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MPSI 1

Mathématiques
DS 05

Samedi 10 janvier — 8h-12h

Durée : 4 heures.

— Prenez 10 minutes pour lire le sujet en entier et décider de la stratégie que vous
adopterez.

— Prenez 10 minutes au moins a la fin des 4 heures pour vous relire!

Toute calculatrice ou appareil électronique est interdit.

Le sujet est composé de deux problémes indépendants.

Consignes de présentations.
— Les pages doivent étre numérotées.
— Les résultats doivent étre mis en valeur (encadrés ou soulignés).

— Les questions doivent étre numérotées. Une question non numérotée, c'est une ques-
tion potentiellement non corrigée.

— Les questions doivent étre faites dans I'ordre : si vous admettez une question, laissez
de la place a I'endroit ou elle est censée étre pour y revenir ensuite. Changez de copie
ou de page quand vous changez de grande partie.

e A tout moment, vous pouvez admettre le résultat d'une question pour pouvoir continuer :
il suffit de le préciser clairement sur la copie.

e Si vous voyez ce qui semble étre une erreur d'énoncé, indiquez-le sur la copie.
e |aissez de la place dans une marge a gauche pour pouvoir noter plus facilement le devoir.

e Une réponse fausse, si elle ne laisse pas paraitre de calculs intermédiaires, compte 0 points;
avec calculs intermédiaires elle peut rapporter quelques points.

3 Bon courage ! &3
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Probléme 1. Nombre de rotation d’un homéomorphisme du
cercle

A. Etude d’un ensemble de fonctions

On note X I'ensemble des applications f : R — R continues, strictement croissantes, vérifiant,
pour tout x dans R, f(x+ 1) = f(x) + 1.

1. Démontrer que pour f et g dans X, f o g est dans X, et que pour tout n dans N,
f"=fo---of est dans X.
——

n fois

Correction

Soient f et g dans X. Alors f o g est continue, strictement croissante, et, pour tout x
dans R,

foglx+1)=rf(g(x+1))=F(g(x)+1)="~(g(x))+1,

donc foge X.
Pour ", on conclut par récurrence immédiate.

2. Pour f dans X, déterminer la limite de (f(n)),en et de (F(—n))nen.

4‘ Correction

On montre par récurrence que pour tout n dans N, P, : ’f(n) = f(0) + n‘. L'ini-

tialisation est évidente et, pour I'hérédité, si n € N est tel que P, est vraie, on a

f(n+1)=1f(n)+1=1(0)+ n+ 1. Dol I'hérédité et le résultat.

Ainsi, | f(n) =f(0)+n — ool
n—-+oo

De méme, on montre facilement que pour tout ndans N, f(—n) = f(0)—n 7, T
n—-+o00

3. Soit f dans X. Montrer que f est bijective et que f~! est aussi dans X'

Correction

La fonction f est strictement croissante, non majorée (par la question précédente), non
minorée (par la question précédente), donc, d'aprés le théoréme de la limite monotone,

f(x) — 4ooetf(x) — —oo.
X—~+00 X——00

De plus, étant continue, on en déduit, par le théoréeme de la bijection, que f est
| bijective de R dans R. |

Enfin, par le théoréeme de la bijection f ! est aussi ’ continue et strictement croissante.
De plus, pour tout x dans R, f(x+ 1) = f(x) + 1 donc, si y € R,

FE )+ 1) =f(F' ) +1=y+1,

d'ou, par bijectivité de f,

Fry)+1=Ff1(y+1),

ce qui assure que f~! est dans X.

4. Au vu des questions précédentes, que peut-on dire de I'ensemble X' 7
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Correction

On vient de démontrer que X était un sous-groupe de Il'ensemble des bijec-
tions continues de R dans R (en ajoutant a ce que l'on a déja démontré que
‘IdR est bien dans X ‘)

Pour f dans X, on définit

R—U
Pr X e2i7rf(><) ’

5. Démontrer que, pour f € X, f est une fonction continue et 1-périodique.

Correction

Soit f € X. Alors @¢ est continue par composition de fonctions continues. De plus,
pour x dans R,

Qr(x+1) = e2imf(x+1) _ g2im(f(x)+1) _ e2i7rf(x)+2i7r

d'ol la 1-périodicité de @r.

