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TD 11
Dérivabilité

1 Exercices corrigés en classe

R—R
Exercice 1. @©O Soit f : 0six<0
X .
e x six>0.
1. Montrer que f est € sur R* et que : Vn € N, il existe un polyndme P, tel que Vx > O,
_1 1
F(x) =e P, (X)
2. En déduire que f est de classe €° sur R.

Exercice 2. Théoréme de Rolle a I'infini. ®@©O Soit f : [0, +oco[— R une fonction continue,
dérivable sur ]0, 400 et telle que f(0) = ﬂm f = 0. On souhaite démontrer qu'il existe ¢ €]0, 4o
tel que f'(¢) = 0.

1. Démontrer que le résultat est trivial si f est constante.

On suppose désormais que f n'est pas constante sur R. Sans perte de généralité, on peut supposer
que I'on dispose de ¢ > 0 tel que f(c) > 0.

2. Démontrer qu'il existe a €]0, c[ et b €]c, +o0[ tel que f(a) = f(b).

3. Conclure
Exercice 3. Polynémes de Legendre. @@O Soit n dans N*. On définit, pour tout x dans R,
P.(x) = (x> — 1)".

1. Démontrer que pour tout k < n—1, P,gk) s'annule en —1 et en 1.

Correction

Ecrivons P,(x) = (x — 1)"(x + 1)" = f,g,. Alors, par la formule de Leibniz, pour tout
k, pour tout x dans R.

k

k : ,
P =3 (4) 9 00att 0.
Jj=0 J
. [ . :
Mais, si j € [0, k], £9(x) = ﬁ(x —1)"7, qui s'annule en 1, et g (x) =

nl :
W(X-f— 1) %% qui s’annule en —1. Donc P,Sk) s'annule en —1 et en 1.

2. Démontrer que pour tout k < n, P,Sk) s'annule k fois sur ] —1,1].

Démontrons le résultat par récurrence sur k.

Initialisation. P,SO) = P, s’annule en —1 et en 1.

Hérédité. Supposons que, pour un certain k < n—1, P,Sk) s'annule en k points sur
] — 1, 1[, nommons ces points x, . .., Xk. Alors, pour tout i dans [1, k — 1], P est
continue sur [x;, xj+1], dérivable sur |x;, xiy1[, s'annule en x; et en x;41 donc, d'apreés le
théoréme de Rolle, P+ s’annule sur ]x;, xi11[. Donc P5*1 s'annule en k — 1 points
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de]—1,1].

De plus, P,gk) s'annule en —1 et en 1, donc, en appliquant le théoréme de Rolle entre
—1 et x; puis entre xx et 1, on obtient deux zéros supplémentaires de P,skH).

Donc P{**1) s’annule k + 1 fois, d’oli I'hérédité et le résultat !

Exercice 4. @ OO Soit a > 0. Déterminer, en utilisant le théoréme des accroissements finis, la
limite
lim n?(Arctan(n + a) — Arctan(n)).
n—-4o00

Exercice 5. La régle de L'Hépital. @ @O

1. Soit f et g deux fonctions continues sur [a, b] et dérivables sur ]a, b[. Montrer qu'il existe
¢ €]a, b tel que

(f(b) = f(a))g'(c) = (9(b) — g(a))f'(c).

4‘ Correction

Il s’agit de ce que I'on appelle la formule des « accroissements finis généralisés » . On
va donc la démontrer de maniére similaire au TAF. Considérons la fonction h définie
sur [a, b] par

h(x) = (f(b) — f(a))g(x) — (9(b) — g(a))f (x).
Alors h est continue sur [a, b], dérivable sur ]a, b[, et

h(a) = (f(b) — f(a))g(a) — (9(b) — g(a))f(a) = f(b)g(a) — g(b)f(a),
h(b) = (f(b) — f(a))g(b) — (9(b) — g(a))f(b) = —f(a)g(b) + g(a)f(b) = h(a).

Donc d’aprés le théoréme de Rolle, il existe un réel ¢ de ]a, b[ tel que h'(c) =0, i.e.
tel que

(f(b) — f(a))g'(c) — (9(b) — g(a))f'(c) =0,

(f(b) — f(a))g'(c) = (9(b) — g(a))f'(c).

