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DM10
Pour le lundi 05/01

ou avant, via cahier-de-prépa (cf. mail de vacances)
Formules possibles.

1. Formule 1, « bases » : faire le problème 1, bonne révision de ce chapitre d’algèbre (2h30)

2. Formule 2, « plus avancée en algèbre » : faire le problème 1 et le problème 2, plus dur que
le précédent (5h)

3. Formule 3, « je n’ai pas fait assez d’analyse » : faire le problème 1 et le problème 3, qui
mélange un peu d’algèbre et de l’analyse (4h30)

4. Formule 4, complète : faire les problèmes 1, 2 et 3

Précisez en début de DM la formule choisie.

Problème 1. Ordre d’un élément dans un groupe

Notations. Soit (G, ?) un groupe. On note e son élément neutre. On note, pour tout x dans
G, x−1 l’inverse de x pour la loi ?. On rappelle que l’on note, pour tout x dans G et pour tout n
dans N∗,

xn = x ? x ? · · · ? x︸ ︷︷ ︸
n fois

et x−n = x−1 ? x−1 ? · · · ? x−1︸ ︷︷ ︸
n fois

.

Par convention, x0 = e. On rappelle que toutes les règles de calcul usuel sur les puissances
s’appliquent ici. Pour tous m et n dans Z, pour tout x dans G :xmxn = xm+n, (x−1)m =

x−m, (xm)n = xmn. En particulier, pour tout x dans G et n dans Z, xn est inversible d’inverse
x−n.

Définitions. Soit x un élément de G. On dit que x admet un ordre fini s’il existe un entier
naturel non nul n tel que xn = e. On note alors Px l’ensemble Px = {k ∈ N∗, xk = e}.

Si x admet un ordre fini, on nomme ordre de x et on note ω(x) la quantité ω(x) = min(Px).

On rappelle que si G est un ensemble fini, on appelle cardinal de G le nombre d’éléments de G,
et on le note |G|.

Un résultat à utiliser. On n’hésitera pas à utiliser l’argument suivant (et on pourra le nommer
« principe des tiroirs » lorsqu’on l’utilise) : si E est un ensemble à n éléments (n ∈ N∗) et si
x1, . . . , xn+1 sont n + 1 éléments de E, alors il existe (i , j) ∈ J1, n + 1K2 tels que i 6= j et xi = xj .

A. Premières manipulations
1. Soit x dans G tel que x admet un ordre fini. Justifier l’existence de ω(x).

Correction

On a supposé que x admettait un ordre fini, donc on dispose de n dans
N∗ tel que xn = e. La partie Px est donc une partie non vide de
N, elle admet donc un plus petit élément, non nul car appartenant à N∗ . Donc ω(x)
existe.
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2. Démontrer que si (G, ?) est fini, alors tout élément de G admet un ordre.
On pourra considérer, si n est le cardinal de G et x ∈ G, x0, x1, . . . , xn, et utiliser le principe
des tiroirs.

Correction

Soit n le cardinal de G et x dans G. Alors x0, . . . , xn sont n + 1 éléments de G
donc, d’après le principe des tiroirs, on dispose de i et j dans J0, nK tels que i 6= j et
x i = x j . Si l’on suppose i < j , on en déduit que x j−i = e , donc j − i ∈ Px . Donc
x admet un ordre.

3. Soit x dans G. Démontrer que si x est d’ordre p dans G (où p ∈ N∗), alors x0, . . . , xp−1
sont deux à deux distincts. On raisonnera par l’absurde et on contredira la minimalité de
p.

Correction

Supposons qu’il existe i et j dans J0, p− 1K tels que x i = x j . Sans perte de généralité,
on peut supposer que i < j . Alors x j−i = e, avec j − i > 0 et j − i < p, ce qui contredit
la minimalité de p. Donc les éléments x0, . . . , xp−1 sont deux à deux distincts.

4. Dans cette question, on suppose que tous les éléments de G différents de e sont d’ordre
2. Exprimer, pour tout x dans G, l’inverse de x en fonction de x , et en déduire que G est
abélien.

