TD 7

Nombres réels et suites

1 Exercices corrigés en classe

Exercice 1. Moyenne de Cesàro, exercice ultra-classique. ••

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels. Soit $(S_n)_{n\in\mathbb{N}}$ la suite définie pour tout entier n par $S_n=\frac{1}{n+1}\sum_{k=0}^n u_k$.

- **1.** On suppose que $\lim_{n\to+\infty}u_n=\ell$, avec $\ell\in\mathbb{R}$. Montrer que $\lim_{n\to+\infty}S_n=\ell$. On commencera par $\ell=0$.
- **2.** On suppose que $\lim_{n\to +\infty} u_n = +\infty$. Montrer que $\lim_{n\to +\infty} S_n = +\infty$.
- 3. Les réciproques des deux énoncés précédents sont-elles vraies?

Exercice 2. Moyenne arithmético-géométrique. $\bullet \bullet \bigcirc$ Soient a et b deux réels strictement positifs. On définit les suites $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ par

$$\begin{cases} u_0 = a, \ v_0 = b \\ \forall n \in \mathbb{N}, u_{n+1} = \sqrt{u_n v_n}, \ v_{n+1} = \frac{u_n + v_n}{2}. \end{cases}$$

Démontrer que $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont adjacentes et convergent vers la même limite.

Exercice 3. Vers le critère de d'Alembert. Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels strictement positifs. On suppose que $\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=\ell$, avec ℓ un réel.

- **1.** Montrer que si $\ell < 1$, alors $\lim_{n \to +\infty} u_n = 0$.
- **2.** Montrer que si $\ell > 1$, alors $\lim_{n \to +\infty} u_n = +\infty$.
- **3.** Que peut-on dire si $\ell = 1$?

Exercice 4. $\bullet \bullet \bullet$ Soit (u_n) une suite réelle.

- 1. On suppose (u_{2n}) , (u_{2n+1}) convergentes de même limite. Montrer que (u_n) converge.
- **2.** On suppose (u_n) croissante et (u_{2n}) convergente. Montrer que (u_n) converge.
- **3.** On suppose (u_{2n}) , (u_{2n+1}) et (u_{3n}) sont convergentes. Montrer que (u_n) converge.

Exercice 5. $\bullet \bullet \bigcirc$ On définit la suite $(u_n)_{n \in \mathbb{N}}$ par $u_0 = 3$ et $u_{n+1} = \frac{4u_n - 2}{u_n + 1}$ pour tout $n \in \mathbb{N}$.

- **1.** Montrer que pour tout $n \in \mathbb{N}$, $u_n > 2$.
- **2.** Étudier la monotonie de $(u_n)_{n\in\mathbb{N}}$.
- **3.** En déduire la limite de $(u_n)_{n\in\mathbb{N}}$.

Exercice 6. $\bullet \bigcirc \bigcirc$ Soit (u_n) une suite décroissante de réels telle que $u_n + u_{n+1} \sim \frac{1}{n \to +\infty} \frac{1}{n}$. Déterminer la limite de $(u_n)_{n \in \mathbb{N}}$, ainsi qu'un équivalent en $+\infty$.

Exercice 7. •• Déterminer, à l'aide des relations de domination, de négligeabilité, et d'équivalence, les limites des suites suivantes

1.
$$\frac{\sin\frac{1}{n}}{\tan\frac{1}{2n}}$$

3.
$$\left(1 + \frac{x}{n}\right)^n$$

$$5. \ \frac{1 - e^{\frac{3}{n}}}{\sqrt{1 + \frac{1}{n}} - 1}$$

2.
$$\frac{n^4 - 2n^{5/2} + n\sqrt{n} - \ln(n)}{n + 3n^2 \sin \frac{1}{\sqrt{n}} - n \ln(n)}$$
 4. $(1 + nx)^{\frac{1}{n}}$

4.
$$(1 + nx)$$

$$6. \frac{n^3 \sin \frac{3}{1+n}}{\operatorname{Arctan} \frac{1}{8n^2} e^{\sqrt{n}}}$$

Exercices à travailler en TD 2

Plan de travail, par méthodes et techniques à connaître

- déterminer des limites : exercices 11, 13, 14, 15, 16.
- manipuler des parties entières : exercices 18, 19.
- manipuler des suites extraites : exercice 20.
- manipuler des ε (pour revenir à la définition de la convergence par exemple) : exercices corrigés en classe 3 et 1, exercices 19, 8.
- étudier des suites récurrentes : exercices faits en classe 2 et 5, exercices ??, 25, 26, 27.