2. Soit f et g deux fonctions dérivables sur un intervalle I non vide et non réduit a un point et
Xo une extrémité (finie ou non) de I. On suppose que f et g tendent vers 0 en xp et que g
et ¢’ ne s'annulent pas sur I\{xp}. Soit £ € R. Prouver I'implication

(m, 50y =) = (im 503 =)

[l faut distinguer deux cas : le cas ol xg € R, et le cas ou cette borne est infinie.

e Casol xp € R. Quitte a remplacer f et g par leur prolongement par continuité en
Xo, on peut supposer f et g définies, continues, et s'annulant en xg. En appliquant
le théoréme des accroissements finis généralisé entre xp et x # Xp, on obtient
I'existence de ¢, entre xp et x tel que

fF(x) =) _ (e)
9(x) —g(x) ()’
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09 _ ()
9(x)  g'(c)’

. o . f'(c
Or, par encadrement, lim ¢, = xg, donc en composant les limites, lim /( x) =
X—rX0 X—Xo g (CX)
f(x o f(x
£. Donc Q converge et lim Q =4
9(x) x=% g(x)

e Cas oll xg = +00. Posons alors deux fonctions F et G, définies sur un voisinage
_ . 1 1 .
épointé a droite 0 par F(x) = f (x) et G(x) = g( > Alors f et g vérifient

X
les hypothéses du résultat précédent, et
Fo _ —f () _f(

S R S

On en déduit donc le résultat pour xg = +oo !

)—>£

) x—04+

X =X =

3. Retrouver comme cas particulier le théoréme de la limite de la dérivée vu en cours.

4‘ Correction

On retrouve le résultat en prenant g(x) = x!

4. Appliquer ce résultat aux calculs des limites suivantes

VX —+/e A= b
@t b) Iy o —ax (€7D
. SianSin; . 1 1

(c) >|<|Ln1 ex — el/x (d) xlm) (sinQX B X2>

Applications (on ne réécrit pas a chaque fois que les fonctions vérifient les hypothéses
de la régle de I'Hdpital mais c'est important de les vérifier : est important le fait que
g’ soit de signe constant autour de xp. En effet, si

f(x) = x + cos(x) sin(x) et g(x) = ") (x 4 cos(x) sin(x))

alors
f'(x) = 2cos?(x) et ¢'(x) = "™ cos(x)(x + sin(x) cos(x) + 2 cos(x))
donc F(x) 2 cos(x)
X cos(x
li = i : = (0,
X g'(x) sl esin() (x + sin(x) cos(x) + 2 cos(x))
f 1
mais ) = —— n'admet pas de limite en +o0!)
g(x) esin(x)
1
(a) Iimuz I|m¥:\/§
x—e Inx —1 xoe -
@ —bpIn(a)a —In(b)b*  In(2)
(b) ) o — X X0 In(c)cx —In(d)d* — In(§)
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sinx — sin — COSX + 55COS— (]
(c) lim X = |lim =X 1)
x—1 eX — el/x x—=1 X4 Fel/x e
Stratégie :

e |l faut pouvoir calculer des dérivées : les exercices[f] et [7] servent a cela.
e |l faut pouvoir étudier des dérivabilités : les exercices [10} [11} [12] (prolongement de

sont dédiés a cela.

o Deux exercices s'appuient sur la dérivée comme développement limité a I'ordre 1 :
I'exercice [8] assez simple, et I'exercice [I5} beaucoup plus complexe.

e Des applications du théoreme de Rolle :

une variation.

e Quelques autres exercices intéressants comme [24] et surtout [25]

Minimum requis : exercice[f] ((a) et (d)), exercice[7] ((a) et (b)), exercice[12]si jamais le

[1] a mal été compris, exercice [16] et B exercice 21]

quelques trés classiques comme ou . Les
exercices [17] [L8] et [I9] sont ussi des applications trés faisables de Rolle.

e Des applications du TAF : outre ] les exercices [21] et 22| sont assez importants. 23] est

2 Deérivabilité et définition de la dérivée — classe ©" — limite

de la dérivée
Exercice 6. ©OO
Dériver les fonctions suivantes
1. f:x— e_xi2

2 _
3.h:xr—>|n<X3X+2>

X2 4+ x

2. g:x+ {fsin x7+17r
X+ 2

4. k:x— +/tan(x).

Correction

2 1
1. f’:x»—>—3e 2
X

™

4x° —4x — 2
x(x+1)(x2=3x+2)’

3. :ix—

2 "><r—>1 sin X+17r 7%><cos X+17r X
-9 3 X+2 X+2

(x+2)2
1+ tan?(x)

2/tan(x)

Exercice 7. @ OO

Calculer les dérivées n-iemes des fonctions suivantes
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1. f:x—a“(a>0)
x?+1

. h: -
3 Xr—>X2_1

2. g: x> xe*

4. k:xw— eV3cos(x)

Correction

(In(a))"a*.

donc

donc

1. On montre par récurrence, et en utilisant que a* = '@ que pour tout n, F( : x

2. On montre, en utilisant la formule de Leibniz, ou par récurrence que, pour tout n,
£ x s neX + xeX.

3. Ecrivons
X2— 142 2 1 1
h = = =1 =1 - _
(x) X2 — x2 -1 +x2—1 +><—1 x+1
doncsin >0,
W) (x) = (—1)mt | —2— — L )
(x—=1" (x+1)"

4. Ecrivons cos(x) = . Alors pour tout réel x,

k(X) — % (ex(\/@-i) + ex(\/§—i)) ’

(V3 +iye 3 4 (V3 - iyret3-i)

N -

(V3+i)"=2""5 et (V3 —i)"=2""""s,

k(n)(X) — DneV3x e/(X-HIE) + e_f(x+ng)

s Q—E

5 = 2MeV3 cog (X + n%) .

