(t)) - 1$. Dessiner alors la trajectoire de la particule.

Correction



$$ch(x(t))-1 = ch(Argsh(t))-1 = \sqrt{1+t^2}-$$

On obtient donc la courbe suivante (attention! comme $t \ge 0$, x(t) ne parcourt que \mathbb{R}_+ !)



C. Une seconde fonction θ

Dans cette deuxième partie, on suppose que, pour tout t dans \mathbb{R} , $\theta(t) = 2 \operatorname{Arctan}(e^t) - \frac{\pi}{2}$.

9. Déterminer les variations de θ , sa parité ou son imparité, ses limites en $\pm \infty$ et tracer l'allure de son graphe.

Correction

La fonction θ est clairement dérivable, comme composée de fonctions dérivables et, pour tout t dans \mathbb{R} ,

$$\theta'(t) = 2\frac{e^t}{1 + e^{2t}} = \frac{1}{\mathsf{ch}(t)} > 0,$$

donc θ est croissante. De plus, pour tout t dans \mathbb{R} ,

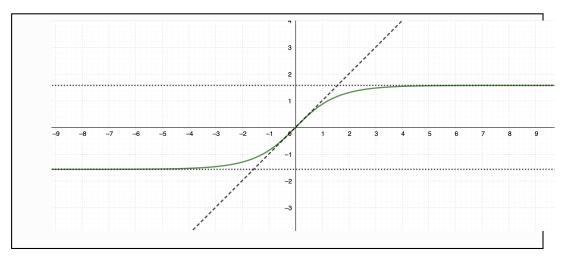
$$\theta(-t) = 2 \text{Arctan}(\mathbf{e}^{-t}) - \frac{\pi}{2} = 2 \text{Arctan}\left(\frac{1}{\mathbf{e}^t}\right) - \frac{\pi}{2} = 2\frac{\pi}{2} - 2 \text{Arctan}(\mathbf{e}^t) - \frac{\pi}{2} = -\theta(t),$$

donc θ est impaire.

Enfin, par composition de limites,

$$\theta(t) \underset{t \to +\infty}{\longrightarrow} \frac{\pi}{2} \text{ et } \theta(t) \underset{t \to -\infty}{\longrightarrow} -\frac{\pi}{2}.$$

On obtient donc le graphe suivant :



10. Soit $t \in \mathbb{R}$. Vérifier que $\tan(\theta(t)) = \sinh(t)$, que $\sin(\theta(t)) = \tanh(t)$ et que $\cos(\theta(t)) = \tanh(t)$ $\overline{\operatorname{ch}(t)}$

Correction

Même si ce n'est pas demandé, calculons $tan(\theta(t))$:

$$\begin{split} \tan(\theta(t)) &= \tan\left(2\mathsf{Arctan}(\mathsf{e}^t) - \frac{\pi}{2}\right) \\ &= -\frac{1}{\tan(2\mathsf{Arctan}(\mathsf{e}^t))} \\ &= -\frac{1 - \mathsf{Arctan}(\mathsf{e}^t)^2}{2\mathsf{Arctan}(\mathsf{e}^t)} \\ &= -\frac{1 - \mathsf{e}^{2t}}{2\mathsf{e}^t} = \boxed{\mathsf{sh}(t)}. \end{split}$$

Ensuite, comme $\theta(t) \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, on peut dire que

$$\theta(t) = Arctan(sh(t))$$

Donc

$$\sin(\theta(t)) = \sin(\operatorname{Arctan}(\operatorname{sh}(t)) = \frac{\operatorname{sh}(t)}{\sqrt{1 + \operatorname{sh}(t)^2}},$$

d'après la question 4.. Donc, comme $ch(t) = \sqrt{1 + sh(t)^2}$,

$$\sin(\theta(t)) = \frac{\sinh(t)}{\cosh(t)} = \boxed{\tanh(t)}.$$

Enfin,

$$\cos(\theta(t)) = \frac{\sin(\theta(t))}{\tan(\theta(t))} = \frac{\operatorname{th}(t)}{\operatorname{sh}(t)} = \boxed{\frac{1}{\operatorname{ch}(t)}}.$$

11. En déduire une expression de x(t) et de y(t) pour tout $t \ge 0$. On remarquera que $\frac{2}{\mathrm{e}^u + \mathrm{e}^{-u}} = \frac{2\mathrm{e}^u}{(\mathrm{e}^u)^2 + 1}$.

