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Dérivabilité

1 Exercices corrigés en classe

Exercice 1.  G## Soit f :

∣∣∣∣∣∣∣∣
R→ R

x 7→

{
0 si x 6 0

e−
1
x si x > 0.

1. Montrer que f est C∞ sur R∗ et que : ∀n ∈ N, il existe un polynôme Pn tel que ∀x > 0,

f (n)(x) = e−
1
x Pn

(
1

x

)
.

2. En déduire que f est de classe C∞ sur R.

Exercice 2. Théorème de Rolle à l’infini .  G## Soit f : [0,+∞[→ R une fonction continue,
dérivable sur ]0,+∞[ et telle que f (0) = lim

+∞
f = 0. On souhaite démontrer qu’il existe c ∈]0,+∞[

tel que f ′(c) = 0.

1. Démontrer que le résultat est trivial si f est constante.

On suppose désormais que f n’est pas constante sur R. Sans perte de généralité, on peut supposer
que l’on dispose de c > 0 tel que f (c) > 0.

2. Démontrer qu’il existe a ∈]0, c[ et b ∈]c,+∞[ tel que f (a) = f (b).

3. Conclure

Exercice 3. Polynômes de Legendre.   # Soit n dans N∗. On définit, pour tout x dans R,
Pn(x) = (x2 − 1)n.

1. Démontrer que pour tout k 6 n − 1, P (k)n s’annule en −1 et en 1.

Correction

Écrivons Pn(x) = (x − 1)n(x + 1)n = fngn. Alors, par la formule de Leibniz, pour tout
k , pour tout x dans R.

P (k)n =

k∑
j=0

(
k

j

)
f (j)n (x)g(k−j)n (x).

Mais, si j ∈ J0, kK, f (j)n (x) =
n!

(n − j)!
(x − 1)n−j , qui s’annule en 1, et g(k−j)n (x) =

n!

(k − j)!
(x + 1)n−k+j , qui s’annule en −1. Donc P (k)n s’annule en −1 et en 1.

2. Démontrer que pour tout k 6 n, P (k)n s’annule k fois sur ]− 1, 1[.

Correction

Démontrons le résultat par récurrence sur k .
Initialisation. P (0)n = Pn s’annule en −1 et en 1.
Hérédité. Supposons que, pour un certain k 6 n − 1, P (k)n s’annule en k points sur
] − 1, 1[, nommons ces points x1, . . . , xk . Alors, pour tout i dans J1, k − 1K, P (k)n est
continue sur [xi , xi+1], dérivable sur ]xi , xi+1[, s’annule en xi et en xi+1 donc, d’après le
théorème de Rolle, P (k+1)n s’annule sur ]xi , xi+1[. Donc P k+1n s’annule en k − 1 points
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de ]− 1, 1[.
De plus, P (k)n s’annule en −1 et en 1, donc, en appliquant le théorème de Rolle entre
−1 et x1 puis entre xk et 1, on obtient deux zéros supplémentaires de P (k+1)n .
Donc P (k+1)n s’annule k + 1 fois, d’où l’hérédité et le résultat !

Exercice 4.  ## Soit a > 0. Déterminer, en utilisant le théorème des accroissements finis, la
limite

lim
n→+∞

n2(Arctan(n + a)− Arctan(n)).

Exercice 5. La règle de L’Hôpital .   #

1. Soit f et g deux fonctions continues sur [a, b] et dérivables sur ]a, b[. Montrer qu’il existe
c ∈]a, b[ tel que

(f (b)− f (a))g′(c) = (g(b)− g(a))f ′(c).

Correction

Il s’agit de ce que l’on appelle la formule des « accroissements finis généralisés » . On
va donc la démontrer de manière similaire au TAF. Considérons la fonction h définie
sur [a, b] par

h(x) = (f (b)− f (a))g(x)− (g(b)− g(a))f (x).

Alors h est continue sur [a, b], dérivable sur ]a, b[, et

h(a) = (f (b)− f (a))g(a)− (g(b)− g(a))f (a) = f (b)g(a)− g(b)f (a),

h(b) = (f (b)− f (a))g(b)− (g(b)− g(a))f (b) = −f (a)g(b) + g(a)f (b) = h(a).

Donc d’après le théorème de Rolle, il existe un réel c de ]a, b[ tel que h′(c) = 0, i.e.
tel que

(f (b)− f (a))g′(c)− (g(b)− g(a))f ′(c) = 0,

i.e.
(f (b)− f (a))g′(c) = (g(b)− g(a))f ′(c).

2. Soit f et g deux fonctions dérivables sur un intervalle I non vide et non réduit à un point et
x0 une extrémité (finie ou non) de I. On suppose que f et g tendent vers 0 en x0 et que g
et g′ ne s’annulent pas sur I\{x0}. Soit ` ∈ R. Prouver l’implication(

lim
x→x0

f ′(x)

g′(x)
= `

)
=⇒

(
lim
x→x0

f (x)

g(x)
= `

)
.

Correction

Il faut distinguer deux cas : le cas où x0 ∈ R, et le cas où cette borne est infinie.