Exercice 8. Démontrer que les courbes d'équation y = x

tangente commune.

1 :
2 et y = — admettent une unique
X
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_‘ Correction

1 .
Nommons fi : x — x% et > : x — —, €, et % leurs courbes respectives.
X

Soit a dans R. La tangente a %} en a a pour équation y = a® + 2a(x — a) = 2ax — a°.

. . 1 x—b 2 X
Soit b dans R*. La tangente a %> en b a pour équation y = 5T 5 m
Ces deux droites coincident si et seulement si

1
2a= *?
2
2
_2==
b
R . o ) o L -1
Ce systéme n'est pas linéaire, on peut substituer... La premiére équation étant a = oL la
1 2 1 1
seconde devient ——— = = ie. b> = ——, i.e. b= —=, et donc a = —2. Réciproquement
T4 b 8 2 N
(=2, —1/2) est bien solution.
Donc %1 et %> ont une unique tangente commune, c'est la droite y = —4x — 4.

Exercice 9. ©00O
Que dire de la dérivée d'une fonction paire? d'une fonction impaire? d’une fonction pério-
dique ?

Correction

Soit f : R — R dérivable.

1. si f est paire alors pour tout x réel, f(—x) = f(x) donc —f'(—x) = f’(x) donc
f'(—x) = —f(x) donc f’ est impaire.

2. si f est impaire alors pour tout x réel, f(—x) = —f(x) donc —f'(—x) = —f'(x) donc
f'(—x) = f(x) donc f' est paire.

3. si f est périodique, on dispose de T > 0 tel que pour tout x de R, f(x +T) = f(x),
donc f'(x 4+ T) = f(x), donc f’ est aussi T-périodique.

Exercice 10. @ OO

Etudier la dérivabilité des fonctions suivantes
(x—1)%six <1,
1. f:x+— cos(+v/x) 2. g:x—
(x —1)%si x> 1.
x|

3. h:x = x|x]| 4.k:x»—>m

—‘ Correction

1. La fonction f est continue sur R par les théoréemes généraux, et, de méme, elle est
1 sin(v/x sin(+/x

——= (\F). Or, (vx — 1, donc
2 x VX x=0

f'(x) — 1 donc, par le théoréme de la limite de la dérivée, f est dérivable en 0 de
X—

dérivable sur RY. Pour tout x > 0, ' : x

. 1
dérivée égale a —5-
2. g est continue sur R (notamment en 1, car les limites a gauche et a droite de g

2(x —1)six <1, ,
5 Donc ¢'(x) — 0,
3(x—1)"six< L x—1

coincident), dérivable sur R\ {1} et ¢’ : x — {
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donc, par le théoreme de la limite de la dérivée, g est dérivable en 1 de dérivée égale

ao.
3. h est dérivable en tout réel non nul par les théorémes généraux. Montrons qu’elle est
. h(x) — h(0 .
dérivable en 0 : pour tout x réel, M = |x| — 0. Donc h est dérivable en 0.
x—0 X—00

4. k est dérivable en tout réel différent de 0 et 1 par les théorémes généraux.
Etude en 0. Pour tout réel x,

x|

k(x) — k() -1 _ sgn(x)

x—0 x 1+ |x-1y

n'a pas de limite quand x tend vers 0. Donc k n'est pas dérivable en 0.
Etude en 1. Pour tout réel x,

|x|
k() — k(1) _mpen — 1 X—1-Ix—1

x—1 x—1 — (1+x=1)(x-1)
Six>1,

x| -1—-|x-1  x-1-(x-1) 0

I+ x—1D(x—-1) (@A+x—-1D(x—-1)
Sio<x<1,

x| -1—-|x-1 = x-1-(1-x) 2
I+x—1Dx-1) (QA+1-xPkx-1) 2-x

gone KOOI KD

X —
n'est pas dérivable en 1.

n'admet pas les mémes limites a gauche et a droite en 1, donc k

Exercice 11. @©O

1. A quelle condition la valeur absolue d’une fonction dérivable sur R est-elle dérivable ?

Soit f : R — R dérivable. Montrons que |f| est dérivable si et seulement si

VaeR, f(a)=0= f'(a)=0.

