
MPSI1 Pasteur 2025-2026 DS05

MPSI 1

Mathématiques
DS 05

Samedi 10 janvier – 8h-12h

• Durée : 4 heures.

— Prenez 10 minutes pour lire le sujet en entier et décider de la stratégie que vous
adopterez.

— Prenez 10 minutes au moins à la fin des 4 heures pour vous relire !

• Toute calculatrice ou appareil électronique est interdit.

• Le sujet est composé de deux problèmes indépendants.

• Consignes de présentations.

— Les pages doivent être numérotées.

— Les résultats doivent être mis en valeur (encadrés ou soulignés).

— Les questions doivent être numérotées. Une question non numérotée, c’est une ques-
tion potentiellement non corrigée.

— Les questions doivent être faites dans l’ordre : si vous admettez une question, laissez
de la place à l’endroit où elle est censée être pour y revenir ensuite. Changez de copie
ou de page quand vous changez de grande partie.

• À tout moment, vous pouvez admettre le résultat d’une question pour pouvoir continuer :
il suffit de le préciser clairement sur la copie.

• Si vous voyez ce qui semble être une erreur d’énoncé, indiquez-le sur la copie.

• Laissez de la place dans une marge à gauche pour pouvoir noter plus facilement le devoir.

• Une réponse fausse, si elle ne laisse pas paraître de calculs intermédiaires, compte 0 points ;
avec calculs intermédiaires elle peut rapporter quelques points.

� Bon courage ! �
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Problème 1. Nombre de rotation d’un homéomorphisme du
cercle

A. Étude d’un ensemble de fonctions
On note X l’ensemble des applications f : R → R continues, strictement croissantes, vérifiant,
pour tout x dans R, f (x + 1) = f (x) + 1.

1. Démontrer que pour f et g dans X , f ◦ g est dans X , et que pour tout n dans N,
f n = f ◦ · · · ◦ f︸ ︷︷ ︸

n fois

est dans X .

2. Pour f dans X , déterminer la limite de (f (n))n∈N et de (f (−n))n∈N.
3. Soit f dans X . Montrer que f est bijective et que f −1 est aussi dans X .
4. Au vu des questions précédentes, que peut-on dire de l’ensemble X ?

Pour f dans X , on définit

ϕf :

∣∣∣∣∣ R→ Ux 7→ e2iπf (x)
.

5. Démontrer que, pour f ∈ X , ϕf est une fonction continue et 1-périodique.

6. Démontrer que si f et g sont dans X , ϕf = ϕg si, et seulement s’il existe n ∈ Z tel que
pour tout x dans R, g(x) = f (x) + n.

7. Démontrer que si f ∈ X , alors pour tout (α, β) ∈ R2 vérifiant e2iπα = e2iπβ, on a
ϕf (α) = ϕf (β).

La question précédente permet de définir l’application Rf : U→ U, qui, à tout élément z = e2iπθ

de U associe e2iπf (θ). Cette quantité est indépendante du choix de θ (par la question précédente),
donc Rf est bien définie. On admet que Rf est bijective et que pour tout k dans Z, Rkf = Rf k .

8. Si α ∈ R, on note τα :

∣∣∣∣∣ R→ Rx 7→ x + α
. Vérifier rapidement que τα ∈ X , donner l’expression

de ϕτα et de Rτα .

B. Existence du nombre de rotation
Dans cette partie, on fixe une fonction f dans X . On note, pour x dans R, ϕ(x) = f (x)− x .

9. Démontrer que ϕ est périodique, de période 1.

10. Montrer que, pour tous x, y ∈ R,−1 < ϕ(y)− ϕ(x) < 1. On pourra d’abord traiter le cas
où x 6 y < x + 1.

11. Soit n ∈ N∗. Démontrer que la fonction ϕn : x 7→ f n(x)− x est périodique de période 1 et
justifier l’existence de Mn = sup

x∈R
f n(x)− x et de mn = inf

x∈R
f n(x)− x .