Correction

Soit x dans G. Alors x2 = e, donc x ? x = e, donc x−1 = x .

Soient alors x et y dans G. Alors, comme tout élément est égal à son inverse,

x ? y = (x ? y)−1 = y−1 ? x−1 = y ? x,

donc G est abélien.

B. Théorème de Lagrange faible
5. Un Lemme préliminaire. Démontrer le lemme préliminaire suivant :

Si x est dans G, si n ∈ N∗ et xn = e, alors ω(x) divise n. (1)

On pourra effectuer la division euclidienne de n par ω(x).

Correction

Soit x dans G et n dans N∗ tel que xn = e. Effectuons la division euclidienne de n par
ω(x) : n = ω(x)q + r , avec 0 6 r < ω(x). Si on avait r 6= 0, alors on aurait

xn = xω(x)q+r = (xω(x))qx r = eqx r = x r ,

donc r serait dans Px et r < ω(x), absurde ! Donc r = 0, donc ω(x) divise n.
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Dans cette partie, on va démontrer le résultat suivant :

Si G est fini et de cardinal n, alors pour tout x dans G, ω(x) divise n. (2)

On ne prouve ce résultat que dans le cas suivant : on suppose G abélien, c’est-à-dire commutatif.

Soit x dans G. On définit l’application ϕ :

∣∣∣∣∣G → G

y 7→ x ? y

6. Démontrer que ϕ est une bijection de G dans G.

Correction

Soit z dans G, y dans G. Alors

ϕ(y) = z ⇔ x ? y = z ⇔ y = x−1 ? z,

donc ∀z ∈ G, ∃!y ∈ G, ϕ(y) = z . Donc ϕ est bijective, de bijection réciproque

y 7→ x−1 ? y .

7. En calculant de deux manières différentes
∏
y∈G

ϕ(y), démontrer que xn = e et en déduire

que ω(x) divise n.

Correction

Déjà, comme ϕ est une bijection de G dans G, et comme G est abélien,
∏
y∈G

ϕ(y) =∏
y∈G

y .

Ensuite, ∏
y∈G

ϕ(y) =
∏
y∈G
(x ? y) = xn

∏
y∈G

y car G est abélien

Donc xn
∏
y∈G

y =
∏
y∈G

y , donc xn = e .

On en déduit, par le lemme (1), que ω(x) divise n.

C. Un exemple dans Sn.
Soit n un entier naturel supérieur ou égal à 2. Soit p dans J2, nK.

8. Définir ce qu’est un p-cycle, et donner, en justifiant brièvement, l’ordre d’un p-cycle.

Correction

Un p-cycle est une permutation ρ telle qu’il existe p entiers i1, i2, . . . , ip tels que

ρ(i1) = i2, ρ(i2) = i3, . . . , ρ(ip−1) = ip et ρ(ip) = i1,

et ∀x /∈ {i1, . . . , ip}, ρ(x) = x .
L’ordre d’un p-cycle est p : ρp = 1 et si k < p, ρk(i1) = ik+1 6= i1, donc ρk 6=

IdJ1,nK.

9. Soit σ =
(
1 2 3 4 5 6 7 8 9

3 7 4 9 6 5 2 8 1

)
.
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(a) Donner la décomposition en produit de cycles à supports disjoints, une décomposition
en produit de transpositions, et la signature de σ.

Correction

La décomposition en produit de cycles à supports disjoints de σ est :

σ = (1 3 4 9) ◦ (2 7) ◦ (5 6) ,

donc une décomposition en produit de transpositions de σ est

σ = (1 3) ◦ (3 4) ◦ (4 9) ◦ (2 7) ◦ (5 6) .

Donc ε(σ) = (−1)5 = −1.

(b) Donner, sans justification, l’ordre de σ.

Correction

L’ordre de σ est égal à 4.

10. Donner, en expliquant brièvement mais sans justifier précisément, l’ordre d’une permutation
en fonction de sa décomposition en cycles à supports disjoints.

