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MPSI 1

Mathématiques
DS 05

Samedi 10 janvier – 8h-12h

• Durée : 4 heures.

— Prenez 10 minutes pour lire le sujet en entier et décider de la stratégie que vous
adopterez.

— Prenez 10 minutes au moins à la fin des 4 heures pour vous relire !

• Toute calculatrice ou appareil électronique est interdit.

• Le sujet est composé de deux problèmes indépendants.

• Consignes de présentations.

— Les pages doivent être numérotées.

— Les résultats doivent être mis en valeur (encadrés ou soulignés).

— Les questions doivent être numérotées. Une question non numérotée, c’est une ques-
tion potentiellement non corrigée.

— Les questions doivent être faites dans l’ordre : si vous admettez une question, laissez
de la place à l’endroit où elle est censée être pour y revenir ensuite. Changez de copie
ou de page quand vous changez de grande partie.

• À tout moment, vous pouvez admettre le résultat d’une question pour pouvoir continuer :
il suffit de le préciser clairement sur la copie.

• Si vous voyez ce qui semble être une erreur d’énoncé, indiquez-le sur la copie.

• Laissez de la place dans une marge à gauche pour pouvoir noter plus facilement le devoir.

• Une réponse fausse, si elle ne laisse pas paraître de calculs intermédiaires, compte 0 points ;
avec calculs intermédiaires elle peut rapporter quelques points.

� Bon courage ! �
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Problème 1. Nombre de rotation d’un homéomorphisme du
cercle

A. Étude d’un ensemble de fonctions
On note X l’ensemble des applications f : R → R continues, strictement croissantes, vérifiant,
pour tout x dans R, f (x + 1) = f (x) + 1.

1. Démontrer que pour f et g dans X , f ◦ g est dans X , et que pour tout n dans N,
f n = f ◦ · · · ◦ f︸ ︷︷ ︸

n fois

est dans X .

Correction

Soient f et g dans X . Alors f ◦ g est continue, strictement croissante, et, pour tout x
dans R,

f ◦ g(x + 1) = f (g(x + 1)) = f (g(x) + 1) = f (g(x)) + 1,

donc f ◦ g ∈ X .
Pour f n, on conclut par récurrence immédiate.

2. Pour f dans X , déterminer la limite de (f (n))n∈N et de (f (−n))n∈N.

Correction

On montre par récurrence que pour tout n dans N, Pn : f (n) = f (0) + n . L’ini-
tialisation est évidente et, pour l’hérédité, si n ∈ N est tel que Pn est vraie, on a
f (n + 1) = f (n) + 1 = f (0) + n + 1. D’où l’hérédité et le résultat.
Ainsi, f (n) = f (0) + n −→

n→+∞
+∞ .

De même, on montre facilement que pour tout n dans N, f (−n) = f (0)−n −→
n→+∞

−∞.

3. Soit f dans X . Montrer que f est bijective et que f −1 est aussi dans X .

Correction

La fonction f est strictement croissante, non majorée (par la question précédente), non
minorée (par la question précédente), donc, d’après le théorème de la limite monotone,
f (x) −→

x→+∞
+∞ et f (x) −→

x→−∞
−∞.

De plus, étant continue, on en déduit, par le théorème de la bijection, que f est
bijective de R dans R.
Enfin, par le théorème de la bijection f −1 est aussi continue et strictement croissante.
De plus, pour tout x dans R, f (x + 1) = f (x) + 1 donc, si y ∈ R,

f (f −1(y) + 1) = f (f −1(y)) + 1 = y + 1,

d’où, par bijectivité de f ,

f −1(y) + 1 = f −1(y + 1),

ce qui assure que f −1 est dans X .

4. Au vu des questions précédentes, que peut-on dire de l’ensemble X ?
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Correction

On vient de démontrer que X était un sous-groupe de l’ensemble des bijec-
tions continues de R dans R (en ajoutant à ce que l’on a déjà démontré que
IdR est bien dans X )

Pour f dans X , on définit

ϕf :

∣∣∣∣∣ R→ Ux 7→ e2iπf (x)
.

5. Démontrer que, pour f ∈ X , ϕf est une fonction continue et 1-périodique.

Correction

Soit f ∈ X . Alors ϕf est continue par composition de fonctions continues. De plus,
pour x dans R,

ϕf (x + 1) = e
2iπf (x+1) = e2iπ(f (x)+1) = e2iπf (x)+2iπ = ϕf (x),

d’où la 1-périodicité de ϕf .

6. Démontrer que si f et g sont dans X , ϕf = ϕg si, et seulement s’il existe n ∈ Z tel que
pour tout x dans R, g(x) = f (x) + n.