On montre le sens réciproque :

Soit a € R.

Déja, si a est dans R tel que f(a) # 0, comme f est dérivable, elle est continue et on
dispose de 1 > 0 tel que f ne s'annule pas et reste de signe constant sur [a—17, a+ 7).
Donc sur cet intervalle, f est du signe de f(a). Si f(a) > 0, Vx € [a—n, a+n], |f(x)| =
f(x), dérivable, donc dérivable en a. Si f(a) <0, Vx € [a—mn,a+ 1], |f(x)| = —f(x),
dérivable, donc dérivable en a.

Maintenant, si f(a) = 0, alors f'(a) = 0, donc on dispose de € qui tend vers 0 quand
x tend vers a telle que pour tout x dans R,

f(x)=0+0x(x—a)+e(x) x(x—a),

donc |f(x)| = le(x)||x — a] = (x — a)|e(x)||n(x)|, avec n(x) =1six—a>0et —1si
x —a < 0. Donc |e(x)||n(x)] — 0, donc |f| est dérivable en a de dérivée nulle!

X—a
Sens direct : on montre la contraposée :

Page 7 sur



MPSI Pasteur 2025-2026 N. Laillet
Dérivabilité nlaillet.math@gmail.com

Supposons que |f| est dérivable sur R. Soit a tel que f(a) = 0. Comme |f| est toujours
positive, a est alors un minimum local de |f| atteint a l'intérieur de I'intervalle considéré
(on s'est placé sur R), donc |f|'(a) = 0. On dispose alors de € : R — R tel que
e(x) — 0 et que pour tout x dans R,

[FO)] = (x — a)e(x).

Mais alors si on prend 7 la fonction égale au signe de f (et nulle quand f est nulle), on a
pour tout x dans R, f(x) = (x—a)e(x)n(x), avec, comme 7 est bornée, e(x)n(x) —
X—a

0. Donc f'(a) = 0. D'ou le résultat!

2. A quelle condition le maximum de deux fonctions dérivables sur R est-il dérivable ?

f f—
Soient f et g deux fonctions dérivables de R dans R. Alors max(f, g) = w
donc max(f, g) est dérivable ssi |f — g| est dérivable, donc ssi
VaeR, f(a)=g(a) = f'(a) =d(a).
Exercice 12. @ @0 Soit f définie de R dans R par
,% .
VxER f(x)=4 ¢ ° X <1,
0 si |x| > 1.
Montrer que f est de classe € sur R, et représenter le graphe de f.
_‘ Correction
1 — .
On remarque que si on pose g : X > i S! K<l et h : x —
0 six > 1.

1

e 0+ sl x > —1, ; . a

i , alors f = gh. Or on a démontré en cours, par récurrence, le
0 sl x < —1.

e si >0,

0 si x <

une fonction €*° a support inclus dans un segment (i.e. nulle en-dehors de [0, 1])

X |

caractére €° de k : x — { , d'oll celui de g et h et celui de f. On obtient

Exercice 13. ®@© Soit f une fonction de classe C? sur R telle que '(0) = 0.
Montrer qu'il existe une fonction g de classe C* sur R telle que pour tout réel x positif on ait

f(x) =g (x?).

Exercice 14. @@O Soit, pour X et p dans R, @y, : x — € + Ae™™ + ux. Déterminer une CNS
sur A et p pour que @y , soit une bijection de R sur R dont la bijection réciproque est ct.

—‘ Correction

Condition nécessaire. On suppose que X et 1 sont choisis de sorte que @y ,, soit une bijection
¢ de bijection réciproque €. Alors

® ), est strictement monotone. Or, pour tout x dans R,

O u(X) =€ = Xe™ + .
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— Si XA > 0, alors ¢4 ,(x) — oo et ¢y ,(x) — —oo, donc ¢} , change
B X—+o00 H X——00 H
strictement de signe, donc ¢, , change strictement de variations. C’est absurde !

— SiA =0, alors ‘Plx,u © x — e+ u, qui change strictement de signe dés lors que

@ < 0. Donc, nécessairement, ‘si A=0,ut=0 ‘

— Si A < 0, écrivons A = —¢£, alors on étudie le signe de (p’ML, en étudiant ses
variations. Pour tout x dans R,

O u(X) = e+ Xe™*
Alors on a les équivalences suivantes :

1
Phx) =08 >-de "o 2fax> o In(¢).
- ) A 1 .
Le minimum de ¢}, , est donc atteint en 5 In(€), et il vaut alors

W C0) E T Y LU S S SEST

On étudie alors le polyndme X2 + uX — 1 : son signe donnera la relation devant
8tre vérifiée entre w et &. Le discriminant du polyndme est u? +4 > 0, d’oll deux