Correction

Si σ = ρ1 ◦ · · · ◦ ρN où ρ1 est un p1-cycle, ρ2 un p2-cycles,...,ρN un pN-cycle, avec
(p1, . . . , pN) ∈ J2, nKN , à supports disjoints, alors on sait que pour tout k dans N,

σk = ρk1 ◦ ρk2 ◦ · · · ◦ ρkN ,

car deux cycles à supports disjoints commutent. Donc σk = Id ssi pour tout i , ρki = Id,
donc ssi k est multiple de tous les ordres des ρi , donc, par minimalité de l’ordre,

ω(σ) = ppcm(p1, . . . , pN).
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Problème 2. Théorème de Lagrange fort

Cet exercice a pour but de prouver un très joli théorème de théorie des groupes (dont vous verrez
une version faible en spé) :

Théorème 1 (Lagrange)
Soit (G, ∗) un groupe fini et H un sous-groupe de G. Alors Card(H) divise Card(G).

Soit donc G un groupe fini, H un sous-groupe de G. On définit la relation R suivante sur G

∀(x, y) ∈ G2, (xRy)⇔ (x ∗ y−1 ∈ H).

1. Montrer que R définit bien une relation d’équivalence sur G.

Correction

Montrons que R est bien une relation d’équivalence sur G.

(a) (réflexivité) Soit x dans G. Alors x ∗ x−1 = 1G , élément neutre de G. Or H est
un sous-groupe de G donc 1G ∈ H. Donc xRx .

(b) (symétrie) Soient x et y dans G tels que xRy . Alors x ∗ y−1 ∈ H. Or H est
un sous-groupe de G donc (x ∗ y−1)−1 ∈ H. Donc (y−1)−1 ∗ x−1 ∈ H. Donc
y ∗ x−1 ∈ H. Donc yRx .

(c) (transitivité) Soient x , y et z dans G tels que xRy et yRz . Alors x ∗ y−1 ∈ H et
y ∗ z−1 ∈ H. Or H est un sous-groupe de G donc (x ∗ y−1) ∗ (y ∗ z−1) ∈ H, i.e.
x ∗ z−1 ∈ H. Donc xRz .

2. Soit y dans G. Montrer que la classe d’équivalence de y est

Hy = {h ∗ y , h ∈ H}.

Correction

Montrons que la classe d’équivalence de y est incluse dans Hy . Soit x tel que xRy ,
Alors x ∗ y−1 ∈ H. Posons h = x ∗ y−1. Alors x = h ∗ y , avec h ∈ H. Donc x ∈ Hy .
Réciproquement, si x ∈ Hy , on dispose de h dans H tel que x = h∗y . Donc x ∗y−1 = h,
i.e. x ∗ y−1 ∈ H. Donc x ∗ y .

Soient alors (y1, y2, . . . , yp) les représentants des différentes classes d’équivalenceHy1, Hy2, . . . , Hyp.

3. Soit ϕi l’application définie par

ϕi :

{
H → Hyi

h 7→ h ∗ yi
Montrer que ϕi est une bijection de H sur Hyi .

Correction

Deux méthodes pour montrer que ϕi est bijective.
Méthode par injection/surjection.

(a) Montrons que ϕi est injective. Soient h et h′ dans H tels que ϕ(h) = ϕ(h′).
Alors h ∗ yi = h′ ∗ yi . Donc, en multipliant par y−1i des deux côtés, on obtient
h ∗ yi ∗ y−1i = h′ ∗ yi ∗ y−1i , i.e. h = h′. Donc ϕi est injective.
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(b) Montrons que ϕi est surjective. Soit x dans Hyi . Alors on dispose de h dans H
tel que x = h ∗ yi . Donc x = ϕ(h). Donc ϕi est surjective.