• Cas où x0 ∈ R. Quitte à remplacer f et g par leur prolongement par continuité en
x0, on peut supposer f et g définies, continues, et s’annulant en x0. En appliquant
le théorème des accroissements finis généralisé entre x0 et x 6= x0, on obtient
l’existence de cx entre x0 et x tel que

f (x)− f (x0)

g(x)− g(x0)
=
f ′(cx)

g′(cx)
,
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i.e.
f (x)

g(x)
=
f ′(cx)

g′(cx)
.

Or, par encadrement, lim
x→x0

cx = x0, donc en composant les limites, lim
x→x0

f ′(cx)

g′(cx)
=

`. Donc
f (x)

g(x)
converge et lim

x→x0

f (x)

g(x)
= `.

• Cas où x0 = +∞. Posons alors deux fonctions F et G, définies sur un voisinage

épointé à droite 0 par F (x) = f

(
1

x

)
et G(x) = g

(
1

x

)
. Alors f et g vérifient

les hypothèses du résultat précédent, et

F ′(x)

G′(x)
=
− 1x2 f

′ ( 1
x

)
− 1x2 g′

(
1
x

) =
f ′
(
1
x

)
g′
(
1
x

) −→
x→0+

`.

On en déduit donc le résultat pour x0 = +∞ !

3. Retrouver comme cas particulier le théorème de la limite de la dérivée vu en cours.

Correction

On retrouve le résultat en prenant g(x) = x !

4. Appliquer ce résultat aux calculs des limites suivantes

(a) lim
x→e

√
x −
√
e

ln x − 1
(b) lim

x→0

ax − bx

cx − dx (c 6= d),

(c) lim
x→1

sin x − sin
1

x
ex − e1/x

(d) lim
x→0

(
1

sin2 x
−

1

x2

)
Correction

Applications (on ne réécrit pas à chaque fois que les fonctions vérifient les hypothèses
de la règle de l’Hôpital mais c’est important de les vérifier : est important le fait que
g′ soit de signe constant autour de x0. En effet, si

f (x) = x + cos(x) sin(x) et g(x) = esin(x)(x + cos(x) sin(x))

alors

f ′(x) = 2 cos2(x) et g′(x) = esin(x) cos(x)(x + sin(x) cos(x) + 2 cos(x))

donc

lim
x→+∞

f ′(x)

g′(x)
= lim

x→+∞

2 cos(x)

esin(x)(x + sin(x) cos(x) + 2 cos(x))
= 0,

mais
f (x)

g(x)
=

1

esin(x)
n’admet pas de limite en +∞ !)

(a) lim
x→e

√
x −
√

e

ln x − 1
= lim

x→e

1√
x

1
x

=
√

e

(b) lim
x→0

ax − bx

cx − dx = lim
x→0

ln(a)ax − ln(b)bx

ln(c)cx − ln(d)dx
=

ln
(
a
b

)
ln
(
c
d

)
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(c) lim
x→1

sin x − sin
1

x
ex − e1/x

= lim
x→1

cos x + 1
x2 cos

1

x
ex + 1

x2 e1/x
=

cos(1)

e

Stratégie :

• Il faut pouvoir calculer des dérivées : les exercices 6 et 7 servent à cela.

• Il faut pouvoir étudier des dérivabilités : les exercices 10, 11, 12 (prolongement de 12)
sont dédiés à cela.

• Deux exercices s’appuient sur la dérivée comme développement limité à l’ordre 1 :
l’exercice 8, assez simple, et l’exercice 15, beaucoup plus complexe.

• Des applications du théorème de Rolle : quelques très classiques comme 16 ou . Les
exercices 17, 18 et 19 sont ussi des applications très faisables de Rolle.

• Des applications du TAF : outre 4, les exercices 21 et 22 sont assez importants. 23 est
une variation.

• Quelques autres exercices intéressants comme 24 et surtout 25.

Minimum requis : exercice 6 ((a) et (d)), exercice 7 ((a) et (b)), exercice 12 si jamais le
1 a mal été compris, exercice 16 et 3, exercice 21.

2 Dérivabilité et définition de la dérivée – classe C n – limite
de la dérivée

Exercice 6. G###

Dériver les fonctions suivantes

1. f : x 7→ e−
1

x2 2. g : x 7→ 3

√
sin

(
x + 1

x + 2
π

)
3. h : x 7→ ln

(
x2 − 3x + 2

x2 + x

)
4. k : x 7→

√
tan(x).

Correction

1. f ′ : x 7→
2

x3
e−

1

x2

2. g′ : x 7→
1

3

(
sin

(
x + 1

x + 2
π

))− 2
3

× cos

(
x + 1

x + 2
π

)
×

π

(x + 2)2
.

3. h′ : x 7→
4x2 − 4x − 2

x(x + 1)(x2 − 3x + 2)
. 4. k ′ : x 7→

1 + tan2(x)

2
√

tan(x)
.

Exercice 7.  ##

Calculer les dérivées n-ièmes des fonctions suivantes
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1. f : x 7→ ax (a > 0) 2. g : x 7→ xex

3. h : x 7→
x2 + 1

x2 − 1
4. k : x 7→ ex

√
3 cos(x)

Correction

1. On montre par récurrence, et en utilisant que ax = ex ln(a), que pour tout n, f (n) : x 7→
(ln(a))nax .

2. On montre, en utilisant la formule de Leibniz, ou par récurrence que, pour tout n,
f (n) : x 7→ nex + xex .

3. Écrivons

h(x) =
x2 + 1

x2 − 1
=
x2 − 1 + 2

x2 − 1
= 1 +

2

x2 − 1
= 1 +

1

x − 1
−

1

x + 1
,

donc si n > 0,

h(n)(x) = (−1)nn!