12. Montrer que, pour tout n ∈ N∗, 0 6 Mn −mn < 1.
13. Montrer que pour tous n, p ∈ N∗, mn +mp 6 mn+p 6 Mn+p 6 Mn +Mp.

14. En déduire que pour tous k, n ∈ N∗,
mk
k
6
Mn

n
.

On pourra comparer mk et mkn.

15. Déduire des questions 12. et 14. que sup
{mn
n
, n ∈ N∗

}
= inf

{
Mn

n
, n ∈ N∗

}
(on justifiera

brièvement l’existence de chacune des quantités).

On note ρ(f ) cette valeur commune et on l’appelle nombre de rotation de f .

16. Montrer que, pour tout n ∈ N∗, il existe xn ∈ R tel que f n (xn) = xn + nρ(f ).
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17. En déduire que, pour tout x ∈ R et pour tout n ∈ N∗,−1 < f n(x) − x − nρ(f ) < 1. En

déduire que
f n(x)

n
→ ρ(f ), quand n → +∞.

18. Expliquer, à l’aide de la fonction Rf , l’appellation « nombre de rotation » .

C. Quelques propriétés de ρ
Soit f ∈ X .

C-I. Généralités

19. Soit g dans X telle que g ◦ f = f ◦ g. Montrer que ρ(g ◦ f ) = ρ(g) + ρ(f ) et que pour tout
k ∈ Z, ρ

(
f k
)
= kρ(f ).

20. Montrer que ρ(f ) est nul si, et seulement si f a un point fixe.

C-II. Cas rationnel

On dit que Rf a une orbite périodique s’il existe z ∈ U et k ∈ N∗ tel que Rkf (z) = z , i.e.
Rf k (z) = z .

21. Démontrer que si ρ(f ) ∈ Q, alors Rf a une orbite périodique.

22. Établir la réciproque.

Épilogue. Si le DS ne portait que sur la continuité, j’aurais aussi poussé le devoir jusqu’à vous
faire démontrer que si ρ(f ) est irrationnel, alors f a une « orbite dense » et qu’il existe une bijection
continue h telle que h ◦ f = τρ(f ) ◦ h.
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Problème 2. Touchons du doigt la théorie de Galois
Le but de ce problème est de faire manipuler certaines notions qui sont à la base de ce qu’on
appelle aujourd’hui la théorie de Galois.

A. Automorphismes de corps
Soit K un sous-corps de C. (K,+,×) est donc un corps. On note Bij(K,K) l’ensemble des
bijections de K dans K. On rappelle que (Bij(K,K), ◦) est un groupe.
On note Aut(K) l’ensemble des automorphismes de corps de K, c’est-à-dire des morphismes de
corps de K dans K qui sont bijectifs.
Si L est un sous-corps de K, on note AutL(K) l’ensemble des automorphismes de K qui laissent
L invariant :

AutL(K) = {ϕ ∈ Aut(K), ∀x ∈ L, ϕ(x) = x}.

1. On définit ζ l’application de conjugaison : ∀z ∈ C, ζ(z) = z . Vérifier que ζ ∈ AutR(C).
2. Démontrer que AutR(C) = {IdC, ζ}.
3. Démontrer que AutL(K) est un sous-groupe de (Bij(K,K), ◦).

Dans cette partie, on considère ω ∈ K\L tel que ω2 ∈ L. On note L[ω] = {a+ωb, (a, b) ∈ L2}.

4. Démontrer que pour tout z dans L[ω], il existe un unique couple (a, b) ∈ L2 tel que
z = a + ωb.

5. Démontrer que L[ω] est un sous-corps de K contenant L.
6. Démontrer brièvement que AutL(L[ω]) contient deux éléments.

7. Application. Démontrer que Q[i ] est un sous-corps de C, puis que (Q[i ])[
√
2] est lui aussi

un sous-corps de C. On notera ce corps Q[i ,
√
2].