Injective et surjective, ϕi est bijective.
Méthode par détermination d’une bijection réciproque.
Posons ψi définie comme suit :

ψi :

{
Hyi → H

x 7→ x ∗ y−1i

Déjà, ψi est bien à valeurs dans H, car si x ∈ Hyi , on dispose de h dans H tel que
x = h ∗ yi , donc ψ(x) = h ∗ yi ∗ y−1i = h ∈ H.
Ensuite, si x ∈ Hyi , ϕi ◦ ψi(x) = ϕi(x ∗ y−1i ) = x ∗ y−1i ∗ yi = x , et si x ∈ H,
ψi ◦ϕi(x) = ψi(x ∗ yi) = x ∗ yi ∗ y−1i = x . Donc ϕi ◦ψi = IdHyi et ψi ◦ϕi = IdH. Donc
ϕi est une bijection.

4. En déduire que p × Card(H) = Card(G), et conclure.

Correction

S’il existe une bijection d’un ensemble fini dans un autre ensemble fini, alors leurs
cardinaux sont égaux. Donc Card(H) = Card(Hyi). Ensuite, on sait que les (Hyi)16i6p
forment une partition de G, donc

Card(G) =

p∑
i=1

Card(Hyi).

Or, Card(Hyi) = Card(H), donc

Card(G) =

p∑
i=1

Card(H) = p × Card(H).

Donc Card(H) divise Card(G). Le théorème est donc démontré.

On va maintenant donner quelques conséquences de ce théorème.

5. Soit G un groupe fini, x un élément de G. On définit le sous-groupe engendré par x , noté
< x >, par

< x >= {xk , k ∈ Z}.

On note ordre de x l’entier ω(x) = min{k ∈ N∗, xk = e}.
(a) Montrer que < x > est un sous groupe de G.

Correction

< x > est non vide car il contient x . Soient ensuite a et b deux éléments de
< x >. Montrons que a ∗ b−1 ∈< x >. On dispose de k et ` deux entiers relatifs
tels que a = xk et b = x `. Donc b−1 = x−`, donc

a ∗ b−1 = xk ∗ x−` = xk−`,

et k − ` ∈ Z. Donc a ∗ b−1 ∈< x >. Donc < x > est un sous-groupe de G.

(b) Montrer qu’il s’agit du plus petit sous-groupe de G contenant x .

Page 6 sur 12



MPSI1 Pasteur 2025-2026 DS10

Correction

Soit H un sous groupe contenant x . On montre que < x > est inclus dans H :
montrons le par récurrence. Montrons par récurrence que H contient xn pour tout
entier naturel n.
Initialisation. H est un groupe donc x0 = 1G ∈ H.
Hérédité. Supposons que xn ∈ H pour un certain n. Alors comme x ∈ H et H
est un sous-groupe de G, xn ∗ x ∈ H, i.e. xn+1 ∈ H.
Conclusion. Héréditaire et vraie au rang 0, la proposition est vraie pour tout
entier naturel n par le principe de récurrence.
De plus, si k ∈ Z−, on sait que x−k ∈ H (par la proposition précédente), et donc,
comme G est un groupe, (x−k)−1 ∈ H, donc xk ∈ H.
Donc H contient < x >. Le résultat est donc démontré.

(c) Montrer que ω(x) est bien défini et que ω(x)|Card(G).

Correction

Déjà, G est un groupe fini, donc par la même construction qu’au problème 1,
ω(x) est bien défini.
Ensuite, par les mêmes raisonnements qu’au problème 1, encore, on peut dire que
eG , x, . . . , x

ω(x)−1 sont deux à deux distincts. Ainsi, 〈x〉 possède ω(x) éléments
(par le même argument de division euclidienne qu’au problème 1).
Donc, comme, par le théorème de Lagrange, | 〈x〉 | divise |G|, on peut dire que
ω(x) divise |G|.

6. Supposons maintenant que G est fini de cardinal p, p premier. Montrer que G est cyclique,
et en déduire qu’il est isomorphe à Up.

Correction

Si G = {1G}, c’est gagné. Sinon, soit x dans G tel que x 6= 1G . Alors le cardinal de
< x > est supérieur ou égal à 2 (car 1G 6= x) et divise p premier. Donc < x > est de
cardinal p. Donc < x >= G. Donc G est cyclique, engendré par x .