Soit $t \geqslant 0$.

$$x(t) = \int_0^t \cos(\theta(u)) du = \int_0^t \frac{2}{e^u + e^{-u}} du = \int_0^t \frac{2e^u}{(e^u)^2 + 1}$$
$$= [Arctan(e^u)]_0^t = Arctan(e^t) - \frac{\pi}{4}.$$

De même,

$$y(t) = \int_0^t \sin(\theta(u)) du = \int_0^t \operatorname{th}(u) du = [\ln(ch(u))]_0^t = \boxed{\ln(ch(t))}.$$

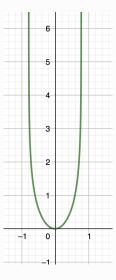
12. Exprimer, pour $t \ge 0$, y(t) en fonction de $\sin(t)$ et tracer la trajectoire de la particule.

Correction

On en déduit alors que pour tout $t \ge 0$,

$$y(t) = \ln(\operatorname{ch}(t)) = -\ln(\cos(\theta(t))) = -\ln(\cos(2x(t))).$$

x varie entre $-\frac{3\pi}{4}$ et $\frac{3\pi}{4}$. On a donc (je ne fais pas l'étude de fonction) le graphe suivant :



D. Une majoration générale

Dans cette partie, on suppose que θ est de classe \mathcal{C}^2 (i.e. deux fois dérivable, de dérivée seconde continue) et que θ' est strictement croissante avec $\theta'(0)>0$. On note $\lambda=\theta'(0)$ et on veut montrer que

$$\forall t > 0, \quad |z(t)| \leqslant \frac{2}{\lambda}.$$

On pourra utiliser le résultat suivant : si f est une fonction à valeurs complexes continue dans un segment [a, b]

$$\left| \int_{a}^{b} f(t) dt \right| \leqslant \int_{a}^{b} |f(t)| dt$$

13. Montrer que

$$z(t) = \int_0^t \frac{\theta''(u)}{i\theta'(u)^2} e^{i\theta(u)} du + \frac{e^{i\theta(t)}}{i\theta'(t)} - \frac{e^{i\theta(0)}}{i\theta'(0)}.$$

Correction

On sait que

$$z(t) = \int_0^t e^{i\theta(t)} dt = \int_0^t \frac{\theta'(t)e^{i\theta(t)}}{\theta'(t)} dt,$$

la dernière opération étant licite car θ' ne s'annule pas. Effectuons une intégration par parties, en posant $u(t)=\frac{1}{i}\mathrm{e}^{i\theta(t)}$ et $v(t)=\frac{1}{\theta'(t)}$. Ainsi $u'(t)=\theta'(t)\mathrm{e}^{i\theta(t)}$ et $\theta''(t)$

$$v'(t) = -\frac{\theta''(t)}{\theta'(t)^2}$$
. D'où

$$z(t) = \left[\frac{1}{i}e^{i\theta(u)}\frac{1}{\theta'(u)}\right] + \int_0^t \frac{1}{i}e^{i\theta(u)}\frac{\theta''(u)}{\theta'(u)^2}du,$$

ce qui est exactement la formule désirée!

14. En déduire l'inégalité annoncée.

Correction

On procède par inégalités successives :

$$\begin{split} |z(t)| &= \left| \int_0^t \frac{\theta''(u)}{i\theta'(u)^2} e^{i\theta(u)} du + \frac{e^{i\theta(t)}}{i\theta'(t)} - \frac{e^{i\theta(0)}}{i\theta'(0)} \right| \\ &\leqslant \int_0^t \left| \frac{\theta''(u)}{i\theta'(u)^2} e^{i\theta(u)} \right| du + \left| \frac{e^{i\theta(t)}}{i\theta'(t)} \right| + \left| \frac{e^{i\theta(0)}}{i\theta'(0)} \right| \text{ par inégalité triangulaire} \\ &\leqslant \int_0^t \frac{\theta''(u)}{\theta'(u)^2} du + \frac{1}{\theta'(t)} + \frac{1}{\theta'(0)} \text{ car } \theta' \text{ et } \theta'' \text{ sont strictement positives} \\ &\leqslant \left[-\frac{1}{\theta'(u)} \right]_0^t + \frac{1}{\theta'(t)} + \frac{1}{\theta'(0)} \\ &\leqslant \frac{1}{\theta'(0)} - \frac{1}{\theta'(t)} + \frac{1}{\theta'(t)} + \frac{1}{\theta'(0)} \leqslant \frac{2}{\theta'(0)}, \end{split}$$

ce qui est le résultat voulu!