(
1

(x − 1)n
−

1

(x + 1)n

)
.

4. Écrivons cos(x) =
eix + e−ix

2
. Alors pour tout réel x ,

k(x) =
1

2

(
ex(
√
3+i) + ex(

√
3−i)
)
,

donc
k(n) =

1

2

(
(
√

3 + i)nex(
√
3+i) + (

√
3− i)nex(

√
3−i)
)
.

Or,
(
√

3 + i)n = 2nein
π
6 et (

√
3− i)n = 2ne−in

π
6 ,

donc

k(n)(x) = 2ne
√
3x ei(x+n

π
6 ) + e−i(x+n

π
6 )

2
= 2ne

√
3x cos

(
x + n

π

6

)
.

Exercice 8. Démontrer que les courbes d’équation y = x2 et y =
1

x
admettent une unique

tangente commune.
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Correction

Nommons f1 : x 7→ x2 et f2 : x 7→
1

x
, C1 et C2 leurs courbes respectives.

Soit a dans R. La tangente à C1 en a a pour équation y = a2 + 2a(x − a) = 2ax − a2.
Soit b dans R∗. La tangente à C2 en b a pour équation y =

1

b
−
x − b
b2

=
2

b
−
x

b2
.

Ces deux droites coïncident si et seulement si
2a = −

1

b2

−a2 =
2

b

Ce système n’est pas linéaire, on peut substituer... La première équation étant a =
−1

2b2
, la

seconde devient −
1

4b4
=

2

b
, i.e. b3 = −

1

8
, i.e. b = −

1

2
, et donc a = −2. Réciproquement

(−2,−1/2) est bien solution.
Donc C1 et C2 ont une unique tangente commune, c’est la droite y = −4x − 4.

Exercice 9. G###
Que dire de la dérivée d’une fonction paire ? d’une fonction impaire ? d’une fonction pério-
dique ?

Correction
Soit f : R→ R dérivable.

1. si f est paire alors pour tout x réel, f (−x) = f (x) donc −f ′(−x) = f ′(x) donc
f ′(−x) = −f (x) donc f ′ est impaire.

2. si f est impaire alors pour tout x réel, f (−x) = −f (x) donc −f ′(−x) = −f ′(x) donc
f ′(−x) = f (x) donc f ′ est paire.

3. si f est périodique, on dispose de T > 0 tel que pour tout x de R, f (x + T ) = f (x),
donc f ′(x + T ) = f (x), donc f ′ est aussi T -périodique.

Exercice 10.  ##

Étudier la dérivabilité des fonctions suivantes

1. f : x 7→ cos(
√
x) 2. g : x 7→


(x − 1)2 si x 6 1,

(x − 1)3 si x > 1.

3. h : x 7→ x |x | 4. k : x 7→
|x |

1 + |x − 1|

Correction

1. La fonction f est continue sur R+ par les théorèmes généraux, et, de même, elle est

dérivable sur R∗+. Pour tout x > 0, f ′ : x 7→ −
1

2

sin(
√
x)√
x

. Or,
sin(
√
x√

x
−→
x→0

1, donc

f ′(x) −→
x→0

1 donc, par le théorème de la limite de la dérivée, f est dérivable en 0 de

dérivée égale à −
1

2
.

2. g est continue sur R (notamment en 1, car les limites à gauche et à droite de g

coïncident), dérivable sur R \ {1} et g′ : x 7→

{
2(x − 1) si x < 1,

3(x − 1)2 si x < 1.
Donc g′(x) −→

x→1
0,
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donc, par le théorème de la limite de la dérivée, g est dérivable en 1 de dérivée égale
à 0.

3. h est dérivable en tout réel non nul par les théorèmes généraux. Montrons qu’elle est

dérivable en 0 : pour tout x réel,
h(x)− h(0)

x − 0
= |x | −→

x→∞
0. Donc h est dérivable en 0.

4. k est dérivable en tout réel différent de 0 et 1 par les théorèmes généraux.
Étude en 0. Pour tout réel x ,

k(x)− k(0)

x − 0
=

|x |
1+|x−1|

x
=

sgn(x)

1 + |x − 1| ,

n’a pas de limite quand x tend vers 0. Donc k n’est pas dérivable en 0.
Étude en 1. Pour tout réel x ,

k(x)− k(1)

x − 1
=

|x |
1+|x−1| − 1

x − 1
=
|x | − 1− |x − 1|

(1 + |x − 1|)(x − 1)
.

Si x > 1,
|x | − 1− |x − 1|

(1 + |x − 1|)(x − 1)
=

x − 1− (x − 1)

(1 + x − 1)(x − 1)
= 0.

Si 0 < x < 1,

|x | − 1− |x − 1|
(1 + |x − 1|)(x − 1)

=
x − 1− (1− x)

(1 + 1− x |)(x − 1)
=

2

2− x ,

donc
k(x)− k(1)

x − 1
n’admet pas les mêmes limites à gauche et à droite en 1, donc k

n’est pas dérivable en 1.