Ensuite vient une des questions les plus dures du sujet : montrer que G est isomorphe
à Up. On a envie de poser ϕ : xk 7→ e

2ikπ
n . Problème : qui nous dit que cette fonction

est bien définie, i.e. que si xk = x `, alors e
2ikπ
n = e

2i`π
n ?

Commençons déjà par montrer que G = {e, x, . . . , xp−1}.
On sait que G est fini, de cardinal p, donc, parmi les p+1 éléments e, x, . . . , xp, deux
sont égaux, i.e. il existe k < ` tels que xk = x `. En particulier x `−k = e.
Considérons alors A = {k ∈ Z, xk = e}. A est clairement un sous-groupe de (Z,+).
Donc on dispose de q ∈ N tel que A = qZ. De plus, A contient ` − k donc A 6= {0},
donc q > 0. Ainsi, xq = e, et G = {xk , k ∈ Z} = {e, x, . . . , xq−1}.
Donc q = p. Ainsi, xp = e !
Posons alors

ϕ :

∣∣∣∣∣ G → Upxk 7→ e
2ikπ
p

.

• Il faut déjà vérifier que ϕ est bien définie. Soient k et k ′ tels que xk = xk
′
. Alors

xk−k
′
= e, donc k − k ′ ∈ A, donc k ≡ k ′[p]. Ainsi, e

2ikπ
p = e

2ik ′π
p . Donc ϕ est bien

définie.
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• Vérifions que ϕ est un morphisme. Soient a et b dans G, k et ` dans Z tels que
a = xk et b = x `. Alors

ϕ(a ∗ b−1) = ϕ(xk ∗ x−`) = ϕ(xk−`) = e
2i(k−`)π

p =
e
2ikπ
p

e
2i`π
p

,

donc ϕ est un morphisme.

• Enfin, soit a ∈ ker(ϕ), a = xk . Alors ϕ(a) = 1, i.e. e
2ikπ
p = 1, donc k ≡ 0[p].

Donc xk = e, donc a = e. Donc ker(ϕ) = e, donc ϕ est injective. Injective, entre
deux ensembles de même cardinal, ϕ est bijective.

Finalement, Up et G sont bien isomorphes. Ouf !

7. Montrer que si p n’est pas premier, il peut exister des groupes finis de cardinal p non
cycliques.

Correction

Déjà, si on pense à S3, S3 n’est pas abélien donc ne peut pas être cyclique.
Sinon, considérons U2 × U2 = {(−1,−1), (−1, 1), (1,−1), (1, 1)}. Alors ce groupe
n’est pas cyclique : tous les éléments ont leur carré égal à (1, 1), donc ne peuvent
engendrer tout le groupe.

On va maintenant montrer que tout groupe fini de cardinal p2 (p premier) est abélien. Soit G un
groupe fini de cardinal p2. Soit, pour h ∈ G, ϕh : x 7→ h ∗ x ∗ h−1.

8. Vérifier que ϕh est un isomorphisme de G, i.e. un morphisme de groupes bijectif.

Correction

ϕh est bien un morphisme :

• ϕh(1G) = h ∗ 1G ∗ h−1 = 1G .
• pour tous x et y , ϕh(x)∗ϕh(y) = h∗x∗h−1∗h∗y∗h−1 = h∗(x∗y)∗h−1 = ϕh(x∗y).
• pour tout x , (ϕh(x))−1 = (h ∗ x ∗ h−1)−1 = (h−1)−1 ∗ x−1 ∗ h−1 = h ∗ x ∗ h−1.

La bijectivité est immédiate en remarquant que ϕ−1h = ϕh−1 .

9. Soit x ∈ G. On appelle orbite de x par l’action de G par automorphismes l’ensemble

O(x) = {ϕh(x), h ∈ G}.

Montrer, en considérant la relation d’équivalence ∼ définie par g ∼ h ssi ϕg(x) = ϕh(x),
que le cardinal de l’orbite d’un élément divise le cardinal de G.