6. Démontrer que si f et g sont dans X, ¢f = g si, et seulement s'il existe n € Z tel que
pour tout x dans R, g(x) = f(x) + n.

Correction

Comme ¢ = g4, on en déduit que pour tout x dans R, e 2im9(x)  donc que
I'on dispose de n(x) dans Z tel que 2imf(x) = 2img(x) + 2iwn(x), c'est-a-dire que

2imf(x) _ e

| F(x) = 9(x) + n(x). |

(attention ! Le n dépend, a priori, de x ! ') Ceci signifie que h = f — g est une fonction
‘continue, a valeurs dans Z. ‘ On montre alors qu’elle est constante. Si ce n’était pas
le cas, on disposerait de deux entiers a < b, de deux réels x, et x;, tels que h(x,) = a et

1
h(xp) = b. Mais alors, a+ 5 € [a, b] donc, par le théoréeme des valeurs intermédiaires,

1
on disposerait de ¢ dans [x,, xp] tel que h(c) = a+ 5 ¢ 7, absurde.

Donc h est constante. On note n sa valeur : on a anrs‘Vx eR, f(x)=g(x)+n. ‘

7. Démontrer que si f € X, alors pour tout (o, B) € R? vérifiant e*™ = 2™ on a
or(a) = @r(B).

La question précédente permet de définir 'application Ry : U — U, qui, a tout éléement z = 2™

de U associe 2™ (®) Cette quantité est indépendante du choix de 6 (par la question précédente),

donc Ry est bien définie. On admet que Ry est bijective et que pour tout k dans Z, R’f‘ = Ry¢x.
R—R

8. Si a € R, on note 7, : . Vérifier rapidement que 7, € X, donner |'expression
X=X+ a

de @, et de R.,.

T, est clairement bijective de R dans R, strictement croissante, et on a bien, pour tout
X, Ta(x +1) = To(x) + 1.
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Ensuite,
R—U
Qr, ) ) o,
X = e2/7r(x+0c) — e2/7rae2/7rx
donc
U—-U
T o . )
7 2Ty

B. Existence du nombre de rotation

Dans cette partie, on fixe une fonction f dans X'. On note, pour x dans R, ¢(x) = f(x) — x.

9. Démontrer que ¢ est périodique, de période 1.

Correction

Soit x dansR. Alors p(x+1) = f(x+1)—x—-1=f(x)+1—x—1 = f(x) —x = ©(x),
donc ¢ est 1-périodique.

10. Montrer que, pour tous x,y € R, =1 < ¢(y) — ¢(x) < 1. On pourra d'abord traiter le cas
oux<y<x+1.

4‘ Correction

Soient x et y dans R. Alors

oly) —o(x)=f(y) = f(x) -y +x.

Dans le cas ol x < y < x + 1, on sait déja que f est strictement croissante donc
fly)—f(x)>20etx—y>—1, donc‘w(y)—(p(x)—y+x>—1‘.
Ensuite, —y +x < 0 et, comme y < x+ 1, f(y) — f(x) < f(x+1) — f(x) = 1. Ainsi,

o) —p(x)—y+x<1+0=1|

Dans le cas ol y est quelconque, on dispose de k dans Z tel que y + k € [x, x + 1.
Mais @o(y) = @(y + k), ‘on peut donc conclure. ‘

11. Soit n € N*. Démontrer que la fonction @, : x — f"(x) — x est périodique de période 1 et
justifier I'existence de M, = sup f"(x) — x et de m, = ianQ f(x) — x.
S

xER
Correction

Comme, par la question [L] "7 € X, on en déduit, par la question précédente, que
0, x = f"(x) — x est 1-périodique. Etant continue sur le segment [0, 1], on en
déduit, par le théoréme des bornes atteintes, que ¢, est bornée sur [0, 1] et y atteint
ses bornes. De plus, par 1-périodicité, ¢,(R) = ¢,([0,1]), donc ¢, est bornée sur R
et atteint ses bornes, ce qui assure |'existence de m, et M,,.