Exercice 11.  G##

1. À quelle condition la valeur absolue d’une fonction dérivable sur R est-elle dérivable ?

Correction

Soit f : R→ R dérivable. Montrons que |f | est dérivable si et seulement si

∀a ∈ R, f (a) = 0⇒ f ′(a) = 0.

On montre le sens réciproque :
Soit a ∈ R.
Déjà, si a est dans R tel que f (a) 6= 0, comme f est dérivable, elle est continue et on
dispose de η > 0 tel que f ne s’annule pas et reste de signe constant sur [a−η, a+η].
Donc sur cet intervalle, f est du signe de f (a). Si f (a) > 0, ∀x ∈ [a−η, a+η], |f (x)| =

f (x), dérivable, donc dérivable en a. Si f (a) < 0, ∀x ∈ [a − η, a + η], |f (x)| = −f (x),
dérivable, donc dérivable en a.
Maintenant, si f (a) = 0, alors f ′(a) = 0, donc on dispose de ε qui tend vers 0 quand
x tend vers a telle que pour tout x dans R,

f (x) = 0 + 0× (x − a) + ε(x)× (x − a),

donc |f (x)| = |ε(x)||x − a| = (x − a)|ε(x)||η(x)|, avec η(x) = 1 si x − a > 0 et −1 si
x − a < 0. Donc |ε(x)||η(x)| −→

x→a
0, donc |f | est dérivable en a de dérivée nulle !

Sens direct : on montre la contraposée :
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Supposons que |f | est dérivable sur R. Soit a tel que f (a) = 0. Comme |f | est toujours
positive, a est alors un minimum local de |f | atteint à l’intérieur de l’intervalle considéré
(on s’est placé sur R), donc |f |′(a) = 0. On dispose alors de ε : R → R tel que
ε(x) −→

x→a
0 et que pour tout x dans R,

|f (x)| = (x − a)ε(x).

Mais alors si on prend η la fonction égale au signe de f (et nulle quand f est nulle), on a
pour tout x dans R, f (x) = (x−a)ε(x)η(x), avec, comme η est bornée, ε(x)η(x) −→

x→a
0. Donc f ′(a) = 0. D’où le résultat !

2. À quelle condition le maximum de deux fonctions dérivables sur R est-il dérivable ?

Correction

Soient f et g deux fonctions dérivables de R dans R. Alors max(f , g) =
f + g + |f − g|

2
,

donc max(f , g) est dérivable ssi |f − g| est dérivable, donc ssi

∀a ∈ R, f (a) = g(a)⇒ f ′(a) = g′(a).

Exercice 12.   # Soit f définie de R dans R par

∀x ∈ R, f (x) =

{
e
− 1

1−x2 si |x | < 1,

0 si |x | > 1.

Montrer que f est de classe C∞ sur R, et représenter le graphe de f .

Correction

On remarque que si on pose g : x 7→

{
e

1
2(x−1) si x < 1,

0 si x > 1.
et h : x 7→{

e−
1

2(x+1) si x > −1,

0 si x 6 −1.
, alors f = gh. Or on a démontré en cours, par récurrence, le

caractère C∞ de k : x 7→
{

e−
1
x si > 0,

0 si x 6 0.
, d’où celui de g et h et celui de f . On obtient

une fonction C∞ à support inclus dans un segment (i.e. nulle en-dehors de [0, 1])

Exercice 13.   G# Soit f une fonction de classe C2 sur R telle que f ′(0) = 0.
Montrer qu’il existe une fonction g de classe C1 sur R telle que pour tout réel x positif on ait
f (x) = g

(
x2
)
.

Exercice 14.   # Soit, pour λ et µ dans R, ϕλ,µ : x 7→ ex + λe−x + µx . Déterminer une CNS
sur λ et µ pour que ϕλ,µ soit une bijection de R sur R dont la bijection réciproque est C1.

Correction
Condition nécessaire. On suppose que λ et µ sont choisis de sorte que ϕλ,µ soit une bijection
C 1 de bijection réciproque C 1. Alors

• ϕλ,µ est strictement monotone. Or, pour tout x dans R,

ϕ′λ,µ(x) = ex − λe−x + µ.
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— Si λ > 0, alors ϕ′λ,µ(x) −→
x→+∞

+∞ et ϕ′λ,µ(x) −→
x→−∞

−∞, donc ϕ′λ,µ change

strictement de signe, donc ϕλ,µ change strictement de variations. C’est absurde !

— Si λ = 0, alors ϕ′λ,µ : x 7→ ex + µ, qui change strictement de signe dès lors que

µ < 0. Donc, nécessairement, si λ = 0, µ > 0 .

— Si λ < 0, écrivons λ = −ξ, alors on étudie le signe de ϕ′λ,µ, en étudiant ses
variations. Pour tout x dans R,

ϕ′′λ,µ(x) = ex + λe−x .

Alors on a les équivalences suivantes :

ϕ′′λ,µ(x) > 0⇔ ex > −λe−x ⇔ e2x > ξ⇔ x >
1

2
ln(ξ).

Le minimum de ϕ′λ,µ est donc atteint en
1

2
ln(ξ), et il vaut alors

ϕ′λ,µ

(
1

2
ln(ξ)

)
= e

1
2
ln(ξ) − λe−

1
2
ln(ξ) + µ =

√
ξ −

1√
ξ

+ µ =
ξ − 1 + µ

√
ξ√

ξ
.