Correction

Comme ϕf = ϕg, on en déduit que pour tout x dans R, e2iπf (x) = e2iπg(x), donc que
l’on dispose de n(x) dans Z tel que 2iπf (x) = 2iπg(x) + 2iπn(x), c’est-à-dire que

f (x) = g(x) + n(x).

(attention ! Le n dépend, a priori, de x ! ! !) Ceci signifie que h = f −g est une fonction
continue, à valeurs dans Z. On montre alors qu’elle est constante. Si ce n’était pas
le cas, on disposerait de deux entiers a < b, de deux réels xa et xb tels que h(xa) = a et

h(xb) = b. Mais alors, a+
1

2
∈ [a, b] donc, par le théorème des valeurs intermédiaires,

on disposerait de c dans [xa, xb] tel que h(c) = a +
1

2
/∈ Z, absurde.

Donc h est constante. On note n sa valeur : on a alors ∀x ∈ R, f (x) = g(x) + n.

7. Démontrer que si f ∈ X , alors pour tout (α, β) ∈ R2 vérifiant e2iπα = e2iπβ, on a
ϕf (α) = ϕf (β).

La question précédente permet de définir l’application Rf : U→ U, qui, à tout élément z = e2iπθ

de U associe e2iπf (θ). Cette quantité est indépendante du choix de θ (par la question précédente),
donc Rf est bien définie. On admet que Rf est bijective et que pour tout k dans Z, Rkf = Rf k .

8. Si α ∈ R, on note τα :

∣∣∣∣∣ R→ Rx 7→ x + α
. Vérifier rapidement que τα ∈ X , donner l’expression

de ϕτα et de Rτα .

Correction

τα est clairement bijective de R dans R, strictement croissante, et on a bien, pour tout
x , τα(x + 1) = τα(x) + 1.
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Ensuite,

ϕτα :

∣∣∣∣∣ R→ Ux 7→ e2iπ(x+α) = e2iπαe2iπx
,

donc

Rτα :

∣∣∣∣∣ U→ Uz 7→ e2iπαz
.

B. Existence du nombre de rotation
Dans cette partie, on fixe une fonction f dans X . On note, pour x dans R, ϕ(x) = f (x)− x .

9. Démontrer que ϕ est périodique, de période 1.

Correction

Soit x dans R. Alors ϕ(x+1) = f (x+1)−x−1 = f (x)+1−x−1 = f (x)−x = ϕ(x),
donc ϕ est 1-périodique.

10. Montrer que, pour tous x, y ∈ R,−1 < ϕ(y)− ϕ(x) < 1. On pourra d’abord traiter le cas
où x 6 y < x + 1.

Correction

Soient x et y dans R. Alors

ϕ(y)− ϕ(x) = f (y)− f (x)− y + x.

Dans le cas où x 6 y < x + 1, on sait déjà que f est strictement croissante donc
f (y)− f (x) > 0 et x − y > −1, donc ϕ(y)− ϕ(x)− y + x > −1 .
Ensuite, −y + x 6 0 et, comme y < x +1, f (y)− f (x) < f (x +1)− f (x) = 1. Ainsi,

ϕ(y)− ϕ(x)− y + x < 1 + 0 = 1.

Dans le cas où y est quelconque, on dispose de k dans Z tel que y + k ∈ [x, x + 1[.
Mais ϕ(y) = ϕ(y + k), on peut donc conclure.

11. Soit n ∈ N∗. Démontrer que la fonction ϕn : x 7→ f n(x)− x est périodique de période 1 et
justifier l’existence de Mn = sup

x∈R
f n(x)− x et de mn = inf

x∈R
f n(x)− x .

Correction

Comme, par la question 1., f n ∈ X , on en déduit, par la question précédente, que
ϕn : x 7→ f n(x) − x est 1-périodique. Étant continue sur le segment [0, 1], on en
déduit, par le théorème des bornes atteintes, que ϕn est bornée sur [0, 1] et y atteint
ses bornes. De plus, par 1-périodicité, ϕn(R) = ϕn([0, 1]), donc ϕn est bornée sur R
et atteint ses bornes, ce qui assure l’existence de mn et Mn.

12. Montrer que, pour tout n ∈ N∗, 0 6 Mn −mn < 1.
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Correction

Comme, pour tout n dans N∗, f n ∈ X , on peut appliquer la question 10. à ϕn et
obtenir que pour tous y et x , ϕ(y) − ϕ(x) ∈] − 1, 1[. Mais alors, si x et y sont tels
que mn = ϕn(x) et Mn = ϕn(y), on a 0 6 Mn −mn = ϕn(y)− ϕn(x) < 1 .