Problème 2. Applications de composition

Soit E un ensemble. Si $f \in E^E$, on note D_f et G_f les applications de composition à droite et à gauche par f:

$$D_f: \left| \begin{array}{c} E^E \to E^E \\ \varphi \mapsto \varphi \circ f \end{array} \right| \text{ et } G_f: \left| \begin{array}{c} E^E \to E^E \\ \varphi \mapsto f \circ \varphi \end{array} \right|$$

On fera bien attention aux objets manipulés : si f est une application de E dans E, si φ est une application de E dans E, $D_f(\varphi)$ et $G_f(\varphi)$ sont aussi des applications de E dans E. Ainsi, si $x \in E$, cela a un sens d'écrire $D_f(\varphi)(x)$: cette quantité est égale à $\varphi \circ f(x)$. En revanche, D_f et G_f sont des applications G_f de G_f dans G_f est des applications G_f de G_f sont des applications G_f de G_f dans G_f de G_f sont des applications G_f de G_f de G_f sont des applications G_f de G_f de G_f sont des applications de G_f de G_f de G_f sont des applications de G_f de G_f de G_f sont des applications de G_f de G_f de G_f sont des applications de G_f de G_f de G_f sont des applications de G_f de G_f de G_f sont des applications de G_f de G_f de G_f sont des applications de G_f de

Ce problème est constitué de trois parties : la dernière est largement indépendante des autres.

A. Généralités

1. Démontrer que pour toutes f et g dans E^E , $D_f(g) = G_g(f)$.

Correction

Soient f et g dans E^E . Alors $D_f(g) = g \circ f$ et $G_g(f) = g \circ f = D_f(g)$.

2. Un exemple. Dans cette question 2. et dans cette question seulement, on considère

$$f: \left| \begin{array}{c} \mathbb{N} \to \mathbb{N} \\ n \mapsto 2n \end{array} \right|, \ g: \left| \begin{array}{c} \mathbb{N} \to \mathbb{N} \\ n \mapsto \left\{ \begin{array}{c} 0 \text{ si } n \text{ est impair et } h: \\ \frac{n}{2} \text{ si } n \text{ est pair} \end{array} \right| \left| \begin{array}{c} \mathbb{N} \to \mathbb{N} \\ n \mapsto \left\lfloor \frac{n}{2} \right\rfloor \end{array} \right|$$

Calculer $D_f(g)$, $D_g(f)$, $G_g(f)$, $G_h(f)$.

Correction

Soit $n \in \mathbb{N}$. Alors

$$D_f(g)(n) = g \circ f(n) = g(2n) = n,$$

donc $D_f(g) = \mathrm{Id}_{\mathbb{N}}$. De même, $G_g(f) = D_f(g) = \mathrm{Id}_{\mathbb{N}}$. Ensuite,

$$D_g(f)(n) = \begin{cases} f(0) = 0 \text{ si } n \text{ est impair} \\ f(n/2) = n \text{ si } n \text{ est pair} \end{cases}$$

Enfin,

$$G_h(f)(n) = h(f(n)) = \left\lfloor \frac{2n}{n} \right\rfloor = n,$$

donc $G_h(f) = \mathrm{Id}_{\mathbb{N}}$.

3. Soient f et g dans E^E .

Démontrer les identités suivantes : $D_f \circ D_g = D_{g \circ f}$, $G_f \circ G_g = G_{f \circ g}$ et $D_f \circ G_g = G_g \circ D_f$.