Correction

On considère la relation d’équivalence ∼ sur G définie par g ∼ h ssi ϕg(x) = ϕh(x).
Si l’on prend deux classes d’équivalence h1 et h2, alors x 7→ h2 ∗ h−11 est une bijection
de h1 dans h2 : si a ∈ h1, alors

(h2 ∗ h−11 ∗ a) ∗ x ∗ (h2 ∗ h−11 ∗ a)−1 = h2 ∗ h−11 ∗ (ϕa(x)) ∗ h1 ∗ h−12
= h2 ∗ h−11 ∗ (ϕh1(x)) ∗ h1 ∗ h−12
= h2x ∗ h−12 ,
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et réciproquement. Et le caractère bijectif a déjà été démontré.
Donc toutes les classes d’équivalence ont le même cardinal c . De plus, chaque élément
de O(x) est un représentant d’une classe d’équivalence.
Comme elles forment une partition de G, le cardinal de G est de c × Card(O(x)).

10. On appelle centre de G l’ensemble Z(G) = {x ∈ G, ∀y ∈ G, x ∗ y = y ∗ x}.
(a) Démontrer que Z(G) n’est pas trivial (i.e. réduit au neutre). On s’intéressera au car-

dinal des orbites.

Correction

Le cardinal de l’orbite d’un élément de Z(G) est 1, car tout élément de Z(G)
commute avec tous les éléments de G.
Or, on remarque que l’ensemble des orbites forme une partition de G, donc, si
l’on note O1,O2, . . . ,Or les r orbites de G, on a

Card(G) =

r∑
i=1

Card(Oi) =
∑
16i6r

Card(Oi )=1

1 +
∑
16i6r

Card(Oi ) 6=1

Card(Oi)

= Card(Z(G)) +
∑
16i6r

Card(Oi ) 6=1

Card(Oi).

Or, on a vu à la question précédente que le cardinal de toute orbite divise le
cardinal de G. Donc le cardinal de toute orbite est égal à 1, p ou p2. Donc, en
particulier, p divise

∑
16i6r

Card(Oi ) 6=1

Card(Oi). Donc, comme p divise Card(G), p divise

Card(Z(G)), qui est > 0< donc Z(G) n’est pas trivial.

(b) En déduire que G est abélien.

Correction

Pour montrer que G est abélien, il suffit de montrer que Z(G) est de cardinal
p2. Si ça n’était pas le cas, on aurait Z(G) de cardinal p. Mais alors si x n’était
pas dans G, l’ensemble H = {g ∈ G, g ∗ x = x ∗ g} est un sous-groupe de G
contenant Z(G) et x , donc de cardinal > p, et, d’après le théorème de Lagrange,
son cardinal divise Card(G). Donc H serait de cardinal p2, donc x commuterait
avec tous les éléments de H, absurde ! Donc Z(G) = G, donc G est abélien.
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Problème 3. Sous-groupes de S(R)
On note G l’ensemble des bijections continues de R dans R, muni de la loi ◦. On rappelle que
(G, ◦) est un groupe, de neutre IdR. Si f ∈ G et n ∈ N∗, on note

f n = f ◦ · · · ◦ f︸ ︷︷ ︸
n fois

.

Par convention, f 0 = IdR. Et, comme f est bijective, on note aussi f −n = f −1 ◦ · · · ◦ f −1.

A. Généralités
1. Que peut-on dire de la monotonie des éléments de G ?

Correction

Les éléments de G sont des bijections, donc des injections continues de R dans R,
donc elles sont strictement monotones.

2. On note, pour a ∈ R∗ et b ∈ R, fa,b : x 7→ ax + b. On appelle Aff = {fa,b, (a, b) ∈ R∗×R}
leur ensemble. Démontrer que Aff est un sous-groupe de G.