13. Montrer que pour tous n, p ∈ N∗, mn +mp 6 mn+p 6 Mn+p 6 Mn +Mp.

Correction

Soit (n, p) ∈ (N∗)2. Soit x0 tel que mn+p = f n+p(x0) − x0 (l’existence de ce x0 est
assurée par le théorème des bornes atteintes). Alors

mn+p = f
n+p(x0)− x0

= f n(f p(x0))− f p(x0) + f p(x0)− x0
= ϕn(f

p(x0))− ϕp(x0)

> mn +mp.

Ensuite, l’inégalité Mn+p 6 Mn +Mp se démontre symétriquement.
Enfin, l’inégalité mn+p 6 Mn+p vient simplement du fait que le minimum est inférieur
au maximum.

14. En déduire que pour tous k, n ∈ N∗,
mk
k
6
Mn

n
.

On pourra comparer mk et mkn.

Correction

Soit (k, n) ∈ (N∗)2. Alors on remarque que 2mn 6 m2n, et, par récurrence immédiate,

nmk 6 mnk . De même, Mnk 6 kMn, d’où nmk 6 kMn, c’est-à-dire que
mk
k
6
Mn

n
.

15. Déduire des questions 12. et 14. que sup
{mn
n
, n ∈ N∗

}
= inf

{
Mn

n
, n ∈ N∗

}
(on justifiera

brièvement l’existence de chacune des quantités).

Correction

Déjà, pour tout n dans N∗,
mn
n
6

M1
1
, donc A =

{mn
n
, n ∈ N∗

}
est une partie

de R, non vide, majorée : elle admet une borne supérieure . De même, inf(B), où

B =

{
Mn

n
, n ∈ N∗

}
, existe.

Ensuite, on note α = sup(A) et β = inf(B). On sait que pour tous k et n,

mk
k
6
Mn

n
.

À k fixé,
mk
k

est un minorant de B, donc
mk
k
6 β. Donc β majore A, donc α 6 β.

Ensuite, par la question 12., on sait que pour tout n dans N∗,

mn
n
>
Mn

n
−
1

n
.
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Mais
mn
n
6 α et

Mn

n
> β donc, pour tout n dans N∗, α > β −

1

n
. D’où, en passant

à la limite dans les inégalités larges, α > β.

On conclut donc que α = β.

On note ρ(f ) cette valeur commune et on l’appelle nombre de rotation de f .

16. Montrer que, pour tout n ∈ N∗, il existe xn ∈ R tel que f n (xn) = xn + nρ(f ).

Correction

Soit g : x 7→ f n(x)− x − nρ(f ). Alors g est continue sur R.

Son minimum est mn − nρ(f ) = n
(mn
n
− ρ(f )

)
6 0 , car ρ(f ) = sup(A). De même,

son maximum est Mn − nρ(f ) = n
(
Mn

n
− ρ(f )

)
> 0 car ρ(f ) = inf(B).

Ainsi, par le théorème des valeurs intermédiaires, g s’annule : on dispose de xn tel que
g(xn) = 0, i.e. f n(xn) = xn + nρ(f ).

17. En déduire que, pour tout x ∈ R et pour tout n ∈ N∗,−1 < f n(x) − x − nρ(f ) < 1. En

déduire que
f n(x)

n
→ ρ(f ), quand n → +∞.

Correction

Par la question 10 appliquée à ϕn, on sait que pour tous x et y ,

−1 < ϕn(x)− ϕn(y) < 1.

En prenant y = xn, on obtient exactement

−1 < f n(x)− x − nρ(f ) < 1,

ce qui est l’inégalité désirée.

En divisant par n et par théorème d’encadrement, on en déduit que
f n(x)− x

n
−→
n→+∞

ρ(f ), ou encore que
f n(x)

n
−→
n→+∞

ρ(f ) .

18. Expliquer, à l’aide de la fonction Rf , l’appellation « nombre de rotation » .

Correction

L’application Rf fait « tourner » un élément de U. Dans le cas où f = τα, c’est
clairement cela, Rf est la rotation d’angle α. Le nombre de rotation correspond à, en
moyenne, de combien Rf fait tourner un élément de U (par « en moyenne », on entend
la moyenne sur les itérés de Rf ).

C. Quelques propriétés de ρ
Soit f ∈ X .
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C-I. Généralités

19. Soit g dans X telle que g ◦ f = f ◦ g. Montrer que ρ(g ◦ f ) = ρ(g) + ρ(f ) et que pour tout
k ∈ Z, ρ

(
f k
)
= kρ(f ).