On étudie alors le polynôme X2 + µX − 1 : son signe donnera la relation devant
être vérifiée entre µ et ξ. Le discriminant du polynôme est µ2+ 4 > 0, d’où deux

racines :
−µ±

√
µ2 + 4

2
. Donc si λ < 0, le minimum de ϕ′λ,µ est atteint en un

réel positif (ou nul) si et seulement si

√
ξ /∈

]
−µ−

√
µ2 + 4

2
,
−µ+

√
µ2 + 4

2

[
,

mais, comme ξ > 0, la condition se réécrit
√
ξ >

−µ+
√
µ2 + 4

2
, ou encore

ξ >
(−µ+

√
µ2 + 4)2

4
, ou encore

λ 6 −
(−µ+

√
µ2 + 4)2

4

Exercice 15.   G#

1. Soit f dérivable en 0. Montrer que lim
n→+∞

n∑
k=0

f

(
k

n2

)
. existe et la déterminer (on reviendra

à la définition de la dérivabilité en termes de développement limité).

Correction

f est dérivable en 0 donc on dispose d’une fonction ε tendant vers 0 en 0 et d’un
voisinage V de 0 tels que

∀x ∈ V, f (x) = f (0) + f ′(0)x + xε(x).

Or, pour tout k dans {0, . . . , n},
k

n2
6

1

n
−→
+∞

0, donc, pour n assez grand, 0,
1

n2
, . . . ,

1

n
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sont dans V . Donc

n∑
k=0

f

(
k

n2

)
=

n∑
k=0

[
f (0) + f ′(0)

(
k

n2

)(
1 + ε

(
k

n2

))]
On va supposer ici f (0) = 0 (sinon la limite sera infinie). Donc

n∑
k=0

f

(
k

n2

)
= f ′(0)

n∑
k=0

k

n2

(
1 + ε

(
k

n2

))
.

Nommons εn le maximum de |ε| sur
[

0,
1

n

]
. Afin de manipuler les inégalités, supposons

f ′(0) > 0. On en déduit que

f ′(0)

n∑
k=0

k

n2
(1− εn) 6

n∑
k=0

f

(
k

n2

)
6 f ′(0)

n∑
k=0

k

n2
(1 + εn) ,

i.e.

f ′(0)
n(n + 1)

2n2
(1− εn) 6

n∑
k=0

f

(
k

n2

)
6 f ′(0)

n(n + 1)

2n2
(1 + εn) ,

En faisant tendre n vers +∞, on en déduit, par encadrement, que
n∑
k=0

f

(
k

n2

)
converge

vers
f ′(0)

2
.

2. Application : montrer que
n∏
k=0

(
1 +

k

n2

)
admet une limite lorsque n tend vers +∞ et

déterminer cette limite.

Correction

Posons Pn =

n∏
k=0

(
1 +

k

n2

)
et Sn = ln(Pn). Alors Sn =

n∑
k=0

ln

(
1 +

k

n2

)
. Donc Sn

converge vers la dérivée en 0 de x 7→ ln(1 + x), i.e. vers
1

2
.

3 Théorèmes globaux

3.1 Théorème de Rolle
Exercice 16.  G## Montrer que pour tout n dans N, pour toute f : [0, 1] → R, si f est n fois
dérivable sur [0, 1] et si f s’annule au moins n+ 1 fois sur [0, 1], alors f (n) s’annule au moins une
fois sur [0, 1].

Correction
Soit n dans N∗. Soit f dérivable n fois sur [0, 1], a0 < a1 < · · · < an les points d’annulation
de f . On montre par récurrence sur k 6 n que f (k) s’annule n + 1− k fois sur [0, 1].
L’initialisation est donnée par l’exercice.
Hérédité. On suppose que f (k) s’annule n + 1− k fois sur [0, 1] pour un certain k 6 n − 1.
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Soient b0 < · · · < bn−k ces points d’annulation. Alors pour tout i dans J0, n − k − 1K, f (k)

est continue sur [bi , bi+1], dérivable sur ]bi , bi+1[ et f (k)(bi) = f (k)(bi+1) donc, d’après le
théorème de Rolle, on dispose de ci dans ]bi , bi+1[ tel que f (k+1)(ci) s’annule. On a donc
trouvé n + 1− (k + 1) points b0 < c0 < b1 < · · · < cn−k−1 < bn−k d’annulation de f (k+1).
D’où l’hérédité et le résultat par récurrence, en particulier pour k = n.

Exercice 17.   #
Soit P un polynôme. Montrer que l’équation P (x) = ex n’admet qu’un nombre fini de solutions
sur R.

Correction
Soit n le degré de P . Supposons que f : x 7→ ex − P (x) s’annule au moins n + 2 fois sur
R. Alors, par l’exercice 16, la dérivée n + 1-ième de f s’annule au moins une fois sur R. Or
la dérivée n + 1-ième de P est nulle, donc x 7→ ex s’annule au moins une fois sur R, c’est
absurde.
Donc l’équation admet au plus n + 2 solutions (en particulier c’est un nombre fini).

Exercice 18.   # Soient a et b deux réels, n un entier supérieur ou égal à 2. On considère
P : x 7→ xn + ax + b.