2.1 **Epsiloneries**

Exercice 8. Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle vérifiant

$$\forall (k, n) \in (\mathbb{N}^*)^2, \ 0 \leqslant u_n \leqslant \frac{1}{k} + \frac{k}{n}.$$

Démontrer que $u_n \xrightarrow[n \to +\infty]{} 0$.

Exercice 9. Vers le critère de Cauchy pour les séries.. $\bullet \bullet \bigcirc$ Soit $(u_n)_{n \in \mathbb{N}}$ une suite de réels strictement positifs. On suppose que $\lim_{n\to\infty}u_n^{\frac{1}{n}}=\ell$, avec ℓ un réel.

- **1.** Montrer que si $\ell < 1$, alors $\lim_{n \to +\infty} u_n = 0$.
- **2.** Montrer que si $\ell > 1$, alors $\lim_{n \to +\infty} u_n = +\infty$.
- **3.** Que peut-on dire si $\ell = 1$?

Exercice 10. Une propriété de limite monotone. Soit $(u_n)_{n\in\mathbb{N}}$ une suite de nombres réels tels que

$$\forall n \in \mathbb{N}, \exists p \in \mathbb{N} : [p \geqslant n \text{ et } (\forall q \in \mathbb{N}, q \geqslant p \Rightarrow u_q \geqslant u_n)]$$

- **1.** La suite $(u_n)_{n\in\mathbb{N}}$ est-elle monotone?
- **2.** Montrer en revanche que $(u_n)_{n\in\mathbb{N}}$ vérifie une propriété « de limite monotone » : si elle est majorée elle converge, et si elle n'est pas majorée, elle tend vers $+\infty$.

2.2 Théorèmes généraux sur les suites et les limites

Exercice 11. $\bullet \bigcirc \bigcirc$ Soient $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ deux suites réelles telles que

$$\forall n \in \mathbb{N}, \ 0 \leqslant u_n \leqslant 1, \ 0 \leqslant v_n \leqslant 1 \ \text{et} \ u_n v_n \xrightarrow[n \to +\infty]{} 1$$

Que dire de ces suites?

Exercice 12. $\bullet \bullet \bigcirc$ Soient $(a, b) \in \mathbb{R}^2$, (u_n) et (v_n) deux suites telles que

$$\begin{cases} n \in \mathbb{N}, u_n \leqslant a \text{ et } v_n \leqslant b \\ u_n + v_n \to a + b \end{cases}$$

Montrer que $u_n \to a$ et $v_n \to b$.

Exercice 13. ●○○

- **1.** Démontrer que pour tout k dans \mathbb{N}^* , $\ln(k+1) \ln(k) \leqslant \frac{1}{k}$.
- **2.** Déterminer la limite, quand n tend vers $+\infty$, de $\sum_{k=0}^{n} \frac{1}{k}$.

Exercice 14. $\bullet \bigcirc \bigcirc / \bullet \bullet \bigcirc$ Déterminer les limites en $+ \infty$ des suites de terme général

- 1. $\sqrt{n^2 + n} \sqrt{n^2 n}$
- **3**. $\sum_{k=0}^{n} \frac{k}{n^2}$ **5**. $\frac{\sin(2n)}{\tan(3n)}$

2. $\sqrt[n]{n^2}$ **4**. $\left(\frac{1}{n}\right)^{\frac{1}{n}}$

7. $\sum_{k=1}^{n} \frac{1}{n^2 + k^2}$

6. $\frac{n^n}{n!}$ 8. $\sum_{k=1}^{n} \frac{\lfloor kx \rfloor}{n^2}$

Exercice 15. Problème d'interversion des limites. ••• Comparer

$$\lim_{k \to +\infty} \lim_{n \to +\infty} \left(1 - \frac{1}{n}\right)^k, \ \lim_{n \to +\infty} \lim_{k \to +\infty} \left(1 - \frac{1}{n}\right)^k \ \text{et} \ \lim_{n \to +\infty} \left(1 - \frac{1}{n}\right)^n$$

