MPSI1 Pasteur 2025-2026 DS10

DM10
Pour le lundi 05/01
ou avant, via cahier-de-prépa (cf. mail de vacances)

Formules possibles.
1. Formule 1, « bases » : faire le probléme 1, bonne révision de ce chapitre d'algébre (2h30)

2. Formule 2, « plus avancée en algébre » : faire le probléme 1 et le probléme 2, plus dur que
le précédent (5h)

3. Formule 3, «je n'ai pas fait assez d'analyse » : faire le probléme 1 et le probléme 3, qui
mélange un peu d'algébre et de I'analyse (4h30)

4. Formule 4, compléte : faire les problemes 1, 2 et 3

Précisez en début de DM la formule choisie.
Probléme 1. Ordre d’un élément dans un groupe
Notations. Soit (G, ) un groupe. On note e son élément neutre. On note, pour tout x dans

G, x~ ! I'inverse de x pour la loi . On rappelle que I'on note, pour tout x dans G et pour tout n
dans N*,

XT =Xk XkeookX €t X T=xTaxTaeoxaxt,
S—_————
n fois n fois
r convention, x° = e. On rappelle qu u es ré e ul usu ur uissance
Par co tio 0 On rappell e toutes les les de calcul usuel sur les ssances

s'appliquent ici. Pour tous m et n dans Z, pour tout x dans G x™x" = x™" (x"H)™ =
x~M,(x™" = x"". En particulier, pour tout x dans G et n dans Z, x" est inversible d'inverse
x .

Définitions. Soit x un élément de G. On dit que x admet un ordre fini s'il existe un entier
naturel non nul n tel que x” = e. On note alors P, I'ensemble P, = {k € N*, x* = e}.

Si x admet un ordre fini, on nomme ordre de x et on note w(x) la quantité w(x) = min(Py).

On rappelle que si G est un ensemble fini, on appelle cardinal de G le nombre d’éléments de G,
et on le note |G]|.

Un résultat a utiliser. On n'hésitera pas a utiliser I'argument suivant (et on pourra le nommer
« principe des tiroirs » lorsqu’'on l'utilise) : si E est un ensemble & n éléments (n € N¥) et si
X1y Xpt1 SONt N+ 1 éléments de E, alors il existe (/,j) € [1, n+ 1]]2 tels que 1 # j et x; = X;.

A. Premiéres manipulations

1. Soit x dans G tel que x admet un ordre fini. Justifier I'existence de w(x).

4‘ Correction

On a supposé que x admettait un ordre fini, donc on dispose de n dans

N* tel que x” = e. La partie P, est donc une partie non vide de
N, ‘elle admet donc un plus petit élément, non nul car appartenant a N*|. Donc w(x)
existe.
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2. Démontrer que si (G, x) est fini, alors tout élément de G admet un ordre.
On pourra considérer, si n est le cardinal de G et x € G, X0 x, ..., X", et utiliser le principe
des tiroirs.

Correction

Soit n le cardinal de G et x dans G. Alors x°,...,x" sont n+ 1 éléments de G
donc, d’aprés le principe des tiroirs, on dispose de i et j dans [0, n] tels que i # j et

x" = x). Si I'on suppose i < j, on en déduit que , donc j — i € P,. Donc
\x admet un ordre.

0

0 -1

3. Soit x dans G. Démontrer que si x est d'ordre p dans G (ou p € N*), alors x°, ..., x"
sont deux a deux distincts. On raisonnera par I'absurde et on contredira la minimalité de

p.

Correction

Supposons qu'il existe / et j dans [[O p— 1] tels que x" = x/. Sans perte de généralité,
on peut supposer que i < j. Alors X' = e, avecj—i > 0 et j—i < p, ce qui contredit
la minimalité de p. Donc les éléments x%, ... xP71 sont deux a deux distincts.

4. Dans cette question, on suppose que tous les éléments de G différents de e sont d'ordre
2. Exprimer, pour tout x dans G, I'inverse de x en fonction de x, et en déduire que G est
abélien.

Correction
Soit x dans G. Alors x> = e, donc x x x = e, donc .

Soient alors x et y dans G. Alors, comme tout élément est égal a son inverse,

‘X*y:(x*y)’l =y lex? :y*x,‘

donc | G est abélien.