12. Montrer que, pour tout n€ N*, 0 < M,, — m, < 1.

Page 4 sur



MPSI1 Pasteur 2025-2026 DS05

Correction

Comme, pour tout n dans N*, f" € X, on peut appliquer la question a @, et
obtenir que pour tous y et x, ©(y) — p(x) €] — 1,1[. Mais alors, si x et y sont tels

que mp, = p,(x) et M, = @,(y), on a ‘O <M, —mp=p,(y) —pn(x) <1 ‘

13. Montrer que pour tous n, p € N*, my, + mp < mppp < Myyp < My 4+ M,

Correction

Soit (n, p) € (N*)2. Soit xo tel que m,., = f™P(x) — xo (I'existence de ce xq est
assurée par le théoréeme des bornes atteintes). Alors

Mty = F7(30) = X0
= F(FP(0)) — FP(x0) + F(x0) = %o |
= 0a(f*(x0)) — @p(x0)

Ensuite, l'inégalité M,, < M, + M, se démontre symétriquement.
Enfin, l'inégalité mu;, < M,4, vient simplement du fait que le minimum est inférieur
au maximum.

. m M
14. En déduire que pour tous k, n € N*, TK < T”
On pourra comparer my et Mg,.

Correction

Soit (k, n) € (N*)2. Alors on remarque que 2m, < ma,, et, par récurrence immédiate,

. m M
nmy < Mpg. De méme, M, < kM,, d'ot nmy < kM, c’'est-a-dire que Tk < 2
n

M
15. Déduire des questions et que sup {% ne N*} =inf {nn ne N*} (on justifiera

brievement |'existence de chacune des quantités).

Déja, pour tout n dans N*,

mp

M m .
< Tl donc A = {Tn,neN*} est une partie

de R, non vide, majorée : ‘elle admet une borne supérieure ‘ De méme, inf(B), ol

M
B= {nn ne N*}, existe.
Ensuite, on note o = sup(A) et 8 = inf(B). On sait que pour tous k et n,

mk<M,,
k T n

N L, Mg . my .

A k fixé, — est un minorant de B, donc — < 3. Donc B majore A, donc|a < 8.
v 7 ot un mincrat e, don <. Donc g mre A, donc [ <5

Ensuite, par la question on sait que pour tout n dans N*,

my, M, 1

n n n
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.m M 1
Mais T" <aet T" > B donc, pour tout n dans N*, |a > 3 — pt D’ou, en passant

a la limite dans les inégalités larges,

’On conclut donc que o = . ‘

On note p(f) cette valeur commune et on I'appelle nombre de rotation de f.

16. Montrer que, pour tout n € N¥, il existe x, € R tel que " (x,) = x, + np(f).

Correction

Soit g : x — f"(x) — x — np(f). Alors g est continue sur R.

Son minimum est | m, — np(f) = n (% — p(f)) < 0}, car p(f) = sup(A). De méme,

) M, )
son maximum est M, — np(f) =n <n - p(f)) car p(f) = inf(B).
Ainsi, par le théoréme des valeurs intermédiaires, g s'annule : on dispose de x, tel que
9(x) = 0. i.e. [ () = X0 + np(£). |

17. En déduire que, pour tout x € R et pour tout n € N*, -1 < f"(x) — x — np(f) < 1. En

f(x)
n

déduire que — p(f), quand n — +oo.

4‘ Correction

Par la question 10 appliquée a ¢,, on sait que pour tous x et y,

—1 <p(x) —enly) < 1.