N

réel positif (ou nul) si et seulement si

o VIRt JEFE
VEe| AR

racines : . Donc si A < 0, le minimum de ‘P/x,u est atteint en un

2

, OU encore

—ut+ VU +4
2

mais, comme £ > 0, la condition se réécrit \/E >

¢ Cat iy
- 4

, OU encore

N (optvu+4)y
= 4

Exercice 15. 000

n
. ‘ . k . .
1. Soit f dérivable en 0. Montrer que |im E f <2> existe et la déterminer (on
n—-+oo —o n

a la définition de la dérivabilité en termes de développement limité).

reviendra

voisinage V' de O tels que

Vx €V, f(x) = f(0)+ f(0)x + xe(x).

k 1 1
Or, pour tout k dans {0, .. ., nt, = < = 0, donc, pour n assez grand, 0, —
n? " n 4o n?

f est dérivable en 0 donc on dispose d'une fonction € tendant vers 0 en 0 et d'un
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sont dans V. Donc

20 (7)-glo+ o) ()]

On va supposer ici f(0) = 0 (sinon la limite sera infinie). Donc
n n
k k k
dof <n2) =) — <1+e (fﬂ» :
k=0 k=0

Nommons €, le maximum de |e]| sur [0, —|. Afin de manipuler les inégalités, supposons
n

f'(0) = 0. On en déduit que

n

f’(O)Z%(l —en) <> f <k) < (0) %(14—5”),

n

ro Y a-ey < 3o (4) < ro T a v,

k=0

n
. ) k
En faisant tendre n vers +o0, on en déduit, par encadrement, que E f (,72) converge

k=0
f'(0)
>

Vers

n
— k -
2. Application : montrer que H <1+ ,72) admet une limite lorsque n tend vers +oo et
k=0
déterminer cette limite.

4‘ Correction

n

k 4 k
Posons P, = H (l + n?) et S, = In(P,). Alors S, = Zln (1 + n2> Donc S,

k=0 k=0

. , 1
converge vers la dérivée en 0 de x — In(1 4 x), i.e. vers 5

3 Théorémes globaux

3.1 Théoréme de Rolle

Exercice 16. ®©O Montrer que pour tout n dans N, pour toute f : [0,1] — R, si f est n fois
dérivable sur [0, 1] et si f s’annule au moins n+ 1 fois sur [0, 1], alors (") s’annule au moins une
fois sur [0, 1].

Correction

Soit n dans N*. Soit f dérivable n fois sur [0, 1], ap < a; < - -+ < a,, les points d'annulation
de f. On montre par récurrence sur k < n que (5 s'annule n + 1 — k fois sur [0, 1].
L’initialisation est donnée par I'exercice.

Hérédité. On suppose que £ s'annule n+ 1 — k fois sur [0, 1] pour un certain k < n—1.
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Soient by < --- < b_k ces points d'annulation. Alors pour tout / dans [0, n — k — 1], )
est continue sur [b;, bi11], dérivable sur |b;, biy1[ et f(k)(b,-) = f(k)(b,qu) donc, d'apreés le
théoréme de Rolle, on dispose de ¢; dans |b;, biy1[ tel que f(k“)(c,-) s'annule. On a donc
trouvé n+ 1 — (k+ 1) points by < ¢g < by < -+ < Crk—1 < bp—k d'annulation de Al

D’ou I'hérédité et le résultat par récurrence, en particulier pour k = n.

Exercice 17. @00
Soit P un polynéme. Montrer que I'équation P(x) = €* n'admet qu'un nombre fini de solutions
sur R.

_‘ Correction

Soit n le degré de P. Supposons que f : x — € — P(x) s'annule au moins n + 2 fois sur
R. Alors, par I'exercice , la dérivée n+ 1-iéme de f s’annule au moins une fois sur R. Or
la dérivée n + 1-iéme de P est nulle, donc x — e* s’annule au moins une fois sur R, c’est
absurde.

Donc I'équation admet au plus n+ 2 solutions (en particulier c'est un nombre fini).

Exercice 18. ®@@0O Soient a et b deux réels, n un entier supérieur ou égal a 2. On considére
P:x+— x"+ ax + b.

1. Montrer que P s'annule au plus 3 fois sur R.

4‘ Correction

Posons k le nombre de zéros de P. Alors, comme P est continu donc dérivable sur R,
par le théoréme de Rolle appliqué entre chacune des racines de P, P’ s'annule k — 1
fois. De méme, P” s'annule k — 2 fois sur R, i.e. xn(n—1) — x"~2 d’annule k — 2 fois
sur R. Or x — x"~2 s’annule au plus 1 fois sur R, donc k —2 < 1, donc k < 3. D’ou
le résultat.