B. Théoréme de Lagrange faible

5. Un Lemme préliminaire. Démontrer le lemme préliminaire suivant :
Si x est dans G, si n € N* et x" = e, alors w(x) divise n. (1)
On pourra effectuer la division euclidienne de n par w(x).

Correction

Soit x dans G et n dans N* tel que x"” = e. Effectuons la division euclidienne de n par
w(x) : n=w(x)g+r, avec 0 < r < w(x). Si on avait r # 0, alors on aurait

X" = Xw(x)q+r _ (Xw(x))qxr — %" = x",

donc r serait dans Py et r < w(x), absurde! ‘ Donc r =0, donc w(x) divise n. ‘
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Dans cette partie, on va démontrer le résultat suivant :
Si G est fini et de cardinal n, alors pour tout x dans G, w(x) divise n. (2)

On ne prouve ce résultat que dans le cas suivant : on suppose G abélien, c’est-a-dire commutatif.
G—G

y—=Xxy

Soit x dans G. On définit I'application ¢ :

6. Démontrer que @ est une bijection de G dans G.

Correction

Soit z dans G, y dans G. Alors

py)=z&xrxy=z&y=x'xz

donc Vz € G, dly € G, w(y) = z. Donc ¢ est bijective, de bijection réciproque

7. En calculant de deux maniéres différentes H ©(y), démontrer que x" = e et en déduire
yeG

que w(x) divise n.

Correction

Déja, comme ¢ est une bijection de G dans G, et comme G est abélien, H p(y) =

yeG
II»

yeag
Ensuite,
[T W) =][]x*y)=x"]] car G est abelien
yeG yeaG yeG
Donc x" H y = H y, donc .
yeaG yeaG

On en déduit, par le lemme , que m

C. Un exemple dans S,.

Soit n un entier naturel supérieur ou égal a 2. Soit p dans [2, n].

8. Définir ce qu'est un p-cycle, et donner, en justifiant brievement, I'ordre d'un p-cycle.

Correction

Un p-cycle est une permutation p telle qu'il existe p entiers iy, i, ..., Ip tels que

p(h) =12, p() =15, ..., p(ip-1) = ip et p(ip) = h,
et Vx & {i,..., i}, p(x) = x.
‘L’ordre d'un p-cycle est p‘ : ‘p” = 1‘ et si k < p, p(i1) = ixs1 # i, donc pX #

Idﬂl,ﬂﬂ'
6 7 8 9
5 2 8 1)
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(a) Donner la décomposition en produit de cycles & supports disjoints, une décomposition
en produit de transpositions, et la signature de o.

Correction

La décomposition en produit de cycles a supports disjoints de o est :

[0=(1349)0(27)0(56)]

donc une décomposition en produit de transpositions de o est

[0=(13)0(34)0(49)0(27)0(56)|

Donc (o) = (~1)° = -1.|

(b) Donner, sans justification, I'ordre de o.

—‘ Correction

L’ordre de o est égal a 4.

10. Donner, en expliquant brievement mais sans justifier précisément, I'ordre d'une permutation
en fonction de sa décomposition en cycles a supports disjoints.

Correction

Sio=p;o---0py 0Ol p; est un py-cycle, po un po-cycles,...,on un py-cycle, avec
(p1...., pn) € 2, n]]N, a supports disjoints, alors on sait que pour tout k dans N,

k k k k
o =pfops0---0ppN,

car deux cycles a supports disjoints commutent. Donc % = Id ssi pour tout i/, pf‘ =1d,
donc ssi k est multiple de tous les ordres des p;, donc, par minimalité de I'ordre,

]w(d) = ppcm(py, .. ., PN). \
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Probleme 2. Théoréme de Lagrange fort

Cet exercice a pour but de prouver un trés joli théoréme de théorie des groupes (dont vous verrez
une version faible en spé) :

Théoréme 1 (Lagrange)]
Soit (G, *) un groupe fini et H un sous-groupe de G. Alors Card(H) divise Card(G). ]

Soit donc G un groupe fini, H un sous-groupe de G. On définit la relation R suivante sur G
Y(x,y) € G% (xRy) & (xxy ™t € H).