En prenant y = x,, on obtient exactement

’71 < f"(x) —x —np(f) < 1,‘

ce qui est I'inégalité désirée.
3 o , L f"(x) — x
En divisant par n et par théoréme d’'encadrement, on en déduit que —— —
n n—-+o0
f7(x)
n n—>—+>oo p(f) ’

o(f), ou encore que

18. Expliquer, a I'aide de la fonction R¢, I'appellation « nombre de rotation » .

Correction

L'application Rf fait « tourner » un élément de U. Dans le cas ou f = T,, c'est
clairement cela, R est la rotation d'angle a. Le nombre de rotation correspond a, en
moyenne, de combien Ry fait tourner un élément de U (par « en moyenne », on entend
la moyenne sur les itérés de Ry).

C. Quelques propriétés de p
Soit f € X.
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C-1. Geénéralités

19. Soit g dans X telle que gof = f og. Montrer que p(go f) = p(g) + p(f) et que pour tout
k€Z,p(fk) = ko(f).

Correction

On sait, comme fog=gof, que pour tout ndans N, (fog)"=f"0g".
Par la question appliquée en g"(x), on sait que

=1 < f"(g"(x)) — g"(x) — np(f) < 1,
d'ou, en divisant par n,

1_(fogr() _ g _
n n n

o(f) < %

d'ol, par passage a la limite dans les inégalités larges,

p(f og) —p(g) — p(f) =0,

d'ot | p(f © g) = p(f) + p(9) |
La deuxieme relation se déduit par récurrence immédiate.

20. Montrer que p(f) est nul si, et seulement si f a un point fixe.

Correction

Déja, si p(f) est nul, on sait qu'il existe x; tel que f(x1) —x3 — 1 x p(f) = 0, i.e.

. Donc f admet un point fixe.

Ensuite, si f admet un point fixe xg, alors pour tout n dans N, f"(xg) = xp et donc

fn(Xo) . X0 .
T—Fn_)—_i_)OOO,donc p(f)—O

C-Il. Cas rationnel

On dit que Rf a une orbite périodique s'il existe z € U et k € N* tel que R’,ﬁ(z) =z ie.
Re(z) = z.

21. Démontrer que si p(f) € Q, alors R a une orbite périodique.

Correction

Ecrivons p(f) =

g, ol (p, q) € ZxN*. Alors on sait que I'on dispose de x; € R tel que

f9(xq) — xq — qp(f) = 0, c’est-a-dire que ’ fIUxq) —xg=0p ‘ Mais alors, si z = e2™q,

on a

R?(Z) — e2l7rf(xq) — e2l7r(><q+p) — e2/7r><q -z,

donc Rr admet une orbite périodique.

22. Etablir la réciproque.
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Correction

Supposons que Ry admette une orbite périodique. Alors on dispose de zz dans U et
de k dans N* tel que R (z) = z, i.e., si z = ™,

ok .
e2/7rf (o) — 62”“1,

donc on dispose de £ dans Z tel que fX(a) = a + £. On en déduit que, pour tout n

dans N,
f(a) = a+ nt,
d'ou
fik(a) o ¢
k. n K

k(o)
nk
faisant tendre n vers 400, que

()

et comme ( ) est une suite extraite de ( ) , on en déduit, en
neN* neN

(f)=teq

Epilogue. Si le DS ne portait que sur la continuité, j'aurais aussi poussé le devoir jusqu'a vous
faire démontrer que si p(f) est irrationnel, alors f a une « orbite dense » et qu'il existe une bijection
continue h telle que ho f = T,y 0 h.

Page 8 sur



MPSI1 Pasteur 2025-2026 DS05

Probleme 2. Touchons du doigt la théorie de Galois

Le but de ce probleme est de faire manipuler certaines notions qui sont a la base de ce qu'on
appelle aujourd’hui la théorie de Galois.

A. Automorphismes de corps

Soit K un sous-corps de C. (K, +, x) est donc un corps. On note Bij(K, K) I'ensemble des
bijections de K dans K. On rappelle que (Bij(KK, K), o) est un groupe.
On note Aut(K) I'ensemble des automorphismes de corps de K, c'est-a-dire des morphismes de
corps de K dans K qui sont bijectifs.
Si L est un sous-corps de K, on note Auty(K) I'ensemble des automorphismes de K qui laissent
L invariant :

Auty(K) = {p € Aut(K), ¥x € L, o(x) = x}.