1. Montrer que P s’annule au plus 3 fois sur R.

Correction

Posons k le nombre de zéros de P . Alors, comme P est continu donc dérivable sur R,
par le théorème de Rolle appliqué entre chacune des racines de P , P ′ s’annule k − 1

fois. De même, P ′′ s’annule k − 2 fois sur R, i.e. xn(n− 1) 7→ xn−2 d’annule k − 2 fois
sur R. Or x 7→ xn−2 s’annule au plus 1 fois sur R, donc k − 2 6 1, donc k 6 3. D’où
le résultat.

2. Montrer que si n est pair, P s’annule au plus 2 fois sur R.

Correction

Si de plus n est pair, nommons toujours k le nombre de zéros de P . Alors par les
mêmes arguments que précédemment, P ′ s’annule k −1 fois sur R, i.e. x 7→ nxn−1+ a

s’annule k − 1 fois sur R. Comme n est pair, n− 1 est impair donc x 7→ nxn−1 + a est
strictement croissante sur R, donc s’annule au plus une fois sur R. Donc k − 1 6 1,
donc k 6 2.

Exercice 19.   # Soit f : R+ → R, dérivable, telle que f (0) = f ′(0) = 0 et ∃a > 0, f (a) = 0.
Montrer qu’il existe un point de la courbe de f , différent de l’origine, où la tangente passe par
l’origine du repère.

Correction
Traduisons analytiquement la condition géométrique décrite. Soit c dans R+. L’équation de
la tangente à la courbe de f en c est y = f (c) + f ′(c)(x − c). Demander à ce que cette

droite passe par 0, c’est demander que 0 = f (c)− cf ′(c) = c

(
f (c)

c
− f ′(c)

)
. Cela incite
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à considérer la fonction g définie sur R+ par

∀x ∈ R+, g(x) =


f (x)

x
si x 6= 0,

0 si x = 0.

Or, lim
x→0

f (x)

x
=
f (x)− f (0)

x − 0
= f ′(0) = 0, donc g est continue en 0. Donc g est continue

sur [0, a], dérivable sur ]0, a[, et g(0) = 0, g(a) = 0. Donc d’après le théorème de Rolle, g
s’annule en un point c de ]0, a[. Or,

g′(c) =
f ′(c)c − f (c)

c2
,

donc f ′(c)x − f (c) = 0, ce qui correspond exactement à la condition trouvée ! D’où le
résultat.

Exercice 20.    Soit f : R→ R de classe C∞ et bornée.

1. Montrer que si une dérivée f (k) admet un nombre fini de zéros, alors les dérivées précédentes
f (p), 1 6 p < k tendent vers 0 en ±∞.

2. Rappeler le théorème de Rolle à l’infini.

3. En déduire que, pour k > 2, f (k) s’annule au moins k − 1 fois.

3.2 Théorème et inégalité des accroissements finis

Exercice 21.  ##

Montrer les inégalités suivantes

1. ∀(x, y) ∈ R2, |Arctan(x)− Arctan(y)| 6 |x − y |

2. ∀x ∈ R+, x 6 ex − 1 6 xex 3. ∀x ∈ R, 0 6 ch(x)− 1 6 xsh(x)
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Correction

1. Soit f : x 7→ Arctan(x). Alors f est dérivable sur R et f ′ : x 7→
1

1 + x2
. En particulier,

pour tout x de R, |f ′(x)| 6 1, donc, d’après l’inégalité des accroissements finis, pour
tous x et y dans R, |Arctan(x)− Arctan(y)| 6 |x − y |.

2. On pose f : x 7→ ex . Alors f est dérivable sur R. Soit x dans R∗+. En appliquant le
théorème des accroissements finis entre 0 et x , on dispose de c dans ]0, x [ tel que
ex − 1 = f ′(c)(x − 0) = ecx . Or, 0 6 x 6 c donc 1 6 ec 6 ex , donc

x 6 ex − 1 6 xex .

3. Soit x un réel positif. La fonction ch est continue sur [0, x ], dérivable sur ]0, x [, de
dérivée égale à sh, donc, d’après le théorème des accroissements finis, on dispose de
c dans ]0, x [ tel que

ch(x)− 1 = sh(c)x.

Si x > 0, 0 6 sh(c) 6 sh(x), donc, comme x > 0, 0 6 xsh(c) 6 xsh(x), donc
0 6 ch(x)− 1 6 xsh(x).
Si x 6 0, x 6 sh(c) 6 0, donc, comme x 6 0, 0 6 xsh(c) 6 xsh(x), donc 0 6
ch(x)− 1 6 xsh(x).
D’où le résultat.

Exercice 22. Série harmonique – le retour .  ## En utilisant le théorème des accroissements
finis, montrer que pour tout x ∈ R∗+,

1

x + 1
6 ln(x + 1)− ln(x) 6

1

x
.

En déduire (pour la n+ 1-ième fois) que lim
n→+∞

n∑
k=0

1

k
= +∞, et déterminer, si elle existe, la limite

quand n tend vers +∞ de
2n∑

k=n+1

1

k
.