1. Montrer que R définit bien une relation d'équivalence sur G.

4‘ Correction

Montrons que R est bien une relation d'équivalence sur G.

(a) (réflexivité) Soit x dans G. Alors x * x ' = 1¢, élément neutre de G. Or H est
un sous-groupe de G donc 1g € H. Donc xRx.

(b) (symétrie) Soient x et y dans G tels que xRy. Alors x x y™! € H. Or H est
un sous-groupe de G donc (x x y~1)™t € H. Donc (y 1)"! % x7! € H. Donc
y*x~1 € H. Donc yRx.

(c) (transitivité) Soient x, y et z dans G tels que xRy et yRz. Alors xxy™1 € H et
y*z 1 € H. Or H est un sous-groupe de G donc (x xy 1)« (yxz71) € H, ie.
x*z 1 € H. Donc xRz.

2. Soit y dans G. Montrer que la classe d’équivalence de y est

Hy ={hxy, he H}.

Correction

Montrons que la classe d'équivalence de y est incluse dans Hy. Soit x tel que xRy,
Alors x * y~1 € H. Posons h = x % y~1. Alors x = h* y, avec h € H. Donc x € Hy.
Réciproquement, si x € Hy, on dispose de h dans H tel que x = hxy. Donc xxy ! = h,
ie. xxy leH. Doncxxy.

Soient alors (y1, y2, . . ., ¥p) les représentants des différentes classes d'équivalence Hys, Hys, . . ., Hyp.
3. Soit ¢, I'application définie par
H — Hy;
i -
h— hxy;

Montrer que ¢, est une bijection de H sur Hy;.

Deux méthodes pour montrer que ¢, est bijective.
Méthode par injection/surjection.

(a) Montrons que ¢, est injective. Soient h et h' dans H tels que p(h) = @(h).
Alors h* y; = h' * y;. Donc, en multipliant par y,._1 des deux cotés, on obtient
hxyxy t=Hx*y+y ' i.e. h=H.Donc g, est injective.
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(b) Montrons que ; est surjective. Soit x dans Hy;. Alors on dispose de h dans H
tel que x = hx y;. Donc x = p(h). Donc g, est surjective.

Injective et surjective, @; est bijective.

Méthode par détermination d’une bijection réciproque.

Posons 1; définie comme suit :

Hy; — H
w,-:{ I i
X = X * Y,

Déja, ¢ est bien a valeurs dans H, car si x € Hy;, on dispose de h dans H tel que
x = hxy;, donc Y(x) =h*yxy ' =heH.

Ensuite, si x € Hy;, @i o ¥i(x) = @i(xxy7 ') = xxy txy, = x, et si x € H,
Yiowi(x) =Yi(xxy;) =x*y*y ' =x. Donc g;0t; = Idyy, et 9;0p; = Idy. Donc
©; est une bijection.

4. En déduire que p x Card(H) = Card(G), et conclure.

Correction

S'il existe une bijection d'un ensemble fini dans un autre ensemble fini, alors leurs
cardinaux sont égaux. Donc Card(H) = Card(Hy;). Ensuite, on sait que les (Hy;)1<i<p
forment une partition de G, donc

P
Card(G) = ) _ Card(Hy;).
i=1

Or, Card(Hy;) = Card(H), donc

Card(G) = zf’: Card(H) = p x Card(H).

=1

Donc Card(H) divise Card(G). Le théoréme est donc démontré.

On va maintenant donner quelques conséquences de ce théoréme.
5. Soit G un groupe fini, x un élément de G. On définit le sous-groupe engendré par x, noté
< X >, par
<x>={xK kez}.
On note ordre de x I'entier w(x) = min{k € N*, x* = e}.

(a) Montrer que < x > est un sous groupe de G.

—‘ Correction

< x > est non vide car il contient x. Soient ensuite a et b deux éléments de
< x >. Montrons que a* b~! €< x >. On dispose de k et £ deux entiers relatifs
tels que a = x* et b = x%. Donc b~ = x~¥, donc

ax bl =xKsxt=xk?

et k—£€Z. Donc ax bt €< x>. Donc < x > est un sous-groupe de G.