1. On définit ¢ I'application de conjugaison : Vz € C, ((z) = Z. Vérifier que ¢ € Autg(C).

Correction

Déja, on vérifie que ¢ est un morphisme de corps : soient z et z’ dans C. Alors

1=1, 24727 =Z4+Zetzxz2=Zx 2.

De plus, la conjugaison est une involution, donc est bijective.
Enfin, si x € R, X = x, donc R est invariant par la conjugaison.
On en déduit donc que ¢ € Autg(C).

2. Démontrer que Autg(C) = {Idc, (}.

4‘ Correction

Soit ¢ € Autg(C). Alors si z € C, on dispose de a et b dans R tels que z = a+ ib.
Donc

©(z) = @(a) + @(i)e(b) = a+ @(i)b.
Or, i = —1, donc ¢(i)?> = —1, donc @(i) = %i.
e si (i) =1, alors p(z) = a+ib, donc p =1d¢
e si (i) =—1i, alors ¢p(z) = a—ib, donc p = (.

Ainsi, Autg(C) C {Idc, ¢}. Comme l'inclusion réciproque est évidente, le résultat est
démontré !

3. Démontrer que Auty(K) est un sous-groupe de (Bij(K, K), o).

4‘ Correction

Déja, Idk est bien un automorphisme de corps de K qui préserve L.
Ensuite, soient @ et 9 deux éléments de Auty(K). Alors

® o1 est bien un morphisme de corps (on peut le vérifier mais on I'a déja fait
pour les morphismes de groupes)
e six€eL, pot(x)=p¥(x)) = p(x) =x
Ainsi, oY € Autr (K).
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Dans cette partie, on considére w € K\ L tel que w? € L. On note L[w] = {a+wb, (a, b) € L2}

4. Démontrer que pour tout z dans L[w], il existe un unique couple (a, b) € L2 tel que
z=a+wb.

Correction

Soit z € L{w]. L'existence du couple (a, b) est juste donnée par la définition de L[w].
Pour I'unicité, soient (a, b, ', b') 4 éléments de IL vérifiant a+wb = a’ +wb'. Si on
avait b # b, alors on aurait

lw=(a-a)b-1)"eL,

ce qui est absurde. Donc b = b et, par conséquent, a = a.
D'ou l'unicité de I'écriture. \

5. Démontrer que L[w] est un sous-corps de K contenant L.

Correction

Déja,siael, a=a+0.w € L|w], donc L C L{w].
Ensuite :

e 1 €L donc1 € Lfw],

e si (x,y) € L[w]?, alors on dispose de (a, b, c,d) € L* vérifiant x = a + wb et
y =c+wd. Alors

[x—y=(a—c)+w(b—d) € L]

et
xy = (a+ wb)(c + wd) = (ac + w?bd) 4+ w(ad + bc).

Mais w? € L, donc ac + w?bd € L, d'ou | xy € Lw].

e enfin, si x € L[w] \ {0}, alors x = a4+ wb ot (a, b) # (0,0). De plus, a—wb # 0.
On écrit alors,

1
 a+tuwb
a—wb
= 2 — w2p?

a b
T R2_w2p 2 7w2b2w € L{w]

Donc L[w] est un sous-corps de K.

6. Démontrer brievement que Auty(L[w]) contient deux éléments.

Soit ¢ € Auty (IL[w]). Alors pour tous (a, b) dans L2,

w(a+wb) =p(a) + p(w)p(b) = a+ p(w)b.

Mais w? € 1L, donc

o(w)* = o(w?) = u?,
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donc p(w) = tw.
¢ si p(w) = w, alors ¢ = Idy .
o si p(w) = —w, alors  : a4+ wb +— a— wb.

Réciproquement, de telles applications sont dans Autg(w).

7. Application. Démontrer que Q[/] est un sous-corps de C, puis que (Q[/])[v/2] est lui aussi
un sous-corps de C. On notera ce corps Q[i, v2].