Exercice 16. Sur l'indétermination 1^{∞} . $\bullet \bullet \circ$

Soit ℓ un élément de $\mathbb{R}_+^* \cup \{+\infty\}$. Déterminer deux suites (u_n) et (v_n) telles que $\lim_{n \to \infty} u_n = 1$, $\lim_{n\to\infty}v_n=+\infty, \text{ et }\lim_{n\to\infty}u_n^{v_n}=\ell.$

Exercice 17. $\bullet \bullet \bigcirc$ On va démontrer que la suite $(\cos(n))_{n \in \mathbb{N}}$ n'a pas de limite. On suppose que c'est le cas et qu'elle en possède une.

- 1. Démontrer que cette limite est finie. On l'appelle ℓ .
- **2.** Démontrer que la suite $(\cos(n+1))_{n\in\mathbb{N}}$ converge vers ℓ , puis que $(\sin(n))_{n\in\mathbb{N}}$ converge.
- 3. Aboutir à une contradiction en échangeant les rôles de sin et de cos.

Exercice 18. $\bullet \bullet \bigcirc$ Soient a, b, c trois réels tels que pour tout n dans \mathbb{N} ,

$$|an| + |bn| = |cn|$$
.

Démontrer que a + b = c.

Exercice 19. $\bullet \bullet \bullet$ Soit $(u_n)_{n \in \mathbb{N}}$ une suite de réels convergeant vers une limite ℓ réelle. A-t-on

$$\lim_{n\to+\infty} \lfloor u_n \rfloor = \lfloor \ell \rfloor ?$$

2.3 Du côté des sous-suites

Exercice 20. $\bullet \bullet \bigcirc$ Soit $(u_n)_{n \in \mathbb{N}}$ une suite réelle.

1. On suppose que $(u_n)_{n\in\mathbb{N}}$ n'est pas majorée. Montrer qu'elle admet une suite extraite qui diverge vers $+\infty$.

2. On suppose que $(|u_n|)_{n\in\mathbb{N}}$ ne tend pas vers $+\infty$. Montrer que $(u_n)_{n\in\mathbb{N}}$ possède une sous-suite bornée.

Exercice 21. $\bullet \bullet \bullet$ Soient $(p_n)_{n \in \mathbb{N}} \in \mathbb{Z}^{\mathbb{N}}$ et $(q_n)_{n \in \mathbb{N}} \in (\mathbb{N}^*)^{\mathbb{N}}$ deux suites telles que $\frac{p_n}{q_n}$ converge vers un irrationnel x.

Démontrer que $q_n \xrightarrow[n \to +\infty]{} +\infty$ et que $|p_n| \xrightarrow[n \to +\infty]{} +\infty$.

On pourra procéder par l'absurde et par extractions de suites.

Exercice 22. Approximation diophantienne. $\bullet \bullet \bullet \bullet$ Si y est un réel, on appelle partie fractionnaire de y la quantité, notée $\{y\}$ et définie par $\{y\} = y - \lfloor y \rfloor$. Soit x un réel.

- **1.** Démontrer que : $\forall N \in \mathbb{N}, \ \exists (p,q) \in \mathbb{Z} \times \mathbb{N}^*, \ 1 \leqslant q \leqslant N, \ \left| x \frac{p}{q} \right| \leqslant \frac{1}{qN}$. On appliquera le principe des tiroirs à $0, \{x\}, \{2x\}, \dots, \{Nx\}$.
- **2.** En déduire qu'il existe une infinité de couples (p,q) dans $\mathbb{Z} \times \mathbb{N}^*$ tels que $\left|x \frac{p}{q}\right| \leqslant \frac{1}{q^2}$.