2. Montrer que si n est pair, P s'annule au plus 2 fois sur R.

Correction

Si de plus n est pair, nommons toujours k le nombre de zéros de P. Alors par les
mémes arguments que précédemment, P’ s’annule k — 1 fois sur R, i.e. x nx""t+a
s'annule k — 1 fois sur R. Comme n est pair, n— 1 est impair donc x — nx""! + 3 est
strictement croissante sur R, donc s'annule au plus une fois sur R. Donc k —1 < 1,
donc k < 2.

Exercice 19. @@0 Soit 7 : Ry — R, dérivable, telle que f(0) = f'(0) = 0 et 3a > 0, f(a) = 0.
Montrer qu'il existe un point de la courbe de f, différent de I'origine, ou la tangente passe par
['origine du repére.

Correction

Traduisons analytiquement la condition géométrique décrite. Soit ¢ dans R,.. L'équation de
la tangente a la courbe de f en c est y = f(c) + f'(c)(x — c¢). Demander a ce que cette

f'
droite passe par 0, c’est demander que 0 = f(c) — cf’(¢c) = ¢ ((CC) = f’(c)). Cela incite
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a considérer la fonction g définie sur Ry par

f(x) .
Vx € Ry, g(x) = X six 70,
0six=0.

= f'(0) = 0, donc g est continue en 0. Donc g est continue

or iim [0 _ f) = 7(0)
x—0 x—0

X
sur [0, a], dérivable sur ]0, a[, et g(0) = 0, g(a) = 0. Donc d'aprés le théoreme de Rolle, g
s'annule en un point ¢ de |0, a[. Or,

f'(c)c —f(c)
= T'

g'(c)

donc f'(c)x — f(c) = 0, ce qui correspond exactement a la condition trouvée! D’ou le
résultat.

Exercice 20. @@® Soit f : R — R de classe ¥ et bornée.

1. Montrer que si une dérivée £&) admet un nombre fini de zéros, alors les dérivées précédentes
P 1< p < k tendent vers 0 en $oo0.

2. Rappeler le théoréme de Rolle a I'infini.

3. En déduire que, pour k > 2, £ s’annule au moins k — 1 fois.

3.2 Théoréme et inégalité des accroissements finis

Exercice 21. @ OO

Montrer les inégalités suivantes

1. ¥(x,y) € R?, |Arctan(x) — Arctan(y)| < |x — y|

2. VxeRy, x<eX¥—1«xe¥ 3. ¥x€R, 0<ch(x)—1< xsh(x)
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_‘ Correction

1. Soit f : x — Arctan(x). Alors f est dérivable sur R et ' : x

T2 En particulier,

pour tout x de R, |f'(x)| < 1, donc, d’aprés I'inégalité des accroissements finis, pour
tous x et y dans R, |Arctan(x) — Arctan(y)| < |x — y|.

2. On pose f : x — €*. Alors f est dérivable sur R. Soit x dans R%. En appliquant le
théoréme des accroissements finis entre 0 et x, on dispose de ¢ dans ]0, x| tel que
e —1=7"(c)(x—0)=¢ex. Or, 0 < x < c donc 1 < e < e, donc

x < e —1< xe*.

3. Soit x un réel positif. La fonction ch est continue sur [0, x], dérivable sur 0, x[, de
dérivée égale a sh, donc, d'aprés le théoréme des accroissements finis, on dispose de
¢ dans |0, x| tel que

ch(x) — 1 =sh(c)x.

Si x > 0, 0 < sh(c) < sh(x), donc, comme x > 0, 0 < xsh(c) < xsh(x), donc
0 < ch(x) — 1 < xsh(x).

Si x € 0, x < sh(c) €0, donc, comme x < 0, 0 < xsh(c) < xsh(x), donc 0 <
ch(x) — 1 < xsh(x).

D’ou le résultat.

Exercice 22. Série harmonique — le retour. @ OO En utilisant le théoréme des accroissements
finis, montrer que pour tout x € R,

<In(x+1) —In(x) <

X 1=

x+1

n
En déduire (pour la n+ 1-iéme fois) que lim E — = +o00, et déterminer, si elle existe, la limite
n—-+oo k

k=0
2n
1

quand n tend vers +oo de Z —.

k=n+1
Correction

Soit x € R’.. Appliquons le théoreme des accroissements finis entre x et x 41 : on dispose

1
de ¢x €]x, x+ 1] tel que In(x+ 1) —In(x) = - (la dérivee de Inen ¢). Or, x < g < x+1
X

1 1 1 1 1 1«
< — < < - <-.D E -2 g -
donc xT1S o Sk donc | In(x+1) —In(x) - Donc 2% k_lln(k+ 1)
In(k) — oo d'ol le résultat !
n—-+o00

Exercice 23. @ ©O Soit f une fonction dérivable d'un segment [a, b] dans R. On suppose que
f(a) = f(b) et que f'(a) = 0. Montrer qu'il existe ¢ dans ]a, b[ tel que

f(c) —f(a)
c—a

Correction
Ici, on ne peut pas directement appliquer le théoréme des accroissements finis! Considérons
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la fonction . .
g:XxX— X—a
0six=a.