Correction

On sait que i> = —1 € Q donc, d’aprés la question précédente, Q[/] est un sous-corps
de C.

On sait que \f22 = 2 € Q donc, d'aprés la question précédente, Q[i,v/2] est un
sous-corps de C.

B. Extensions cyclotomiques

Dans cette partie, on note U, le groupe des racines de I'unité. On note w, = e , ce qui assure
que U, = {wX, k€ [0,n—1]}. On note

Q[U,] = {Z akw,f, (T an_1) € Q”} .

k=0

On admet que Q[U,] est un sous-corps de (C, +, x) (ce n'est pas du tout évident!). Le but de
cette partie est de comprendre la structure de Autg(Q[U,]) pour certaines valeurs de n.

B-l. Le cas de Us

V5—-1
—

8. Dessiner approximativement les Ek pour k allant de 0 a 4. Montrer sur le dessin quels sont
les éléments, parmi les €5, qui sont conjugueés.

4‘ Correction

Il suffit de dessiner un pentagone régulier! On a, notamment &* = € et &3 = £2.

. . i 2T
Afin d'alléger les notations, on note £ = ws = e . On donne cos? =

On rappelle que
4
Q[Us] = {Z k€’ (a0, a1, a, a3, as) € @5} ,

k=0

et que I'on a admis qu'il s'agissait d'un sous-corps de C.

4
9. Que vaut Z&k ? En déduire que
k=0

Q[Us] = {Z b€", (b1, ba, b3, by) € Q“}. (1)

k=1
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Correction
4
Notons A = {Z b€k, (by, by, b3, bs) € Q‘*}. Déja, trivialement, A C Q[Us].
k=1
Ensuite, on sait que la somme des racines n-iémes de I'unité est nulle (si n > 2). Donc

4
Z&k = 0. Donc si x € Q[Us],

k=0
X = agtaré+aé’+ase3+arl" = (a1—ao)é+(a—a0)€%+(as—a0)€>+(as—ap)¢* € A,

d'ot I'inclusion réciproque et I'égalité!

. .. 2T . Am .2 _Ar
10. Démontrer que pour tous rationnels a, &', b, b/, si asin ?—kbsm 5 = a'sin 5 +b'sin 5

alorsa=4d etb=".

. . .2 4 o2 4
Soient a, @, b, b’ quatre rationnels tels que asin ?ﬂ + bsin ?ﬂ = a'sin % + b'sin g
Alors 5 a

(a—a’)sin—w—#(b— b’)sin—7T =0,
5 5
donc 5 » 5
(a—a’)sin%r—&—Z(b—b')sin%rcos?7r =0,

donc 5

(a—a)+2(b—b)cos % =0,

27 27 a—a
in— 0. Donc, si b b, — = — € Q, i est absurd

car Zln G #* onc, si b # cos G (6 —b) Q, ce qui est absurde car
cos?7r ¢ Q. Donc b= Vb, puisa= 4.

. ) 2T 4w 2m 4m
On admet que pour tous rationnels a, a’, b, b’ si acos? + bcos? =4 cos - + b’ cos 5

alorsa=4d etb=".

11. Démontrer qu'une écriture sous la forme est unique, c'est-a-dire quessi (by, .. ., bg, C1, ...,

sont huit rationnels tels que
4 4
> bk ="tk
k=1 k=1

alors pour tout k dans [1,4], bx = ck.

Soient (by, ..., ba, C1, ..., ¢4) sont huit rationnels tels que
4 4
> bk ="tk
k=1 k=1

alors, par égalité des parties réelles et imaginaires, et comme £ et £* sont conjugués,
ainsi que &2 et €3,

2m 4T 2 4m
(b1 + bg) cos < + (b2 + bs) cos = (a+a) cos + (¢ + c3) cos G
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donc by + by = ¢c1 + ¢4 et by + bz = ¢ + ¢c3. De méme,

2 4 2 4
(by — bg) sin g + (by — b3) sin % = (c1 — ¢4)sin % + (¢ — ¢c3)sin %

donc by — by = c1 — ¢4 et bp — b3 = ¢ — ¢c3. Donc en sommant les égalités avec b; et
bg, on obtient by = ¢y, puis b; = ¢; pour tout / dans [1,4].