2.4 Caractérisations séquentielles

Exercice 23. $\bullet \bullet \bigcirc$ Soit *A* la partie de $\mathbb R$ suivante :

$$A = \left\{ \frac{nm}{n^2 + m^2 + 1}, (n, m) \in \mathbb{N}^2 \right\}.$$

- 1. Montrer que A possède une borne supérieure.
- 2. Déterminer la borne supérieure de A.
- **3.** Montrer que A n'a pas de plus grand élément.

Exercice 24. ●○○ Montrer que l'ensemble

$$\left\{\frac{n}{2^m}, n \in \mathbb{Z}, m \in \mathbb{N}\right\}$$

est dense dans \mathbb{R} .

2.5 Suites récurrentes

Exercice 25. $\bullet \bullet \bigcirc$ On considère la suite définie par $u_0 > 3$, et $u_{n+1} = \frac{4u_n - 9}{u_n - 2}$ pour tout $n \in \mathbb{N}$.

- 1. Tracer le graphe de $x \mapsto \frac{4x-9}{x-2}$, préciser les points d'intersection avec la droite y=x.
- **2.** En déduire que $(u_n)_{n\in\mathbb{N}}$ est bien définie et les valeurs éventuelles de sa limite.
- **3.** On pose pour tout $n \in \mathbb{N}$, $v_n = \frac{1}{u_n 3}$. Montrer que $(v_n)_{n \in \mathbb{N}}$ est une suite arithmétique.
- **4.** Étudier la limite de $(u_n)_{n\in\mathbb{N}}$.

Exercice 26. $\bullet \bullet \bigcirc$ Soient (u_n) et (v_n) deux suites réelles, telles que $u_0 < v_0$ et, pour tout entier naturel n,

$$u_{n+1} = \frac{2u_n + v_n}{3}, \ v_{n+1} = \frac{u_n + 2v_n}{3}.$$

Montrer que (u_n) et (v_n) convergent vers une même limite à préciser.

Exercice 27. Soit (u_n) une suite définie par $u_0 > 0$ et, pour tout entier naturel n, $u_{n+1} = u_n + e^{-u_n}$.

- **1.** Montrer que (u_n) est croissante.
- **2.** En déduire que $\lim_{n\to+\infty} u_n = +\infty$.
- **3.** On pose, pour tout *n* entier, $v_n = e^{u_n}$. Montrer que $\lim_{n \to +\infty} (v_{n+1} v_n) = 1$.
- **4.** En utilisant le théorème de Cesàro, calculer $\lim_{n\to+\infty}\frac{u_n}{\ln(n)}$.

2.6 Un peu d'analyse asymptotique

Exercice 28. • O Classer les suites suivantes par ordre de négligeabilité.

$$a_n = n^3$$
, $b_n = 4n - n^3$, $c_n = ne^{3n}$, $d_n = \sin\frac{1}{n}$, $f_n = ne^n$, $g_n = n^3 \ln\left(1 + \frac{1}{n}\right)$, $h_n = \frac{n^4 - n^2}{\sqrt{n} + \ln(n)}$.

Exercice 29. •• Déterminer, à l'aide des relations de domination, de négligeabilité, et d'équivalence, les limites des suites suivantes

1.
$$n(\sqrt[3]{n+\pi}-\sqrt[3]{n})$$

$$2. \frac{\frac{\pi}{2} - \operatorname{Arctan}(3n)}{\sin \frac{1}{n}}$$

3.
$$\frac{\sqrt{1+\sin\frac{1}{n}}-1}{e^{1+\frac{1}{n}}-e}$$

4.
$$\sin\left(\tan\frac{1}{\sqrt{n}}\right) \times (1+3\sqrt{n})^2$$

5.
$$\frac{n^n}{(n+1)^n}$$

6.
$$\frac{\binom{2n}{n}}{4^n}$$

Exercice 30. Une suite définie implicitement. ●●●

- **1.** Montrer que sur chacun des intervalles $\left] -\frac{\pi}{2} + n\pi, \frac{\pi}{2} + n\pi \right[$, $n \in \mathbb{N}$, l'équation $\tan(x) = x$ admet une unique solution x_n .
- **2.** Donner un équivalent simple de x_n .
- **3.** On pose $y_n = \frac{\pi}{2} + n\pi x_n$.
 - (a) Déterminer une équation vérifiée par y_n .
 - (b) En déduire que $y_n \xrightarrow{+\infty} 0$.
 - (c) Déterminer $\alpha \in \mathbb{R}$ tel que