Alors |i31 g(x) = f'(a) = 0, donc g est définie et continue sur [a, b], dérivable sur ]a, b, et
f(b)—f(a
g(a) =0, g(b) = M

b—a
]a, b[ tel que ¢'(c) = 0. Or, pour tout x dans ]a, b],

Fx)(x —a) = (F(x) — f(a))

= 0. Donc, d'aprés le théoreme de Rolle, il existe ¢ dans

1o —
g (X) - (X _ 8)2
Donc ,
Flac—a) = (fla) = f(a)) _,
(x —a) '
i.e.
f'(c)(c —a) = f(c) — f(a),
donc, comme ¢ # a,
f/(C) _ f(C) B f(a) )
c—a
D'ou le résultat.
4 Autres exercices
Exercice 24. Vers de I'analyse un peu fine. @ @O
f(0) =0,
Soit f une fonction continiment dérivable de [0, 1] dans R, telle que ¢ f'(0) =1,
f(1) <O0.

On veut montrer qu'il existe un « premier temps de retour a 0 », c'est-a-dire qu'il existe un réel
a de [0, 1] tel que
fla)=0etV0<x<a, f(x)#0.

1. Montrer qu'il existe un réel § tel que Vx €]0,d[, f(x) > 0.

Correction

f est dérivable en O de dérivée égale a 1, donc on dispose d'une fonction £ définie au
voisinage de 0, V/, tendant vers 0 en 0, telle que

Vx €V, f(x) = f(0) + '(0)x + xe(x) = x(1 + &(x)).

: . 1
Comme I|m05(x) = 0, on dispose de §g > 0 tel que pour tout x €]0, dg[, |e(x)| < 5
X—r

1
Pour x dans ]0, §g[, on a alors 1+ €(x) > 5 donc x(1+¢e(x)) > % >0, i.e. f(x)>0.

2. Considérons alors I'ensemble A = {§ €]0, 1[, Vx €]0, [, f(x) > 0}.

(a) Justifier que A a une borne supérieure, appelons-1a a.
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—‘ Correction

L'ensemble A est une partie de R non vide (il contient §g), majorée. Donc A
admet une borne supérieure.

(b) Montrer que f(a) = 0.

—‘ Correction

Déja, f(1) < 0 donc nécessairement a # 1.
Si f(a) # 0, supposons f(a) > 0. f est continue en a donc il on dispose de n > 0

tel que pour tout x de Ja—m,a+n[, f(x) > 0. Donc a + g € A, c'est absurde.
Donc f(a) = 0.

(c) Montrer que Vx €]0, a[, f(x) > 0, et conclure.

Correction

Soit x €]0, a[. Posons € = a—x > 0. Alors par les propriétés de la borne supérieure,
on dispose d'un élément § de A tel que a— 9 < g, i.e. x < § < a. Donc, par
définition de 6, f(x) > 0.

On en déduit que f(a) = 0 et que Vx €]0, a|, f(x) > 0.

Exercice 25. @@0© Soit a et b deux réels tels que a < bet f : [a, b] — R, dérivable. On définit

[a, b] = R [a, b] = R
b s wsix#a et W s WSix#b
fl(a)six=a f'(b)six=b

1. En étudiant les fonctions ® et W, montrer que ' prend toutes les valeurs du segment
d'extrémités f'(a) et f'(b).
Ainsi, f’ vérifie le théoréme des valeurs intermédiaires.

Premier point, ® et W sont clairement continues sur [a, b] par définition de la dérivabilité
de f.
Ensuite, on peut supposer, sans perte de généralité, f'(a) < f'(b).

f(b) —f(a)
atteinte par @ et W. On distingue alors trois cas!

e f'(a) <7 < f'(b): en fonction d'ou est M (dans [f'(a), 7] ou [T, '(b)]), on peut
faire un TVI sur ® ou ¥

Soit alors M dans ]f’(a), f'(b)[ (on peut prendre le segment ouvert car sinon c'est

On remarque que le point 7 = est un point important, car c’est une valeur

évident !).

On sait que ®(x) — f'(a) < M donc on dispose de n > 0 tel que Vx € [a,a+ 7],
X—ra

d(x) < M.