Correction

On sait, comme f ◦ g = g ◦ f , que pour tout n dans N, (f ◦ g)n = f n ◦ gn.
Par la question 17. appliquée en gn(x), on sait que

−1 < f n(gn(x))− gn(x)− nρ(f ) < 1,

d’où, en divisant par n,

−
1

n
<
(f ◦ g)n(x)

n
−
gn(x)

n
− ρ(f ) <

1

n
,

d’où, par passage à la limite dans les inégalités larges,

ρ(f ◦ g)− ρ(g)− ρ(f ) = 0,

d’où ρ(f ◦ g) = ρ(f ) + ρ(g) .
La deuxième relation se déduit par récurrence immédiate.

20. Montrer que ρ(f ) est nul si, et seulement si f a un point fixe.

Correction

Déjà, si ρ(f ) est nul, on sait qu’il existe x1 tel que f (x1) − x1 − 1 × ρ(f ) = 0, i.e.
f (x1) = x1 . Donc f admet un point fixe.
Ensuite, si f admet un point fixe x0, alors pour tout n dans N, f n(x0) = x0 et donc
f n(x0)

n
=
x0
n
−→
n→+∞

0 , donc ρ(f ) = 0 .

C-II. Cas rationnel

On dit que Rf a une orbite périodique s’il existe z ∈ U et k ∈ N∗ tel que Rkf (z) = z , i.e.
Rf k (z) = z .

21. Démontrer que si ρ(f ) ∈ Q, alors Rf a une orbite périodique.

Correction

Écrivons ρ(f ) =
p

q
, où (p, q) ∈ Z×N∗. Alors on sait que l’on dispose de xq ∈ R tel que

f q(xq)− xq − qρ(f ) = 0, c’est-à-dire que f q(xq)− xq = p . Mais alors, si z = e2iπxq ,
on a

Rqf (z) = e
2iπf (xq) = e2iπ(xq+p) = e2iπxq = z,

donc Rf admet une orbite périodique.

22. Établir la réciproque.
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Correction

Supposons que Rf admette une orbite périodique. Alors on dispose de zz dans U et
de k dans N∗ tel que Rf k (z) = z , i.e., si z = e2iπα,

e2iπf
k (α) = e2iπα,

donc on dispose de ` dans Z tel que f k(α) = α + `. On en déduit que, pour tout n
dans N,

f nk(α) = α+ n`,

d’où
f nk(α)

nk
=
α

n
+
`

k
,

et comme
(
f nk(α)

nk

)
n∈N∗

est une suite extraite de
(
f n(α)

n

)
n∈N∗

, on en déduit, en

faisant tendre n vers +∞, que

ρ(f ) =
`

k
∈ Q.

Épilogue. Si le DS ne portait que sur la continuité, j’aurais aussi poussé le devoir jusqu’à vous
faire démontrer que si ρ(f ) est irrationnel, alors f a une « orbite dense » et qu’il existe une bijection
continue h telle que h ◦ f = τρ(f ) ◦ h.
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Problème 2. Touchons du doigt la théorie de Galois
Le but de ce problème est de faire manipuler certaines notions qui sont à la base de ce qu’on
appelle aujourd’hui la théorie de Galois.

A. Automorphismes de corps
Soit K un sous-corps de C. (K,+,×) est donc un corps. On note Bij(K,K) l’ensemble des
bijections de K dans K. On rappelle que (Bij(K,K), ◦) est un groupe.
On note Aut(K) l’ensemble des automorphismes de corps de K, c’est-à-dire des morphismes de
corps de K dans K qui sont bijectifs.
Si L est un sous-corps de K, on note AutL(K) l’ensemble des automorphismes de K qui laissent
L invariant :

AutL(K) = {ϕ ∈ Aut(K), ∀x ∈ L, ϕ(x) = x}.

1. On définit ζ l’application de conjugaison : ∀z ∈ C, ζ(z) = z . Vérifier que ζ ∈ AutR(C).

Correction

Déjà, on vérifie que ζ est un morphisme de corps : soient z et z ′ dans C. Alors

1 = 1, z + z ′ = z + z ′ et z × z ′ = z × z ′.

De plus, la conjugaison est une involution, donc est bijective.
Enfin, si x ∈ R, x = x , donc R est invariant par la conjugaison.
On en déduit donc que ζ ∈ AutR(C).

2. Démontrer que AutR(C) = {IdC, ζ}.

Correction

Soit ϕ ∈ AutR(C). Alors si z ∈ C, on dispose de a et b dans R tels que z = a + ib.
Donc

ϕ(z) = ϕ(a) + ϕ(i)ϕ(b) = a + ϕ(i)b.