$$x_n = n\pi + \frac{\pi}{2} + \frac{\alpha}{n} + o\left(\frac{1}{n}\right).$$

Indications

- **8** Ce n'est pas si évident de faire un théorème d'encadrement, voilà pourquoi j'ai mis cet exercice dans les « epsilonneries » : prendre un ε , choisir correctement k puis n, ou bien n puis k. À vous de voir!
- **9** Calquer l'exercice fait en cours sur la règle de D'Alembert. Utiliser des ε et comparer à des suites géométriques.
- **10** (a) Non, considérer $n + 2(-1)^n$.
 - (b) Reprendre la démonstration du théorème de la limite monotone en considérant l'ensemble des termes de la suite.
 - (c) De même!
- **11** Tenter d'encadrer $(u_n)_{n\in\mathbb{N}}$].
- **12** Repasser très précisément aux ε , et utiliser notamment le fait que $b v_n \ge 0$ pour tout n.
- 13 Penser à une étude de fonctions pour la première question, à un télescopage pour la seconde.
- 14 Penser : aux « quantités conjuguées »] pour les racines, aux formes exponentielles, et aux encadrements pour les sommes. Les (iv), (v), (vii) sont à faire à la fin, beaucoup plus difficiles!
- 15 Déclarez bien vos variables.
- 16 Penser aux exemples vus en cours avec l'exponentielle.
- 17 (a) La suite est bornée...

- (b) Utiliser une formule de trigonométrie pour cos(a + b).
- (c) Utiliser une formule de trigonométrie pour $\sin(a+b)$, et penser que $\cos^2 + \sin^2 = 1$.
- **??** Penser à faire des encadrements : $\lfloor x \rfloor \rfloor \leqslant x < \lfloor x \rfloor \rfloor + 1$ **et** $\rfloor x 1 < \lfloor x \rfloor \rfloor \leqslant x$. Penser que pour n dans \mathbb{N} , $\lfloor n \rfloor \rfloor = n$. Penser enfin que $x \mapsto \lfloor x \rfloor$ est croissante.
- 18 Effectuer encore des encadrements.
- **19** Distinguer les cas $\ell \in \mathbb{Z}$ et $\ell \neq Z$. Penser que si $\ell \neq \mathbb{Z}$, $\exists \varepsilon > 0$, $]\ell \varepsilon, \ell + \varepsilon[$ ne contient aucun entier (le justifier).
- **20** Nier proprement les énoncés et construire des suites extraites comme en cours, par récurrence.
- **21** Faire de l'absurde... en supposant que $q_n \not \xrightarrow[n \to +\infty]{} +\infty$.
 - montrer qu'il existe une sous-suite de (q_n) bornée.
 - montrer qu'il existe une sous-suite de (q_n) convergente.
 - montrer qu'il existe une sous-suite de (q_n) constante.
- ?? Toujours commencer par calculer les premiers termes, sauf si vous reconnaissez des suites vues en cours (arithmético-géométriques, récurrentes linéaires d'ordre 2, etc.)
- **25** La bonne définition se montre par récurrence. Pour les limites, utiliser les règles sur la convergence.
- **26** Essayer d'étudier $u_n + v_n$ et $u_n v_n$ et déterminer la limite de chacune de ces suites.
- **27** Utiliser le théorème de la limite monotone pour la 2. Pour la 3, factoriser par e^{u_n}] et utiliser des taux de variation pour reconnaître une dérivée.
- 28 C'est du cours (croissances comparées). Penser à faire un équivalent avant de comparer!
- **30** (a) Utiliser le théorème de la bijection
 - (b) Utiliser le théorème d'encadrement pour les équivalents.
 - (c) Penser aux formules liant tan(x) et $tan\left(\frac{\pi}{2} x\right)$.