Correction

. Déjà, Aff est inclus dans G. En effet, si a ∈ R∗ et b ∈ R, fa,b est clairement continue
et on remarque que pour (x, y) ∈ R2,

fa,b(x) = y ⇔ ax + b = y

⇔ x =
y − b
a

⇔ x = f 1
a
,− b

a
(y).

Ainsi, fa,b est une bijection, de bijection réciproque f 1
a
,− b

a
(y).

Ceci permet de démontrer que Aff est inclus dans G et que cet ensemble est stable
par passage à l’inverse !
. Ensuite, IdR = f1,0 est bien dans Aff.
. Enfin, si (a, b) ∈ R∗ × R et (c, d) ∈ R∗ × R, si x ∈ R, alors

fa,b ◦ fc,d(x) = fa,b(cx + d)
= a(cx + d) + b

= acx + ad + b = fac,ad+b(x),

donc fa,b ◦ fc,d ∈ Aff, donc Aff est bien stable par ◦.

B. Sous-groupes finis de G
Soit désormais H un sous-groupe fini de G.

3. Si H est de cardinal 1, qui est H ?

Correction

Si H est de cardinal 1, comme H contient au moins IdR, alors H = {IdR}.
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Soit désormais f dans H.

4. Démontrer qu’il existe p ∈ N∗ tel que f p = IdR.

Correction

On sait que pour tout n dans N, f n ∈ H. Mais, comme H est fini, les f n, pour n dans
N, ne peuvent être deux à deux distinctes.
Ainsi, on dispose de n,m différents tels que f n = f m. Sans perte de généralité, on peut
supposer que n > m. Ainsi, f n−m = IdR, et n −m ∈ N∗. D’où le résultat souhaité !

B-I. Cas où f est strictement croissante

5. Dans cette question, on suppose f strictement croissante. Démontrer, par l’absurde que
f = IdR.

Correction

Si f 6= IdR, alors on dispose de x ∈ R tel que f (x) 6= x .
. Si f (x) < x , comme f est strictement croissante, f 2(x) < f (x) < x et

f p(x) < f p−1(x) < · · · < f (x) < x,

soit x < x , absurde !
. Si x < f (x), alors x < f (x) < · · · < f p(x) = x , absurde aussi !
Ainsi, f = IdR.

B-II. Cas où f est strictement décroissante

Dans cette partie seulement, on suppose f strictement décroissante.

6. Démontrer que f ◦ f = IdR.

Correction

On sait alors que f ◦ f est strictement croissante, donc, par la question précédente,
f ◦ f = IdR.

On définit la fonction g ∈ RR par : ∀x ∈ R, g(x) = x − f (x).
7. Montrer que g est une bijection de R dans R, et que

∀x ∈ R, f (x) = g−1(−g(x)) = g−1 ◦ (−IdR) ◦ g(x).

Correction

Déjà, g est strictement croissante comme somme de fonctions strictement crois-
santes, donc est injective.
Ensuite, si x > 0, g(x) > x − f (0), donc g(x) −→

x→+∞
+∞ .

De même, si x 6 0, g(x) 6 x − f (0), donc g(x) −→
x→+∞

−∞ .

g étant continue, on en déduit, par le théorème des valeurs intermédiaires, que
g est surjective de R dans R .
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Donc g est une bijection de R dans R.
Soit x dans R. Alors

g ◦ f (x) = f (x)− f (f (x)) = f (x)− x = −g(x),

donc, en composant à gauche par g−1, f (x) = g−1(g(x)) .

C. Conclusion
8. Décrire le plus précidément possible les sous-groupes finis de G : quel peut être leur cardinal,

quelle est la forme de leurs éléments, etc.

Correction

Les sous-groupes finis de G possèdent donc 1 ou 2 éléments : au plus une application
strictement croissante, IdR, et au plus une application strictement décroissante : si
g et h sont deux applications décroissantes de R, g ◦ h et g ◦ g sont strictement
croissantes, donc égales à IdR, donc g = h.

On a donc :

• le singleton {IdR},
• les paires de la forme {IdR, g−1 ◦ (−IdR) ◦ g} où g est une bijection continue
quelconque de R.
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