Or, i2 = −1, donc ϕ(i)2 = −1, donc ϕ(i) = ±i .
• si ϕ(i) = i , alors ϕ(z) = a + ib, donc ϕ = IdC
• si ϕ(i) = −i , alors ϕ(z) = a − ib, donc ϕ = ζ.

Ainsi, AutR(C) ⊂ {IdC, ζ}. Comme l’inclusion réciproque est évidente, le résultat est
démontré !

3. Démontrer que AutL(K) est un sous-groupe de (Bij(K,K), ◦).

Correction

Déjà, IdK est bien un automorphisme de corps de K qui préserve L.
Ensuite, soient ϕ et ψ deux éléments de AutL(K). Alors

• ϕ ◦ ψ est bien un morphisme de corps (on peut le vérifier mais on l’a déjà fait
pour les morphismes de groupes)

• si x ∈ L, ϕ ◦ ψ(x) = ϕ(ψ(x)) = ϕ(x) = x
Ainsi, ϕ ◦ ψ ∈ AutL(K).
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Dans cette partie, on considère ω ∈ K\L tel que ω2 ∈ L. On note L[ω] = {a+ωb, (a, b) ∈ L2}.
4. Démontrer que pour tout z dans L[ω], il existe un unique couple (a, b) ∈ L2 tel que
z = a + ωb.

Correction

Soit z ∈ L[ω]. L’existence du couple (a, b) est juste donnée par la définition de L[ω].
Pour l’unicité, soient (a, b, a′, b′) 4 éléments de L vérifiant a + ωb = a′ + ωb′. Si on
avait b 6= b′, alors on aurait

ω = (a − a′)(b − b′)−1 ∈ L,

ce qui est absurde. Donc b = b′ et, par conséquent, a = a′.
D’où l’unicité de l’écriture.

5. Démontrer que L[ω] est un sous-corps de K contenant L.

Correction

Déjà, si a ∈ L, a = a + 0.ω ∈ L[ω], donc L ⊂ L[ω].
Ensuite :

• 1 ∈ L donc 1 ∈ L[ω],
• si (x, y) ∈ L[ω]2, alors on dispose de (a, b, c, d) ∈ L4 vérifiant x = a + ωb et
y = c + ωd . Alors

x − y = (a − c) + ω(b − d) ∈ L[ω]

et
xy = (a + ωb)(c + ωd) = (ac + ω2bd) + ω(ad + bc).

Mais ω2 ∈ L, donc ac + ω2bd ∈ L, d’où xy ∈ L[ω].

• enfin, si x ∈ L[ω] \ {0}, alors x = a+ωb où (a, b) 6= (0, 0). De plus, a−ωb 6= 0.
On écrit alors,

x−1 =
1

a + ωb

=
a − ωb
a2 − ω2b2

=
a

a2 − ω2b2 −
b

a2 − ω2b2ω ∈ L[ω]

Donc L[ω] est un sous-corps de K.

6. Démontrer brièvement que AutL(L[ω]) contient deux éléments.

Correction

Soit ϕ ∈ AutL(L[ω]). Alors pour tous (a, b) dans L2,

ϕ(a + ωb) = ϕ(a) + ϕ(ω)ϕ(b) = a + ϕ(ω)b.

Mais ω2 ∈ L, donc
ϕ(ω)2 = ϕ(ω2) = ω2,
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donc ϕ(ω) = ±ω.
• si ϕ(ω) = ω, alors ϕ = IdL[ω].

• si ϕ(ω) = −ω, alors ϕ : a + ωb 7→ a − ωb.
Réciproquement, de telles applications sont dans AutK(ω).

7. Application. Démontrer que Q[i ] est un sous-corps de C, puis que (Q[i ])[
√
2] est lui aussi

un sous-corps de C. On notera ce corps Q[i ,
√
2].

Correction

On sait que i2 = −1 ∈ Q donc, d’après la question précédente, Q[i ] est un sous-corps
de C.
On sait que

√
2
2
= 2 ∈ Q donc, d’après la question précédente, Q[i ,

√
2] est un

sous-corps de C.

B. Extensions cyclotomiques

Dans cette partie, on note Un le groupe des racines de l’unité. On note ωn = e
2iπ
n , ce qui assure

que Un = {ωkn , k ∈ J0, n − 1K}. On note

Q[Un] =

{
n∑
k=0

αkω
k
n , (α0, . . . , αn−1) ∈ Qn

}
.

On admet que Q[Un] est un sous-corps de (C,+,×) (ce n’est pas du tout évident !). Le but de
cette partie est de comprendre la structure de AutQ(Q[Un]) pour certaines valeurs de n.

B-I. Le cas de U5

Afin d’alléger les notations, on note ξ = ω5 = e
2iπ
5 . On donne cos

2π

5
=

√
5− 1
4

.