Soit $\varphi \in E^E$. Alors

$$D_f \circ D_g(\varphi) = D_f(\varphi \circ g) = \varphi \circ g \circ f = D_{g \circ f}(\varphi).$$

Donc
$$D_f \circ D_g = D_{g \circ f}$$
. De même,

$$G_f \circ G_g(\varphi) = G_f(g \circ \varphi) = f \circ g \circ \varphi = G_{g \circ f}(\varphi),$$

donc
$$G_f \circ G_g = G_{f \circ g}$$
, et

$$D_f \circ G_g(\varphi) = D_f(g \circ \varphi) = g \circ \varphi \circ f = G_g(\varphi \circ f) = G_g \circ D_f(\varphi),$$

donc
$$D_f \circ G_q = G_q \circ D_f$$
.

B. Propriétés d'injectivité, de surjectivité, de bijectivité

Dans cette partie, on fixe $f \in E^E$.

B-I. Injectivité

On s'intéresse à l'injectivité de f.

4. Démontrer que f est injective si et seulement si G_f est injective.

Correction

Raisonnons par double implication.

- Supposons f injective. Démontrons que G_f est injective.
 - Soient φ et ψ dans E^E telles que $G_f(\varphi) = G_f(\psi)$. Alors $f \circ \varphi = f \circ \psi$.

Remarque : on ne peut pas conclure directement « par injectivité de f » : il faut revenir aux éléments !

Soit $x \in E$. Alors $f(\varphi(x)) = f(\psi(x))$ donc, par injectivité de f, $\varphi(x) = \psi(x)$.

Donc $\varphi = \psi$.

Donc G_f est injective.

• Réciproquement, supposons G_f injective. Montrons que f est injective.

Soient x et x' dans E tels que f(x) = f(x').

Notons α la fonction constante égale à x et β la fonction constante égale à x'. Alors $f \circ \alpha = f \circ \beta$, c'est-à-dire que $G_f(\alpha) = G_f(\beta)$. Par injectivité de G_f , on en déduit que $\alpha = \beta$, c'est-à-dire que x = x'.

5. Un lemme de factorisation. Démontrer que si f est injective, alors il existe φ dans E^E telle que $\varphi \circ f = \mathrm{Id}_E$.

Il est intéressante de dessiner pour avoir une idée de la preuve! On pourra ensuite noter B = f(E), et on définir $\varphi(y)$ en disjoignant les cas, selon que $y \in B$ ou $y \notin B$.

Correction

L'idée est se dire que si $\varphi \circ f = Id_E$, alors $\varphi \sim f^{-1}$... mais f^{-1} n'existe pas, sauf si on prend quelqu'un dans l'image de f!

Notons x_0 un élément quelconque de E. Définissons, pour tout y dans E,

$$\varphi(y) = \begin{cases} \text{l'unique ant\'ec\'edent de } y \text{ par } f \text{ si } y \in B \\ x_0 \text{ sinon} \end{cases}$$

Alors, si
$$x \in E$$
, $\varphi(f(x)) = x$, donc $\varphi \circ f = \mathrm{Id}_E$

6. Démontrer que f est injective si et seulement si D_f est surjective.

Correction

Raisonnons aussi par double implication.

- (a) Supposons f injective. Démontrons que D_f est surjective. **Soit** $\psi \in E^E$. Par la question précédente, on dispose de φ dans E^E telle que $\varphi \circ f = \mathrm{Id}_E$. En posant $\theta = \psi \circ \varphi$, on a $D_f(\theta) = \psi$. D'où la surjectivité de D_f .
- (b) Supposons D_f surjective. Démontrons que f est injective. **Soient** x et x' dans E tels que f(x) = f(x'). Soit $\varphi \in E^E$ telle que $\varphi \circ f = \mathrm{Id}_E$. Alors $\varphi(f(x)) = \varphi(f(x'))$, donc x = x'. D'où l'injectivité de f.

D'où l'équivalence et le résultat désiré!

B-II. Surjectivité

7. Un lemme de factorisation. Soient φ et ψ deux applications de E dans E. Démontrer l'équivalence suivante

$$\psi(E) \subset \varphi(E) \Leftrightarrow \exists \theta \in E^E, \ \psi = \varphi \circ \theta.$$

Correction

- Déjà, si l'on dispose de $\theta \in E^E$ telle que $\psi = \varphi \circ \theta$, on montre que $\psi(E) \subset \varphi(E)$. **Soit** $y \in \psi(E)$. Alors on dispose de $x \in E$ tel que $y = \psi(x)$. Mais alors $y = \varphi \circ \theta(x)$, donc $y \in \varphi(E)$.
- Supposons désormais $\psi(E) \subset \varphi(E)$. L'idée est définir à la main θ .