(b) Montrer qu'il s’agit du plus petit sous-groupe de G contenant x.
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Correction

Soit H un sous groupe contenant x. On montre que < x > est inclus dans H :
montrons le par récurrence. Montrons par récurrence que H contient x” pour tout
entier naturel n.

Initialisation. H est un groupe donc x° =15 € H.

Héreédité. Supposons que x” € H pour un certain n. Alors comme x € H et H
est un sous-groupe de G, x" *x € H, i.e. x"™t € H.

Conclusion. Héréditaire et vraie au rang 0, la proposition est vraie pour tout
entier naturel n par le principe de récurrence.

De plus, si k € Z_, on sait que x ¥ € H (par la proposition précédente), et donc,
comme G est un groupe, (x ¥)~ € H, donc x¥ € H.

Donc H contient < x >. Le résultat est donc démontré.

(c) Montrer que w(x) est bien défini et que w(x)|Card(G).

Correction

Déja, G est un groupe fini, donc par la méme construction qu'au probléme 1,
w(x) est bien défini.

Ensuite, par les mémes raisonnements qu'au probléme 1, encore, on peut dire que
€G, X, . ..  x“0)7L sont deux a deux distincts. Ainsi, (x) possede w(x) éléments
(par le méme argument de division euclidienne qu'au probléme 1).

Donc, comme, par le théoréme de Lagrange, | (x) | divise |G|, on peut dire que
w(x) divise |G|.

6. Supposons maintenant que G est fini de cardinal p, p premier. Montrer que G est cyclique,
et en déduire qu'il est isomorphe a U,.

Si G = {1}, c'est gagné. Sinon, soit x dans G tel que x # 1g. Alors le cardinal de
< Xx > est supérieur ou égal a 2 (car 15 # x) et divise p premier. Donc < x > est de
cardinal p. Donc < x >= G. Donc G est cyclique, engendré par x.

Ensuite vient une des questions les plugkdures du sujet : montrer que G est isomorphe
a Up. On a envie de poser @ : xK s e™n . Probléme : qui nous dit que cette fonction

2i¢m

est bien définie, i.e. que si x* = x¢, alors S e
Commencons déja par montrer que G = {e, x, ..., xP71}.
On sait que G est fini, de cardinal p, donc, parmi les p+ 1 éléments e, x, ..., x”, deux

sont égaux, i.e. il existe k < £ tels que x¥ = x*. En particulier xX* % = e.

Considérons alors A = {k € Z, x* = e}. A est clairement un sous-groupe de (Z, +).
Donc on dispose de g € N tel que A = gZ. De plus, A contient £ — k donc A # {0},
donc g > 0. Ainsi, x9=¢, et G = {Xk, keZ}={ex,... ,Xq_l}.

Donc g = p. Ainsi, x? = e

Posons alors
G—=U,

(p' k 2ikm -+
X —=er

e |l faut déja vérifier que ¢ est bien définie. Soient k et k’ tels que x* = x¥. Alors
2ik!' 7

xk=K = e donc k — k' € A, donc k = K'[p]. Ainsi, e®" = e 5. Donc o est bien
définie.
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e Vérifions que @ est un morphisme. Soient a et b dans G, k et ¢ dans Z tels que
a=xNet b= x% Alors
2ikm

2i(k—)w er

p(axbY) = p(xF 5 x78) = p(xk ) = ™5 =

2ifm 1

e r

donc ¢ est un morphisme.

2ikm

e Enfin, soit a € ker(p), a = x*. Alors p(a) = 1, i.e. e» =1, donc k = 0[p].
Donc x¥ = e, donc a = e. Donc ker(yp) = e, donc @ est injective. Injective, entre
deux ensembles de méme cardinal, ¢ est bijective.

Finalement, U, et G sont bien isomorphes. Ouf!

7. Montrer que si p n'est pas premier, il peut exister des groupes finis de cardinal p non
cycliques.

4‘ Correction

Déja, si on pense a Sz, S3 n'est pas abélien donc ne peut pas étre cyclique.

Sinon, considérons U, x Uy, = {(-1,-1),(-1,1),(1,-1),(1,1)}. Alors ce groupe
n'est pas cyclique : tous les éléments ont leur carré égal a (1,1), donc ne peuvent
engendrer tout le groupe.