B. Extensions cyclotomiques

Dans cette partie, on note Un le groupe des racines de l’unité. On note ωn = e
2iπ
n , ce qui assure

que Un = {ωkn , k ∈ J0, n − 1K}. On note

Q[Un] =

{
n∑
k=0

αkω
k
n , (α0, . . . , αn−1) ∈ Qn

}
.

On admet que Q[Un] est un sous-corps de (C,+,×) (ce n’est pas du tout évident !). Le but de
cette partie est de comprendre la structure de AutQ(Q[Un]) pour certaines valeurs de n.

B-I. Le cas de U5

Afin d’alléger les notations, on note ξ = ω5 = e
2iπ
5 . On donne cos

2π

5
=

√
5− 1
4

.

8. Dessiner approximativement les ξk pour k allant de 0 à 4. Montrer sur le dessin quels sont
les éléments, parmi les ξk , qui sont conjugués.

On rappelle que

Q[U5] =

{
4∑
k=0

akξ
k , (a0, a1, a2, a3, a4) ∈ Q5

}
,

et que l’on a admis qu’il s’agissait d’un sous-corps de C.
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9. Que vaut
4∑
k=0

ξk ? En déduire que

Q[U5] =

{
4∑
k=1

bkξ
k , (b1, b2, b3, b4) ∈ Q4

}
. (1)

10. Démontrer que pour tous rationnels a, a′, b, b′, si a sin
2π

5
+b sin

4π

5
= a′ sin

2π

5
+b′ sin

4π

5
,

alors a = a′ et b = b′.

On admet que pour tous rationnels a, a′, b, b′, si a cos
2π

5
+ b cos

4π

5
= a′ cos

2π

5
+ b′ cos

4π

5
,

alors a = a′ et b = b′.

11. Démontrer qu’une écriture sous la forme (1) est unique, c’est-à-dire que si (b1, . . . , b4, c1, . . . , c4)
sont huit rationnels tels que

4∑
k=1

bkξ
k =

4∑
k=1

ckξ
k ,

alors pour tout k dans J1, 4K, bk = ck .

On définit σ sur J1, 4K par : pour tout k dans J1, 4K, σ(k) est le reste de la division euclidienne
de 2k par 5.

12. Vérifier que σ ∈ S4, représenter cette permutation sous la forme σ =
(
1 2 3 4

· · · · · · · · · · · ·

)
.

Préciser sa décomposition en cycles à supports disjoints et sa signature. Calculer σ2, σ3 et
σ4.

On définit alors ϕ sur Q[U5] par : ∀(b1, b2, b3, b4) ∈ Q4,

ϕ(b1ξ + b2ξ
2 + b3ξ

3 + b4ξ
4) = b1ξ

σ(1) + b2ξ
σ(2) + b3ξ

σ(3) + b4ξ
σ(4).

13. Quelle est l’utilité de la question 11. ?

14. Démontrer que pour tout k dans N , pour tout λ dans Q, ϕ(λξk) = λξ2k .
15. Démontrer que ϕ est dans AutQ(U5).

Réciproquement, soit ψ dans AutQ(U5).
16. En distinguant selon les valeurs de ψ(ξ), démontrer qu’il existe k dans J0, 3K tel que ψ = ϕk .

17. Conclure que AutQ(Q[U5]) est un groupe à 4 éléments, isomorphe à U4.

B-II. Le cas de U8

On admet toujours que Q[U8] est un sous-corps de C.

18. Que vaut ω8 ? Donner notamment sa forme algébrique.

19. Démontrer que
√
2 et i sont dans Q[U8], puis que Q[i ,

√
2] ⊂ Q[U8].

20. Conclure que Q[U8] = Q[i ,
√
2].

21. Démontrer enfin que AutQ(Q[U8]) = {Id, α, β, γ} où α2 = β2 = γ2 = Id. Ce groupe est-il
isomorphe à AutQ(U5) ?
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