Soit $x \in E$. Alors $\psi(x) \in \varphi(E)$, donc on dispose de $y \in E$ tel que $\varphi(y) = x$. **Posons alors** $\theta(x) = y$.

On a ainsi défini, pour tout x dans E, $\theta(x)$ comme un antécédent (choisi arbitrairement) de $\psi(x)$ par φ .

On a donc, pour tout x dans E, $\varphi(\theta(x)) = \psi(x)$, par définition!

- **8.** Démontrer que si *E* contient au moins deux éléments, les trois assertions suivantes sont équivalentes :
 - (i) f est surjective
 - (ii) G_f est surjective
 - (iii) D_f est injective

Démontrons d'abord que (i)⇔(ii)

- Supposons f surjective, et démontrons que G_f l'est.
 Soit ψ ∈ E^E. Cherchons φ ∈ E^E telle que ψ = G_f(φ) = f ∘ φ.
 Par le lemme précédent, comme f est surjective, f(E) = E, donc ψ(E) ⊂ f(E).
 Ainsi, on dispose de φ ∈ E^E tel que ψ = f ∘ φ. Donc G_f est surjective.
- Réciproquement, supposons G_f surjective et montrons que f est surjective.
 Soit y ∈ E. Prenons α la fonction constante égale à y. Par surjectivité de G_f, on dispose de θ ∈ E^E telle que G_f(θ) = α. Ainsi, pour tout x dans E, f(θ(x)) = α(x) = y. Donc si x ∈ E, θ(x) est un antécédent de y par f.
 Donc f est surjective!

Démontrons maintenant que (i)⇔(iii)

Supposons f surjective. Démontrons que D_f est injective.
 Soient φ et ψ dans E^E telles que D_f(φ) = D_f(ψ). Alors φ ∘ f = ψ ∘ f.
 Soit x dans E. Par surjectivité de f, on dispose de w ∈ E tel que x = f(w). Ainsi,

$$\varphi(x) = \varphi(f(w)) = \psi(f(w)) = \psi(x),$$

donc $\varphi = \psi$.

Réciproquement, supposons D_f injective et démontrons que f est surjective.
 Soit y ∈ E. Si y n'est pas atteint pas f, alors pour tout x dans E, f(x) ≠ y. Soit z dans E différent de y (rq : c'est là qu'on a besoin que E possède au moins 2 éléments). Posons φ = Id_E et

$$\psi: x \mapsto \begin{cases} x \text{ si } x \neq y \\ z \text{ si } x = y \end{cases}$$

Alors $\varphi \neq \psi$, mais $\varphi \circ f = \psi \circ f$ (car y n'est pas atteint par f!), donc D_f n'est pas injective!

B-III. Bijectivité

On note S_E l'ensemble des bijections de E dans E.

On a donc montré que, pour $f \in E^E$, f était bijective si et seulement si D_f et G_f l'étaient. Dans le cas où $f \in S_E$, on définit l'application de conjugaison par f:

$$C_f: \left| \begin{array}{c} E^E \to E^E \\ \varphi \mapsto f \circ \varphi \circ f^{-1} \end{array} \right|.$$

9. Démontrer que, si f est une application bijective de E dans E, C_f est bijective et donner sa bijection réciproque.

f est bijective, et on remarque que, pour $\varphi \in E^E$,

$$C_{f^{-1}} \circ C_f(\varphi) = C_{f^{-1}}(f \circ \varphi \circ f^{-1}) = f^{-1} \circ f \circ \varphi \circ f^{-1} \circ f = \varphi,$$

donc $C_{f^{-1}} \circ C_f(\varphi) = \operatorname{Id}_{E^E}$. De même, $C_{f^{-1}} \circ C_f(\varphi) = \operatorname{Id}_{E^E}$, donc C_f est bijective, de bijection réciproque $C_{f^{-1}}$.