On va maintenant montrer que tout groupe fini de cardinal p? (p premier) est abélien. Soit G un
groupe fini de cardinal p?. Soit, pour h € G, @, : x — h* x % h™1.

8. Veérifier que @), est un isomorphisme de G, i.e. un morphisme de groupes bijectif.

4‘ Correction

©p est bien un morphisme :
° (Ph(]-G) =hx*1g * ht= 1s.
e pourtous x et y, pn(x)*@p(y) = hxxxh ™ xhxyxh™! = hx(xxy)xh™! = @p(x*y).

e pour tout x, (pp(x)) P =(h*xxxh™ )= TxxTsxht=hxxxh!

La bijectivité est immédiate en remarquant que cp;I = Qp1.

9. Soit x € G. On appelle orbite de x par I'action de G par automorphismes I'ensemble
O(x) ={epn(x), he G}

Montrer, en considérant la relation d'équivalence ~ définie par g ~ h ssi pg(x) = @pp(x),
que le cardinal de I'orbite d'un élément divise le cardinal de G.

On considére la relation d'équivalence ~ sur G définie par g ~ h ssi @g4(x) = @u(x).
Si I'on prend deux classes d'équivalence h; et hy, alors x — hy % h{l est une bijection
de hy dans hy :si a € hy, alors

(ho* hit s a) s x* (hax hit % a)™t = ho % hit % (0a(x)) * hy % hot
= hy % hit* (@ny (X)) * hy x byt

= hox * hy
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et réciproquement. Et le caractére bijectif a déja été démontré.

Donc toutes les classes d'équivalence ont le méme cardinal c. De plus, chaque élément
de O(x) est un représentant d’une classe d’équivalence.

Comme elles forment une partition de G, le cardinal de G est de ¢ x Card(&'(x)).

10. On appelle centre de G I'ensemble Z(G) ={x € G, Vy € G, x*y =y * x}.

(a) Démontrer que Z(G) n'est pas trivial (i.e. réduit au neutre). On s'intéressera au car-
dinal des orbites.

—‘ Correction

Le cardinal de I'orbite d'un élément de Z(G) est 1, car tout élément de Z(G)
commute avec tous les éléments de G.

Or, on remarque que I'ensemble des orbites forme une partition de G, donc, si
I'on note Oy, 0>, . . ., O, les r orbites de G, on a

r
Card(G) = > Card(€))= Y 1+ Y Card(0)
i=1 1<igr 1<igr
Card(6))=1 Card(6,)#1
= Card(Z(G))+ > Card(6)).

1<igr
Card(07)#1

Or, on a vu a la question précédente que le cardinal de toute orbite divise le
cardinal de G. Donc le cardinal de toute orbite est égal a 1, p ou p°. Donc, en
particulier, p divise Z Card(0;). Donc, comme p divise Card(G), p divise

1<igr
Card(0))#1

Card(Z(G)), qui est > 0< donc Z(G) n'est pas trivial.

(b) En déduire que G est abélien.

Correction

Pour montrer que G est abélien, il suffit de montrer que Z(G) est de cardinal
p>. Si ca n'était pas le cas, on aurait Z(G) de cardinal p. Mais alors si x n’était
pas dans G, lI'ensemble H = {g € G, g* x = x x g} est un sous-groupe de G
contenant Z(G) et x, donc de cardinal > p, et, d"apreés le théoréeme de Lagrange,
son cardinal divise Card(G). Donc H serait de cardinal p?, donc x commuterait
avec tous les éléments de H, absurde! Donc Z(G) = G, donc G est abélien.
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Probléme 3. Sous-groupes de S(R)

On note G I'ensemble des bijections continues de R dans R, muni de la loi o. On rappelle que
(G, o) est un groupe, de neutre Idg. Si f € G et n € N*, on note

fT"=fo---of.
N—_——
n fois
Par convention, 0 = Idr. Et, comme f est bijective, on note aussi =" = flo...of L
A. Geénéralités

1. Que peut-on dire de la monotonie des éléments de G 7

4‘ Correction

Les éléments de G sont des bijections, donc des injections continues de R dans R,
donc elles sont strictement monotones.