8. Dessiner approximativement les ξk pour k allant de 0 à 4. Montrer sur le dessin quels sont
les éléments, parmi les ξk , qui sont conjugués.

Correction

Il suffit de dessiner un pentagone régulier ! On a, notamment ξ4 = ξ et ξ3 = ξ2.

On rappelle que

Q[U5] =

{
4∑
k=0

akξ
k , (a0, a1, a2, a3, a4) ∈ Q5

}
,

et que l’on a admis qu’il s’agissait d’un sous-corps de C.

9. Que vaut
4∑
k=0

ξk ? En déduire que

Q[U5] =

{
4∑
k=1

bkξ
k , (b1, b2, b3, b4) ∈ Q4

}
. (1)
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Correction

Notons A =

{
4∑
k=1

bkξ
k , (b1, b2, b3, b4) ∈ Q4

}
. Déjà, trivialement, A ⊂ Q[U5].

Ensuite, on sait que la somme des racines n-ièmes de l’unité est nulle (si n > 2). Donc
4∑
k=0

ξk = 0. Donc si x ∈ Q[U5],

x = a0+a1ξ+a2ξ
2+a3ξ

3+a4ξ
4 = (a1−a0)ξ+(a2−a0)ξ2+(a3−a0)ξ3+(a4−a0)ξ4 ∈ A,

d’où l’inclusion réciproque et l’égalité !

10. Démontrer que pour tous rationnels a, a′, b, b′, si a sin
2π

5
+b sin

4π

5
= a′ sin

2π

5
+b′ sin

4π

5
,

alors a = a′ et b = b′.

Correction

Soient a, a′, b, b′ quatre rationnels tels que a sin
2π

5
+ b sin

4π

5
= a′ sin

2π

5
+ b′ sin

4π

5
.

Alors
(a − a′) sin

2π

5
+ (b − b′) sin

4π

5
= 0,

donc
(a − a′) sin

2π

5
+ 2(b − b′) sin

2π

5
cos
2π

5
= 0,

donc
(a − a′) + 2(b − b′) cos

2π

5
= 0,

car sin
2π

5
6= 0. Donc, si b 6= b′, cos

2π

5
=

a − a′

2(b′ − b) ∈ Q, ce qui est absurde car

cos
2π

5
/∈ Q. Donc b = b′, puis a = a′.

On admet que pour tous rationnels a, a′, b, b′, si a cos
2π

5
+ b cos

4π

5
= a′ cos

2π

5
+ b′ cos

4π

5
,

alors a = a′ et b = b′.

11. Démontrer qu’une écriture sous la forme (1) est unique, c’est-à-dire que si (b1, . . . , b4, c1, . . . , c4)
sont huit rationnels tels que

4∑
k=1

bkξ
k =

4∑
k=1

ckξ
k ,

alors pour tout k dans J1, 4K, bk = ck .

Correction

Soient (b1, . . . , b4, c1, . . . , c4) sont huit rationnels tels que

4∑
k=1

bkξ
k =

4∑
k=1

ckξ
k ,

alors, par égalité des parties réelles et imaginaires, et comme ξ et ξ4 sont conjugués,
ainsi que ξ2 et ξ3,

(b1 + b4) cos
2π

5
+ (b2 + b3) cos

4π

5
= (c1 + c4) cos

2π

5
+ (c2 + c3) cos

4π

5
,
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donc b1 + b4 = c1 + c4 et b2 + b3 = c2 + c3. De même,

(b1 − b4) sin
2π

5
+ (b2 − b3) sin

4π

5
= (c1 − c4) sin

2π

5
+ (c2 − c3) sin

4π

5
,

donc b1 − b4 = c1 − c4 et b2 − b3 = c2 − c3. Donc en sommant les égalités avec b1 et
b4, on obtient b1 = c1, puis bi = ci pour tout i dans J1, 4K.

On définit σ sur J1, 4K par : pour tout k dans J1, 4K, σ(k) est le reste de la division euclidienne
de 2k par 5.

12. Vérifier que σ ∈ S4, représenter cette permutation sous la forme σ =
(
1 2 3 4

· · · · · · · · · · · ·

)
.

Préciser sa décomposition en cycles à supports disjoints et sa signature. Calculer σ2, σ3 et
σ4.

Correction

On remarque que σ =
(
1 2 3 4

2 4 1 3

)
. Ainsi, σ est le 4-cycle (1 2 4 3) . σ est donc

sa propre décomposition en cycles à supports disjoints, et ε(σ) = −1 . On a donc

σ2 = (1 4) ◦ (2 3), σ3 = (1 3 4 2) et σ4 = IdJ1,4K.