10. On considère \sim définie sur E^E par : $\forall (\varphi, \psi) \in (E^E)^2$, $\varphi \sim \psi \Leftrightarrow \exists g \in S_E$, $\psi = C_g(\varphi)$. Démontrer qu'il s'agit d'une relation d'équivalence.

Correction

On vérifie la réflexivité, la symétrie et la transitivité de cette relation.

- réflexivité. Soit $\varphi \in E^E$. Alors $\varphi = \mathrm{Id}_E \circ \varphi \circ \mathrm{Id}_E^{-1}$, donc $\varphi \sim \varphi$.
- symétrie. Soient φ et ψ dans E^E telles que $\varphi \sim \psi$. Alors on dispose de g bijective telle que $\psi = g \circ \varphi \circ g^{-1}$. ALors $\varphi = g^{-1} \circ \psi \circ g = \mathbb{C}_{q^{-1}}(\psi)$, donc $\psi \circ \varphi$.
- transitivité. Soient φ , ψ et θ dans E^E telles que $\varphi \sim \psi$ et $\psi \sim \theta$. Alors on dispose de f et g bijectives telles que $\psi = f \circ \varphi \circ f^{-1}$ et $\theta = g \circ \psi \circ g^{-1}$. Ainsi,

$$\theta = (g \circ f) \circ \varphi \circ (f^{-1} \circ g^{-1}) = (g \circ f) \circ \varphi \circ (g \circ f)^{-1} = C_{g \circ f}(\varphi),$$

donc $\varphi \sim \theta$,

d'où la transitivité, donc \sim est bien une relation d'équivalence!

11. Quelle est la classe d'équivalence de Id_E pour cette relation?

Correction

Soit φ dans la classe d'équivalence de Id_E . Alors on dispose de f bijective telle que $\varphi = f \circ \mathrm{Id}_E \circ f^{-1}$, donc $\varphi = \mathrm{Id}_E$.

Réciproquement, un élément est toujours dans sa classe d'équivalence, donc la classe d'équivalence de Id_E est $\{\mathrm{Id}_E\}$.

C. Exemples dans \mathbb{R}

Dans toute la fin du problème, on prend $E=\mathbb{R}$. On considère les fonctions suivantes :

$$\sigma:\left|\begin{array}{l}\mathbb{R}\to\mathbb{R}\\ x\mapsto -x\end{array}\right|\text{ et, pour }a\in\mathbb{R},\ \tau_a:\left|\begin{array}{l}\mathbb{R}\to\mathbb{R}\\ x\mapsto x+a\end{array}\right.$$

Si Ψ est une application de $\mathbb{R}^{\mathbb{R}}$ dans $\mathbb{R}^{\mathbb{R}}$, on note $\mathrm{Fix}(\Psi) = \{f \in \mathbb{R}^{\mathbb{R}}, \ \Psi(f) = f\}$, l'ensemble des points fixes de Ψ .

12. Soit $f \in \mathbb{R}^{\mathbb{R}}$, a > 0. Illustrer, sur un dessin, la manière d'obtenir les courbes de $D_{\sigma}(f)$, $G_{\sigma}(f)$, $D_{\tau_a}(f)$ et $G_{\tau_a}(f)$ à l'aide de la courbe de f.

Correction

• Déjà, $D_{\sigma}(f): x \mapsto f(-x)$, donc le graphe de $D_{\sigma}(f)$ est le symétrique du graphe de f par rapport à l'axe des ordonnées.

- Ensuite, $G_{\sigma}(f): x \mapsto -f(x)$, donc le graphe de $G_{\sigma}(f)$ est le symétrique du graphe de f par rapport à l'axe des abscisses.
- Puis $D_{\tau_a}(f): x \mapsto f(x+a)$ donc le graphe de $D_{\tau_a}(f)$ est le translaté du graphe de f par la translation de vecteur $\begin{pmatrix} -a \\ 0 \end{pmatrix}$.
- Enfin, $G_{\tau_a}(f): x \mapsto f(x) + a$ donc le graphe de $G_{\tau_a}(f)$ est le translaté du graphe de f par la translation de vecteur $\begin{pmatrix} 0 \\ a \end{pmatrix}$.
- **13.** Déterminer $Fix(D_{\sigma})$, $Fix(G_{\sigma})$, $Fix(D_{\sigma} \circ G_{\sigma})$, $Fix(D_{\tau_a})$ (où a > 0).