2. On note, pour a€ R* et b€ R, 1, : x — ax+ b. On appelle Aff = {f,5, (a, b) € R* xR}
leur ensemble. Démontrer que Aff est un sous-groupe de G.

Correction

. Déja, Aff est inclus dans G. En effet, si a € R* et b € R, £, est clairement continue
et on remarque que pour (x,y) € R?,

fap(x) =y e ax+b=y

—b
P d

& x = f;v_g(y).

a

Ainsi, f, , est une bijection, de bijection réciproque fi _»(y).

Ceci permet de démontrer que Aff est inclus dans G et que cet ensemble est stable
par passage a l'inverse !

. Ensuite, Idg = f1 ¢ est bien dans Aff.

. Enfin, si (a,b) e R* xR et (¢, d) € R* xR, si x € R, alors

ﬁa,b o fc,d(X) = fa,b(CX + d)
=a(cx+d)+b
= acx + ad + b = fre ad16(x),

donc f; o fc,q € Aff, donc Aff est bien stable par o.

B. Sous-groupes finis de G
Soit désormais H un sous-groupe fini de G.

3. Si H est de cardinal 1, qui est H?

Correction

Si H est de cardinal 1, comme H contient au moins Idg, alors H = {Idg}.

Page 10 sur



MPSI1 Pasteur 2025-2026 DS10

Soit désormais f dans H.

4. Démontrer qu'il existe p € N* tel que P = Idg.

Correction

On sait que pour tout n dans N, " € H. Mais, comme H est fini, les f”, pour n dans
N, ne peuvent étre deux a deux distinctes.

Ainsi, on dispose de n, m différents tels que f7 = . Sans perte de généralité, on peut
supposer que n > m. Ainsi, "~ = Idg, et n — m € N*. D’ou le résultat souhaité!

B-1. Cas ou f est strictement croissante

5. Dans cette question, on suppose f strictement croissante. Démontrer, par I'absurde que
f = Idg.

4‘ Correction

Si f # Idg, alors on dispose de x € R tel que f(x) # x.
. Si f(x) < x, comme f est strictement croissante, f2(x) < f(x) < x et

fP(x) < FPL(x) < --- < f(x) < x,

soit x < x, absurde!
. Six < f(x), alors x < f(x) < -+ < fP(x) = x, absurde aussi!
Ainsi, f = Idg.

B-1l. Cas ou f est strictement décroissante
Dans cette partie seulement, on suppose f strictement décroissante.

6. Démontrer que f o f = Idg.

Correction

On sait alors que f o f est strictement croissante, donc, par la question précédente,
fof= IdR

On définit la fonction g € R® par : Vx € R, g(x) = x — f(x).
7. Montrer que g est une bijection de R dans R, et que

Vx €R, f(x) =g 1 (—g(x)) = gt o (~Idg) o g(x).

Déja, g est ’strictement croissante‘ comme somme de fonctions strictement crois-
santes, donc est injective.
Ensuite, si x > 0, g(x) > x — f(0), donc | g(x) — o0

X—r+00

De méme, si x < 0, g(x) < x—f(0), donc|g(x) — —o0|.

X—++00

g étant continue, on en déduit, par le théoréme des valeurs intermédiaires, que
g est surjective de R dans R ‘
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‘ Donc g est une bijection de R dans R. ‘
Soit x dans R. Alors

gof(x)=f(x) = f(f(x)) = f(x) —x = —g(x),

donc, en composant a gauche par g7 1, ‘ f(x) =g *(g(x)) ‘

C. Conclusion

8. Décrire le plus précidément possible les sous-groupes finis de G : quel peut étre leur cardinal,
quelle est la forme de leurs éléments, etc.

4‘ Correction

Les sous-groupes finis de G possédent donc 1 ou 2 éléments : au plus une application
strictement croissante, Idg, et au plus une application strictement décroissante : si
g et h sont deux applications décroissantes de R, go h et g o g sont strictement
croissantes, donc égales a Idg, donc g = h.

On a donc :
e le singleton {Idg},

e les paires de la forme {Idg, g~' o (—Idg) o g} ot g est une bijection continue
quelconque de R.
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