DM 06

à rendre le lundi 17 novembre

Plan d'étude. En début de DM, merci de préciser la formule que vous avez choisie.

- 1. Formule « bases ». Faire le Problème 1, questions 1-7. Remarquer que les questions 1,2,3 seront faites en classe mercredi! (2h)
- 2. Formule « intermédiaire » Faire le Problème 1 en entier. (3h)
- **3. Formule « complète »** Problème 1 + exercices d'initiative. (3h+temps libre)

Problème 1. Autour de la convergence au sens de Cesàro

Dans tout l'énoncé, $(u_n)_{n\geqslant 1}$ désigne une suite réelle, et $(v_n)_{n\geqslant 1}$ désigne la suite définie par, pour tout n dans \mathbb{N}^* , $v_n=\frac{1}{n}\sum_{k=1}^n u_k$. On dit que $(u_n)_{n\geqslant 1}$ converge au cens de Cesàro si $(v_n)_{n\geqslant 1}$ converge.

Dans tout le problème, si besoin est, on pourra utiliser sans justification que si $u_n \xrightarrow[n \to +\infty]{} \ell$, alors $u_{n-1} \xrightarrow[n \to +\infty]{} \ell$.

A. De la convergence à la convergence au sens de Cesàro

A-I. La convergence implique la convergence au sens de Cesàro

- **1.** Dans cette question, **on suppose que** $u_n \underset{n \to +\infty}{\longrightarrow} 0$. Soit $\varepsilon \in \mathbb{R}_+^*$.
 - (a) Montrer qu'il existe $n_0 \in \mathbb{N}^*$ tel que, pour tout $n \geqslant n_0$,

$$\frac{1}{n}\left(\sum_{k=1}^{n_0-1}u_k\right) - \frac{\varepsilon}{2} \leqslant v_n \leqslant \frac{1}{n}\left(\sum_{k=1}^{n_0-1}u_k\right) + \frac{\varepsilon}{2}.$$

- (b) En déduire que la suite $(v_n)_{n\geqslant 1}$ converge vers 0.
- **2.** Démontrer que lorsque la suite $(u_n)_{n\geqslant 1}$ converge vers un réel ℓ quelconque, alors $(v_n)_{n\in\mathbb{N}}$ converge aussi vers ℓ .

A-II. Application à l'étude d'une suite récurrente

On considère la suite définie par

$$x_1 = 1 \text{ et } \forall n \in \mathbb{N}^*, \ x_{n+1} = \frac{x_n(1 + x_n)}{1 + 2x_n}.$$

- **3.** Montrer que pour tout $n \ge 2$, $0 < x_n < 1$.
- **4.** Montrer que la suite $(x_n)_{n\geqslant 1}$ est décroissante.
- **5.** La suite $(x_n)_{n\geqslant 1}$ est-elle convergente? Si oui, déterminer sa limite.

Notons $a_1 = \frac{1}{x_1}$ et, pour tout $n \geqslant 2$, $a_n = \frac{1}{x_n} - \frac{1}{x_{n-1}}$. On note, pour tout $n \geqslant 1$, $b_n = \frac{1}{n} \sum_{k=1}^n a_k$.

- **6.** Montrer que $(a_n)_{n\geqslant 1}$ converge vers 1.
- 7. En utilisant la suite $(b_n)_{n\geqslant 1}$ et la convergence au sens de Cesàro, démontrer que

$$nx_n \xrightarrow[n \to +\infty]{} 1.$$

A-III. Différence des termes consécutifs

Soit $(x_n)_{n\geqslant 1}$ une suite réelle quelconque.

- **8.** On suppose que la suite $(x_n)_{n\geqslant 1}$ converge. Montrer que la suite $(x_{n+1}-x_n)_{n\geqslant 1}$ converge.
- **9.** On suppose que la suite $(x_{n+1}-x_n)_{n\geqslant 1}$ converge vers un nombre réel ℓ .
 - (a) Montrer que la suite $\left(\frac{x_n}{n}\right)_{n\geqslant 1}$ converge et préciser sa limite. On pourra s'inspirer des méthodes des questions 6. et 7..
 - (b) Étudier la convergence ou la divergence de la suite $(x_n)_{n\geq 1}$ dans le cas où $\ell\neq 0$.
 - (c) Dans le cas où $\ell=0$, la suite $(x_n)_{n\geqslant 1}$ est-elle nécessairement convergente?

B. De la convergence au sens de Cesàro à la convergence

B-I. La réciproque du A-I. est fausse

Dans les deux questions suivantes, on pose, pour tout $n \ge 1$, $u_n = (-1)^n$ et $v_n = \frac{1}{n} \sum_{k=1}^n u_k$.

- **10.** Étudier la convergence de la suite $(v_n)_{n\geqslant 1}$.
- 11. Démontrer que $(u_n)_{n\geqslant 1}$ n'a pas de limite et conclure quant à la validitié de la réciproque de la proposition établie en A-I.

B-II. Une réciproque possible de la propriété A-I.

Dans cette question, on suppose que la suite $(u_n)_{n\geqslant 1}$ est croissante et que la suite $(v_n)_{n\geqslant 1}$ converge.

- **12.** Démontrer que pour tout $n \ge 1$, $u_{n+1} \le 2v_{2n} v_n$.
- **13.** Établir la convergence de la suite $(u_n)_{n\geqslant 1}$ et préciser sa limite.
- 14. Énoncer la propriété ainsi démontrée sous la forme d'une condition nécessaire et suffisante.

Exercice 1. Donner un sens à l'égalité suivante et la démontrer :

$$\sqrt{1+\sqrt{1+\sqrt{1+\dots}}} = 1 + \frac{1}{1+\frac{1}{1+\dots}}.$$