Correction
Soit x ∈ R∗+. Appliquons le théorème des accroissements finis entre x et x + 1 : on dispose

de cx ∈]x, x + 1[ tel que ln(x + 1)− ln(x) =
1

cx
(la dérivée de ln en cx). Or, x 6 cx 6 x + 1

donc
1

x + 1
6

1

cx
6

1

x
, donc

1

x + 1
6 ln(x + 1)− ln(x) 6

1

x
. Donc

n∑
k=1

1

k
>

n∑
k=1

ln(k + 1)−

ln(k) −→
n→+∞

+∞ d’où le résultat !

Exercice 23.  G## Soit f une fonction dérivable d’un segment [a, b] dans R. On suppose que
f (a) = f (b) et que f ′(a) = 0. Montrer qu’il existe c dans ]a, b[ tel que

f ′(c) =
f (c)− f (a)

c − a .

Correction
Ici, on ne peut pas directement appliquer le théorème des accroissements finis ! Considérons
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la fonction

g : x 7→


f (x)− f (a)

x − a si x 6= a,

0 si x = a.

Alors lim
x→a

g(x) = f ′(a) = 0, donc g est définie et continue sur [a, b], dérivable sur ]a, b[, et

g(a) = 0, g(b) =
f (b)− f (a)

b − a = 0. Donc, d’après le théorème de Rolle, il existe c dans

]a, b[ tel que g′(c) = 0. Or, pour tout x dans ]a, b],

g′(x) =
f ′(x)(x − a)− (f (x)− f (a))

(x − a)2
.

Donc
f ′(c)(c − a)− (f (c)− f (a))

(x − a)2
= 0,

i.e.
f ′(c)(c − a) = f (c)− f (a),

donc, comme c 6= a,

f ′(c) =
f (c)− f (a)

c − a .

D’où le résultat.

4 Autres exercices
Exercice 24. Vers de l’analyse un peu fine.   #

Soit f une fonction continûment dérivable de [0, 1] dans R, telle que


f (0) = 0,

f ′(0) = 1,

f (1) < 0.
On veut montrer qu’il existe un « premier temps de retour à 0 », c’est-à-dire qu’il existe un réel
a de [0, 1] tel que

f (a) = 0 et ∀0 < x < a, f (x) 6= 0.

1. Montrer qu’il existe un réel δ tel que ∀x ∈]0, δ[, f (x) > 0.

Correction

f est dérivable en 0 de dérivée égale à 1, donc on dispose d’une fonction ε définie au
voisinage de 0, V , tendant vers 0 en 0, telle que

∀x ∈ V, f (x) = f (0) + f ′(0)x + xε(x) = x(1 + ε(x)).

Comme lim
x→0

ε(x) = 0, on dispose de δ0 > 0 tel que pour tout x ∈]0, δ0[, |ε(x)| 6
1

2
.

Pour x dans ]0, δ0[, on a alors 1 +ε(x) >
1

2
, donc x(1 +ε(x)) >

x

2
> 0, i.e. f (x) > 0.

2. Considérons alors l’ensemble A = {δ ∈]0, 1[,∀x ∈]0, δ[, f (x) > 0}.
(a) Justifier que A a une borne supérieure, appelons-là a.
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Correction

L’ensemble A est une partie de R non vide (il contient δ0), majorée. Donc A
admet une borne supérieure.

(b) Montrer que f (a) = 0.

Correction

Déjà, f (1) < 0 donc nécessairement a 6= 1.
Si f (a) 6= 0, supposons f (a) > 0. f est continue en a donc il on dispose de η > 0

tel que pour tout x de ]a − η, a + η[, f (x) > 0. Donc a +
η

2
∈ A, c’est absurde.

Donc f (a) = 0.

(c) Montrer que ∀x ∈]0, a[, f (x) > 0, et conclure.

Correction

Soit x ∈]0, a[. Posons ε = a−x > 0. Alors par les propriétés de la borne supérieure,
on dispose d’un élément δ de A tel que a − δ < ε, i.e. x < δ < a. Donc, par
définition de δ, f (x) > 0.
On en déduit que f (a) = 0 et que ∀x ∈]0, a[, f (x) > 0.

Exercice 25.   G# Soit a et b deux réels tels que a < b et f : [a, b]→ R, dérivable. On définit

Φ :

∣∣∣∣∣∣∣∣∣
[a, b]→ R

x 7→


f (x)− f (a)

x − a si x 6= a

f ′(a) si x = a

et Ψ :

∣∣∣∣∣∣∣∣∣
[a, b]→ R

x 7→


f (x)− f (b)

x − b si x 6= b

f ′(b) si x = b

1. En étudiant les fonctions Φ et Ψ, montrer que f ′ prend toutes les valeurs du segment
d’extrémités f ′(a) et f ′(b).
Ainsi, f ′ vérifie le théorème des valeurs intermédiaires.

Correction

Premier point, Φ et Ψ sont clairement continues sur [a, b] par définition de la dérivabilité
de f .
Ensuite, on peut supposer, sans perte de généralité, f ′(a) < f ′(b).

On remarque que le point τ =
f (b)− f (a)

b − a est un point important, car c’est une valeur

atteinte par Φ et Ψ. On distingue alors trois cas !