C'est juste de la manipulation de vocabulaire. Soit $f \in \mathbb{R}^{\mathbb{R}}$. Alors

- $f \in \text{Fix}(D_{\sigma})$ si, et seulement si pour tout x dans \mathbb{R} , f(x) = f(-x), i.e. si et seulement si f est paire. $\boxed{\text{Fix}(D_{\sigma})}$ est l'ensemble des fonctions paires.
- $f \in \text{Fix}(G_{\sigma})$ si, et seulement si pour tout x dans \mathbb{R} , f(x) = -f(x), i.e. si et seulement si f est nulle. $\boxed{\text{Fix}(G_{\sigma})}$ est le singleton constitué de la fonction nulle.
- $f \in \text{Fix}(D_{\sigma} \circ G_{\sigma})$ si, et seulement si pour tout x dans \mathbb{R} , f(x) = -f(-x), i.e. si et seulement si f est impaire. $\boxed{\text{Fix}(D_{\sigma} \circ G_{\sigma})}$ est l'ensemble des fonctions impaires.
- $f \in \text{Fix}(D_{\tau_a})$ si, et seulement si pour tout x dans \mathbb{R} , f(x) = f(a), i.e. si et seulement si f est a-périodique. $\text{Fix}(D_{\sigma})$ est l'ensemble des fonctions a-périodiques.

On cherche enfin dans cette partie à déterminer

$$A = \operatorname{Fix}(D_{\sin}) \cap \mathscr{C}^0(\mathbb{R}, \mathbb{R}),$$

où $\mathscr{C}^0(\mathbb{R},\mathbb{R})$ désigne l'ensemble des fonctions continues de \mathbb{R} dans \mathbb{R} .

Soit $f \in A$. Soit $x \in \mathbb{R}_+$. On pose, pour tout n dans \mathbb{N} , $u_0 = x$ et $u_{n+1} = \sin(u_n)$.

14. Démontrer que pour tout n dans \mathbb{N} . $f(u_n) = f(x)$.

Correction

On raisonne par récurrence, en notant, pour tout n dans \mathbb{N} , \mathcal{P}_n : $f(u_n) = f(x)$. L'initialisation est évidente, $u_0 = x$ donc $f(u_0) = f(x)$. Ensuite, pour l'hérédité, soit $n \in \mathbb{N}$ tel que \mathcal{P}_n . Alors

$$f(u_{n+1}) = f(\sin(u_n)) = D_{\sin}(f)(u_n) = f(u_n) = f(x),$$

par hypothèse de récurrence.

D'où l'hérédité et le résultat.

15. Démontrer que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante, puis qu'elle converge vers 0.

Correction

Soit $n \in \mathbb{N}$. Alors

$$u_{n+1} = \sin(u_n) \leqslant u_n$$

donc $(u_n)_{n\in\mathbb{N}}$ décroît. Par récurrence immédiate, comme $u_1\in[0,1]$, on montre que $u_n\geqslant 0$ pour tout $n\geqslant 2$, $u_n\geqslant 0$. Décroissante et minorée, $(u_n)_{n\in\mathbb{N}}$ converge vers une limite ℓ , qui vérifie $\ell=\sin(\ell)$ (car, pour tout n dans \mathbb{N} , $u_{n+1}=\sin(u_n)$. Or, pour tout n dans \mathbb{R}_+ , $\sin(x)\leqslant x$ avec égalité si et seulement si x=0.

Donc $\ell = 0$, donc $u_n \xrightarrow[n \to +\infty]{} 0$.

16. Que peut-on en déduire sur f?

Correction

Comme f est continue, $f(u_n) \underset{n \to +\infty}{\longrightarrow} f(0)$, donc f(x) = f(0). Ainsi, f est constante sur \mathbb{R}_+ .

Mais, en faisant le même raisonnement que précédemment en prenant $u_0 < 0$, on obtiendrait le même résultat.

Finalement, f est constante.

L'ensemble A est l'ensemble constitué des fonctions constantes.