On définit alors ϕ sur Q[U5] par : ∀(b1, b2, b3, b4) ∈ Q4,

ϕ(b1ξ + b2ξ
2 + b3ξ

3 + b4ξ
4) = b1ξ

σ(1) + b2ξ
σ(2) + b3ξ

σ(3) + b4ξ
σ(4).

13. Quelle est l’utilité de la question 11. ?

Correction

Si l’écriture d’un élément de Q[U5] sous la forme
4∑
k=1

bkξ
k n’était pas unique, alors

deux écritures d’un même x pourraient aboutir à deux valeurs différentes de ϕ(x).

14. Démontrer que pour tout k dans N , pour tout λ dans Q, ϕ(λξk) = λξ2k .

Correction

Déjà, pour k = 0,

ϕ(λ) = ϕ(−λξ − λξ2 − λξ3 − λξ4) = −λξ2 − λξ4 − λξ − λξ3 = λ.

Ensuite, pour k ∈ J1, 4K, σ(k) est le reste de la division euclidienne de 2k par 5 :
2k = 5q + σ(k), donc ξ2k = ξ5q+σ(k) = ξσ(k) car ξ5 = 1.
Enfin, si k > 5, on note ` le reste de la division euclidienne de k par 5. On a alors
λξk = λξ`, donc

ϕ(λξk) = ϕ(λξ`) = λξσ(`) = λξ2` = λξ2k ,

car 2k ≡ 2`[5].
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15. Démontrer que ϕ est dans AutQ(U5).

Correction

On a démontré dans la question précédente que pour tout λ dans Q, ϕ(λ) = λ.

Soient x et y dans Q[U5], x =
4∑
k=1

akξ
k et y =

4∑
k=1

bkξ
k . Alors, déjà,

ϕ(x + y) = ϕ

(
4∑
k=1

(ak + bk)ξ
k

)

=

4∑
k=1

(ak + bk)ξ
σ(k)

=

4∑
k=1

akξ
σ(k) +

4∑
k=1

bkξ
σ(k)

= ϕ(x) + ϕ(y).

Ensuite,

ϕ(xy) = ϕ

(
4∑
k=1

4∑
`=1

akb`ξ
k+`

)

=

4∑
k=1

4∑
`=1

ϕ(akb`ξ
k+`) par additivité.

=

4∑
k=1

4∑
`=1

b`ξ
2(k+`) par la question précédente.

=

(
4∑
k=1

akξ
2k

)(
4∑
k=1

bkξ
2k

)
= ϕ(x)ϕ(y).

Enfin, ϕ est bien bijectif, de bijection réciproque définie par

ϕ

(
4∑
k=1

akξ
k

)
=

4∑
k=1

akξ
σ−1(k).

On en déduit que ϕ ∈ AutQ(Q[U5]).

Réciproquement, soit ψ dans AutQ(U5).
16. En distinguant selon les valeurs de ψ(ξ), démontrer qu’il existe k dans J0, 3K tel que ψ =

ϕk .

Correction

On sait que ψ(ξ)5 = ψ(ξ5) = ψ(1) = 1, donc ψ(ξ) ∈ U5. De plus, ψ(ξ) 6= 1 car,
sinon, ψ(ξ) = ψ(ξ2), donc ψ n’est pas un automorphisme. Ensuite,

ψ

(
4∑
k=1

akξ
k

)
=

4∑
k=1

ψ(ak)ψ(ξ
k) =

4∑
k=1

ψ(ak)ξ
k ,
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car ψ est un automorphisme de corps. On distingue alors :

• Si ψ(ξ) = ξ, ψ = IdQ[U5] = ϕ
0.

• Si ψ(ξ) = ξ2, alors ψ(ξ2) = ξ4, ψ(ξ3) = ξ6 = ξ, ψ(ξ4) = ξ3, donc ψ = ϕ,

• Si ψ(ξ) = ξ3, ψ(ξ2) = ξ6 = ξ, ψ(ξ3) = ξ9 = ξ4 et ψ(ξ4) = ξ12 = ξ2. On
remarque alors que

ψ

(
4∑
k=1

akξ
k

)
=

4∑
k=1

akξ
σ−1(k) =

4∑
k=1

akξ
σ3(k) = ϕ3

(
4∑
k=1

akξ
k

)

• Enfin, si ψ(ξ) = ξ4, ψ = ϕ2.

D’où le résultat !