• f ′(a) 6 τ 6 f ′(b) : en fonction d’où est M (dans [f ′(a), τ ] ou [τ, f ′(b)]), on peut
faire un TVI sur Φ ou Ψ

Soit alors M dans ]f ′(a), f ′(b)[ (on peut prendre le segment ouvert car sinon c’est
évident !).
On sait que Φ(x) −→

x→a
f ′(a) < M donc on dispose de η > 0 tel que ∀x ∈ [a, a + η],

Φ(x) < M.
On sait que Ψ(x) −→

x→b
f ′(b) > M donc on dispose de η′ > 0 tel que ∀x ∈ [b − η′, b],

Ψ(x) > M.

Ensuite, M se situe entre Φ(a+η) et Ψ(b−η′). De plus, Φ(b) = Ψ(a) =
f (b)− f (a)

b − a .

Donc, nécessairement, M est ou supérieur ou inférieur à cette quantité, i.e.
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• ou bien Φ(a + η) < M 6 Φ(b)

• ou bien Ψ(a) 6 M < Ψ(b − η).

Sans perte de généralité, on peut supposer que l’on est dans la première situation. Alors
par continuité de Φ et par le théorème des valeurs intermédiaires, on dispose de α dans

[a + η, b] tel que M = Φ(α), i.e. M =
f (α)− f (a)

α− a . Maintenant, par le théorème

des accroissements finis, on dispose de c dans ]a, α[ tel que
f (α)− f (a)

α− a = f ′(c), i.e.

M = f ′(c). Le résultat est donc démontré !

2. Pourquoi ne peut-on pas appliquer le TVI sur f ′ ?

Correction

Simplement parce que f n’est que dérivable : rien ne nous dit que f ′ est continue !

Indications.

6 Calculs directs. Ne pas hésiter, quand il y a une dérivée compliquée, à l’écrire sous la forme
f ◦ g ◦ h et à expliciter sa dérivée à l’aide de la règle de la chaîne.

7 1. Récurrence évidente.

2. Utiliser la formule de Leibniz sur g : x 7→ xex

3. Essayer d’exprimer h simplement, en écrivant x2 + 1 = 2 + x2 − 1, puis en écrivant
1

x2 − 1
=

a

x − 1
+

b

x + 1
avec a et b à déterminer.

8 ATTENTION ! La tangente commune n’est pas tangente aux deux courbes au même
point. Un conseil : écrire l’équation de la tangente à la courbe de x 7→ x2 en a ∈ R et

l’équation de la tangente à la courbe de x 7→
1

x
en b ∈ R∗, puis égaliser les deux équations

de tangentes.

9 Écrire les définitions, et dériver les égalités en faisant attention aux foncitons composées.

10 Utiliser les théorèmes généraux pour toutes les fonctions non problématiques, puis utiliser
le théorème de la limite de la dérivée ou bien le taux de variations.

11 1. Montrer que |f | est dérivable si et seulement si ∀a ∈ R, f (a) = 0 ⇒ f ′(a) = 0. (en
montrant la réciproque, puis la contraposée du sens direct)

2. Utiliser les expressions du maximum et du minimum à l’aide de la valeur absolue !

12 Remarquer que
1

1− x2 =
1

2

1

1− x +
1

2

1

1 + x
et utiliser l’exercice 1.

15 Utiliser la seconde définition de la dérivabilité (f (x) = f (0) + f ′(0)x + xε(x)) puis injecter
cette expression dans la somme. Ensuite, séparer les cas f (0) 6= 0 et f (0) = 0, puis, dans
le cas f (0) = 0, revenir aux ε.

13 Écrire ce que l’on veut avoir (« g(x) = f (
√
x) » ) et utiliser le théorème de prolongement

de la classe C 1.
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14 Penser aux conditions pour être une bijection (en termes de monotonie) et aux conditions
pour avoir la dérivabilité de la réciproque !

16 Appliquer n fois le théorème de Rolle (fait en cours).

17 Utiliser Rolle plusieurs fois et penser qu’à partir d’un certain n, P (n) est nul.

18 1. Si ce n’est pas le cas, appliquer plusieurs fois le théorème de Rolle.

2. Utiliser que si n est pair, alors la dérivée de la fonction s’annule au moins une fois.

19 Démontrer que cela revient à avoir l’existence d’un c tel que 0 = f (c) − cf ′(c), i.e.

c

(
f (c)

c
− f ′(c)

)
= 0, et appliquer le théorème de Rolle à une fonction bien choisie.

20 Penser au fait que si f k a un nombre fini de zéros, après son dernier zéro elle est de signe
constant, donc f (k−1) est monotone...

21 Il s’agit uniquement d’applications du théorème ou de l’inégalité des accroissements finis.

22 Essayer d’encadrer ln(x + 1)− ln(x) sur [n, n + 1] à l’aide du théorème des accroissements
finis.

23 Ressemble beaucoup à 19... Introduire g : x 7→


f (x)− f (a)

x − a si x 6= a,

0 si x = a.

24 1. Utiliser la seconde définition de la dérivée.

2. (a)

(b) Montrer que a 6= 1, puis raisonner par l’absurde en supposant f (a) 6= 0.

(c) Utiliser la caractérisation de la borne supérieure.

25 Prendre M entre f ′(a) et f ′(b) et encadrer M entre une valeur de Φ et une valeur de
Ψ. Pour cela, penser que si Φ(x) −→

x→a
` < α, alors Φ(x) < α au voisinage de a. Ensuite

appliquer le TVI à Φ ou à Ψ.
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