On sait que V(x) — f'(b) > M donc on dispose de ' > 0 tel que Vx € [b— 17/, b],
X—

V(x) > M.

f(b) = F
Ensuite, M se situe entre ®(a+n) et W(b—n'). De plus, (b) = W(a) = %.

Donc, nécessairement, M est ou supérieur ou inférieur a cette quantité, i.e.
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e ou bien P(a+n) < M < d(b)
e ou bien V(a) < M < W(b—n).

Sans perte de généralité, on peut supposer que |'on est dans la premiére situation. Alors
par continuité de ® et par le théoréme des valeurs intermédiaires, on dispose de a dans

flo) — f
[a+ n, b] tel que M = ®(a), i.e. M = %. Maintenant, par le théoréeme
fla)—f
des accroissements finis, on dispose de ¢ dans |a, af tel que % =f'(c), ie.

M = f'(c). Le résultat est donc démontré!

2. Pourquoi ne peut-on pas appliquer le TVI sur f'?

Correction

Simplement parce que f n'est que dérivable : rien ne nous dit que f’ est continue !

Indications.

Calculs directs. Ne pas hésiter, quand il y a une dérivée compliquée, a I'écrire sous la forme
f ogoheta expliciter sa dérivée a I'aide de la régle de la chaine.

[ 1. Récurrence évidente.
2. Utiliser la formule de Leibniz sur g : x — xe*
3. Essayer d'exprimer h simplement, en écrivant x> +1 = 2 + x> — 1, puis en écrivant
1 a b
= avec a et b a déterminer.
x2—-1 x-1 + x+1
ATTENTION! La tangente commune n'est pas tangente aux deux courbes au méme
point. Un conseil : écrire I'équation de la tangente a la courbe de x — x%> en a € R et

I'équation de la tangente a la courbe de x +— ” en b € R*, puis égaliser les deux équations
de tangentes.

Ecrire les définitions, et dériver les égalités en faisant attention aux foncitons composées.

[ Utiliser les théorémes généraux pour toutes les fonctions non problématiques, puis utiliser
le théoreme de la limite de la dérivée ou bien le taux de variations.

I 1. Montrer que |f| est dérivable si et seulement si Va € R, f(a) =0 = f'(a) = 0. (en
montrant la réciproque, puis la contraposée du sens direct)

2. Utiliser les expressions du maximum et du minimum a |'aide de la valeur absolue!
1 1 1 1 1 . :
[I2] Remarquer que T2 21 —x + 51+ x et utiliser I'exercice .
Utiliser la seconde définition de la dérivabilité (f(x) = £(0) + ' (0)x + x&(x)) puis injecter
cette expression dans la somme. Ensuite, séparer les cas f(0) # 0 et £(0) = 0, puis, dans
le cas £(0) = 0, revenir aux €.

Ecrire ce que I'on veut avoir (« g(x) = f(y/x) » ) et utiliser le théoréme de prolongement
de la classe %*.
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[I4] Penser aux conditions pour étre une bijection (en termes de monotonie) et aux conditions
pour avoir la dérivabilité de la réciproque!

Appliquer n fois le théoréme de Rolle (fait en cours).
[I7 Utiliser Rolle plusieurs fois et penser qu'a partir d'un certain n, P(" est nul.
08 1. Sice n'est pas le cas, appliquer plusieurs fois le théoréme de Rolle.
2. Utiliser que si n est pair, alors la dérivée de la fonction s’annule au moins une fois.
Démontrer que cela revient a avoir I'existence d'un ¢ tel que 0 = f(c) — cf’(c), i.e.

f . . . .
c <(CC) — f’(c)) =0, et appliquer le théoréme de Rolle a une fonction bien choisie.

Penser au fait que si f¥ a un nombre fini de zéros, aprés son dernier zéro elle est de signe
constant, donc f*~1 est monotone...

211 1l s’agit uniquement d'applications du théoréme ou de I'inégalité des accroissements finis.

Essayer d'encadrer In(x 4+ 1) — In(x) sur [n, n+ 1] a I'aide du théoréme des accroissements

finis.
F(x)— f
\ | () —f(a) _ x4 a
Ressemble beaucoup a|19|.. Introduire g : x — X—a
0six=a.

1. Utiliser la seconde définition de la dérivée.
2. (a)
(b) Montrer que a # 1, puis raisonner par |'absurde en supposant f(a) # 0.
(c) Utiliser la caractérisation de la borne supérieure.

Prendre M entre f'(a) et f'(b) et encadrer M entre une valeur de ® et une valeur de
V. Pour cela, penser que si ®(x) — £ < «, alors ®(x) < a au voisinage de a. Ensuite
X—a

appliquer le TVI a ® ou a V.
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