On définit o sur [1,4] par : pour tout k dans [1,4], o(k) est le reste de la division euclidienne
de 2k par 5.

. . 1 2 3 4
12. Vérifier que o € Sy, représenter cette permutation sous la forme o = < S )

Préciser sa décomposition en cycles a supports disjoints et sa signature. Calculer 02, o3

o’

et

Correction

1 2 3 4 .
5 4 1 3>. Ainsi, o est le ‘4—cyc|e (12423) ‘ o est donc

sa propre décomposition en cycles a supports disjoints, et . On a donc

0= (14)0(23),0°=(1342)eto* =1Idp 4.

On remarque que ¢ = (

On définit alors ¢ sur Q[Us] par : V(b1, ba, bz, by) € Q4
O(b1€ + bo€? + b3€® + bye*) = bW 4 bre@) 4 pygo®) 4 pyeo®),

13. Quelle est I'utilité de la question [11]?

Correction
4

Si I'écriture d'un élément de Q[Us] sous la forme Zbkﬁk n'était pas unique, alors
k=1
deux écritures d'un méme x pourraient aboutir a deux valeurs différentes de @(x).

14. Démontrer que pour tout k , pour tout X dans Q, (A&F) = Ae3K.

4‘ Correction

Déja, pour k =0,

PN = (=X = A2 =2 —Agh) = A& = A =N -2 =

Ensuite, pour k € [1,4], o(k) est le reste de la division euclidienne de 2k par 5 :
2k = 5q + o (k), donc &2k = g5a+o(k) — ¢o(k) car ¢5 = 1.

Enfin, si k > 5, on note £ le reste de la division euclidienne de k par 5. On a alors
AR = ¢4 donc

P(AEN) = (") = A7) = 2| = ae™

car 2k = 24[5].

Page 13 sur



MPSI1 Pasteur 2025-2026 DS05

15. Démontrer que @ est dans Autg(Us).

4‘ Correction

On a démontré dans la question précédente que pour tout A dans Q, @(X) =
4 4

Soient x et y dans Q[Us], x = Z ety = Z br€X. Alors, déja,
k=1 k=1

px+ty)=¢ <Z(ak + bk)£k>

k=1

>
&~ ~
=

(ak + bx)g"®

4
akgo(k + Z bké-a(k)
k=1

)]

X
[y

Ensuite,

w(xy w(

4
Z ay bengrE)

=1

Il
M=
YL

©(akbe€**) par additivite.

>

&l
—

EN|

be£2(k+e) par la question précédente.

»
Il

Z ak€2k> (Z bk£2k>
k=1
= (x)p(y).

Enfin, @ est bien bijectif, de bijection réciproque définie par

4 4
0 (z g) L3 a0
k=1 k=1

T
—_

On en déduit que ¢ € Autg(Q[Us]). ‘

Réciproquement, soit ¥ dans Autg(Us).

16. En distinguant selon les valeurs de (&), démontrer qu'il existe k dans [0, 3] tel que ¥ =
K
-

On sait que ¥(€)° = P(€°) = (1) = 1, donc Y(€) € Us. De plus, P(€) # 1 car,
sinon, (&) = 9(&2), donc 9 n’est pas un automorphisme. Ensuite,

4 4 4
Y (Z ak5k> =Y P(a)w(€") = > w(an)ek,
k=1 k=1 k=1
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car ¢ est un automorphisme de corps. On distingue alors :
o Siy(&) =¢ ¥ = Idgu,) = ¢°.
o Sip(€) = €2, alors P(&2) = €%, Y(€%) = €° = ¢, Y(¢*) = €, donc ¥ = ¢,
¢ SiYl) =& Y€)= =6 Y& =& =t ety =¢2=¢ 0On

remarque alors que

4 4 4 4
¥ (Z ak£k> =Y al” =3 ag"W =y’ (Z 3k£k>
k=1 k=1 k=1 k=1

e Enfin, si 9(&) = &%, ¥ = ¢°.