17. Conclure que AutQ(Q[U5]) est un groupe à 4 éléments, isomorphe à U4.

Correction

On en déduit que AutQ(Q[U5]) = {IdQ[U5], ϕ, ϕ2, ϕ3}. C’est un groupe par la question
2, et en posant

f :

∣∣∣∣∣ AutQ(Q[U5])→ U4ϕk 7→ ik
,

on définit un isomorphisme entre AutQ(Q[U5]) et U4.

B-II. Le cas de U8

On admet toujours que Q[U8] est un sous-corps de C.

18. Que vaut ω8 ? Donner notamment sa forme algébrique.

Correction

On sait que ω8 = e
2iπ
8 = e

iπ
4 =

√
2

2
+

√
2

2
i .

19. Démontrer que
√
2 et i sont dans Q[U8], puis que Q[i ,

√
2] ⊂ Q[U8].

Correction

Déjà, ω8 ∈ Q[U8] et ω78 ∈ Q[U8], donc

ω8 + ω
7
8 ∈ Q[U8], i.e.

√
2 ∈ Q[U8].

Ensuite, comme (ω8,
√
2) ∈ Q[U8]2,

√
2ω8 ∈ Q[U8], donc 1+ i ∈ Q[U8], d’où, comme

1 ∈ Q ⊂ Q[U8], i ∈ Q[U8].
Le fait que

√
2 soit dans Q[U8] et que Q[U8] soit un corps assure que Q[

√
2] ⊂ Q[U8].

Mais comme i est aussi dans Q[U8], tous les a + ib, avec (a, b) dans Q[
√
2] sont

dans Q[U8]. Ceci assure que

Q[
√
2][i ] ⊂ Q[U8], i.e. Q[i ,

√
2] ⊂ Q[U8].
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20. Conclure que Q[U8] = Q[i ,
√
2].

Correction

On doit remarquer que

Q[i ,
√
2] = {a + b

√
2 + ci + di

√
2, (a, b, c, d) ∈ Q4}.

Une fois que l’on a remarqué cela, on remarque enfin que les éléments de U8 sont

±1, ±i , ±
√
2

2
±
√
2

2
i ,

qui sont tous des éléments de Q[i ,
√
2]. Ainsi, Q[i ,

√
2] étant un corps, alors pour

tous (a0, . . . , a7) ∈ Q8, on a
7∑
k=0

akω
k
8 ∈ Q[i ,

√
2].

D’où l’inclusion réciproque et l’égalité.

21. Démontrer enfin que AutQ(Q[U8]) = {Id, α, β, γ} où α2 = β2 = γ2 = Id. Ce groupe est-il
isomorphe à AutQ(U5) ?

Correction

Soit ψ dans AutQ(U5). Alors ψ(i)2 = ψ(i)2 = −1, donc ψ(i) = ±1. De même,

ψ(
√
2)2 = ψ(

√
2
2
) = ψ(2) = 2, donc ψ(2) = ±

√
2. On a donc 4 possibilités :

(a) ψ(i) = i et ψ(
√
2) =

√
2. Mais alors ψ(a+ ib+

√
2c + i

√
2d) = a+ ib+

√
2c +

i
√
2d , donc ψ = IdQ[i ,√2]).

(b) ψ(i) = −i et ψ(
√
2) =

√
2. Alors

ψ(a + ib + c
√
2 + i

√
2d) = a − ib + c

√
2− i

√
2d.

On vérifie facilement (un peu comme ϕ de la partie U5) que l’on définit alors un
élément de AutQ(Q[i ,

√
2]), nommons-le α. On voit aussi que α2 = IdQ[i ,√2]).

(c) ψ(i) = i et ψ(
√
2) = −

√
2. On définit un troisième automorphisme que l’on note

β, vérifiant aussi β2 = IdQ[i ,√2]).

(d) ψ(i) = −i et ψ(
√
2) = −

√
2. On définit un quatrième automorphisme γ vérifiant

γ2 = IdQ[i ,√2]) et, aussi α ◦ β = β ◦ α = γ.
On a alors un groupe à 4 éléments. Il n’est pas isomorphe à U4 car il n’est pas cy-
clique. Il est, en fait, isomorphe à {−1, 1}2, ou bien au sous-groupe de S4 défini par
{Id, (1 2), (3 4), (1 2) ◦ (3 4)}. Cette dernière description du groupe permet de voir
ce groupe comme un groupe de permutation des racines : on permute éventuellement
i et −i , ou

√
2 et −

√
2.

Page 16 sur 16


	Nombre de rotation d'un homéomorphisme du cercle
	Étude d'un ensemble de fonctions
	Existence du nombre de rotation
	Quelques propriétés de 
	Généralités
	Cas rationnel


	Touchons du doigt la théorie de Galois
	Automorphismes de corps
	Extensions cyclotomiques
	Le cas de U5
	Le cas de U8