D’ou le résultat !

17. Conclure que Autg(Q[Us]) est un groupe a 4 éléments, isomorphe a Uy.

Correction

On en déduit que Autg(Q[Us]) = {Idgqu,]. ¢. ¥*, ©°}. C'est un groupe par la question
2, et en posant

f Autg(Q[Us]) — U,
' (pk ik

on définit un isomorphisme entre Autg(Q[Us]) et U,.

B-1l. Le cas de Ug
On admet toujours que Q[Us] est un sous-corps de C.

18. Que vaut wg ? Donner notamment sa forme algébrique.

Correction
2im

On sait que wg =es =e

V2.
+7/.

~l5

SN

19. Démontrer que V2 et i sont dans Q[Ug], puis que Q[i, V2] € Q[Ug].

Correction

Déja, wg € Q[Ug] et w§ € Q[Us], donc

ws + wg € Q[Ug], i.e. | V2 € Q[Ug].

Ensuite, comme (ws, v'2) € Q[Us]?, V2ws € Q[Us], donc 1+ i € Q[Usg], d’oil, comme

1€Qc Qe | € QU |

Le fait que v/2 soit dans Q[Ug] et que Q[Us] soit un corps assure que Q[v'2] C Q[Us].

Mais comme i est aussi dans Q[Ug], tous les a + ib, avec (a, b) | dans Q[v/2] | sont
dans Q[Ug]. Ceci assure que

Q[V2][i] € Q[Ug], i.e. Q[i, V2] C Q[Us].
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20. Conclure que Q[Us] = Q[i, V2].

4‘ Correction

On doit remarquer que

Qli, V2] = {a+ bv2+ci+ diV2, (a. b, c d) € Q*}.

Une fois que I'on a remarqué cela, on remarque enfin que les éléments de Ug sont

41, 4, ig n gl‘,

qui sont tous des éléments de Q[i, v'2].| Ainsi, Q[/, V2] étant un corps, alors pour

7

tous (ag, .. ., a7) € Q% ona Zakwé‘ € Q[i, V2.
k=0

D’ou I'inclusion réciproque et I'égalité.

21. Démontrer enfin que Autg(Q[Us]) = {Id, &, B, v} ou a? =2 =42 =1d. Ce groupe est-il
isomorphe a Autg(Us) ?

Correction

Soit 9 dans Autg(Us). Alors (i)? = (i)> = —1, donc (i) = £1. De méme,
P(V2)? = 1/)(\@2) = 1(2) = 2, donc ¥(2) = £v/2. On a donc 4 possibilités :
(a) ¥(i) =i et Y(v2) = V2. Mais alors Y(a+ ib+vV2c+ivV2d) = a+ ib+V2c +
iV2d, donc ¢ =Idgy; /my).

(b) Y(i) = —i et P(v/2) = V2. Alors
Y(a+ib+cvV2+iv2d)=a—ib+cV2—iv2d.

On vérifie facilement (un peu comme ¢ de la partie Us) que 'on définit alors un
élement de Autg(Qli, v'2]), nommons-le a. On voit aussi que a® = Idgy vap)-

(c) ¥(i) =i et ¥(v/2) = —Vv/2. On définit un troisiéme automorphisme que I'on note
B, vérifiant aussi 6% = Idgy; /z))-

(d) ¥(i) = —i et %(/2) = —v/2. On définit un quatriéme automorphisme -y vérifiant
N IdQ[i'ﬁ]) et, aussiaoB =Boa =1.

On a alors un groupe a 4 éléments. Il n'est pas isomorphe a Uy car il n'est pas cy-

clique. Il est, en fait, isomorphe a {—1, 1}2, ou bien au sous-groupe de S4 défini par

{Id, (1 2),(3 4),(1 2) o (3 4)}. Cette derniére description du groupe permet de voir

ce groupe comme un groupe de permutation des racines : on permute éventuellement

iet —i, ou V2 et —V/2.
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